Topology on metric spaces and

normed spaces Rixt 2B 2 i) E2 A &F 22 R AV FR 5%

2.1 Elementary notions S5 B
0
In the first section, we start with metric spaces and normed spaces, on which we will define the notion of EE—SE » RSV R R Rz RN S » 1 B EE SRS o
topology.
2.1.1 Metric spaces, normed spaces, and examples &= \E5 EREEZCRY - BREEZCRY - &5
Definition 2.1.1: Given a set M. We say that a function d : M x M — R is a distance or metric (EE EFE21.1 D MEEEM o EREd: M x M — RimE FIES - AIFRMRMWIEE M £
A) on M if #Adk (distance or metric) ©

(i) (Positive definiteness) d(z,y) > 0 with equality if and only if x = y. . et -
i) [EEM] dz,y) >0 BEEREIEEHE =y °

(i) (Symmetry) d(z,y) = d(y,x) forallz,y € M.
(i) [EBM] d(z,y) =dy,») BRFAB 2,y € M °
(iii) (Triangle inequality) d(z, z) < d(z,y) + d(y, z) forall z, y, z € M.
(i) [EBFFN] d(z,2) <d(z,y) +dy,2) BB z,y,2 € M °

We also say that (M, d) is a metric space (BREEZE) if d is a distance on M.

= d 28 M ERIEERE - FAILFE (M, d) BEKEEZERM (metric space) ©

Example 2.1.2: Below we give a few common examples of metric spaces. &l 2.1.2 1 TEELEE RANEEZRNGF -

(1) On R, the function d(x,y) = |z — y| is a distance. (1) FER £ BB d(z,y) = |z — y| SERER o

(2) On R", we may define the following Euclidean distance (ERECEERf), N
(2) T R” k£ » T3 R EFBEVEEX FRFE#EE (Euclidean distance) :

d(l’,y):\/’.’L’l—y1’2+“'+‘l‘n—yn’2, x?Z/ERn-

d(x,y) = fler =12+ + [t — gnf2, 7,y €R".
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(3) On R", the following functions are distances.

di(z,y) = |v1 —y1| + - 4 |20 — Ynl,

doo(xvy) = max{\xl - yl‘v sy |J,‘n - yn‘}

(4) For any nonempty set M, define

d(z.y) 0 ifz=uy,
T,Y) =
1 ifx#y.

This is called a discrete metric and (M, d) is called a discrete metric space (RERIRREEZEM]) .

F-E MHFEZREHEM T MAIREE

(3) ER" £ > THIRSE ZEERE -

di(z,y) = |v1 — 1|+ + |20 — Ynl,

dOO(:Bay) = maX{"xl - yl‘: SR} |I’n - yn‘}

(4) HRERIEZEES M - ZFIER

=+

0 Br=y,
d(z,y) =
1 HaxH#uy.

It bR B AE VERERIEBE (discrete metric) B (M, d) TEEREUIREE 22 (discrete metric space)

o

Definition 2.1.3 : Let V be a vector space over a field K = R or C. Amap ||-|| : V — Ry is said to

be a normon V' if
(i) (Positive definiteness) ||z|| = 0 if and only if 2 = 0.
(i) (Homogeneity) For every A € K and x € V, we have || Az|| = || [|z]].
(ili) (Triangle inequality) For any =,y € V, we have ||z + y|| < ||z|| + ||ly]|-

If ||| is a norm on V, then we say that (V/ ||-||) is a normed vector space (FREEMEZEME), or a normed

space (FREBZERE) .

EH213 1 HVAEHNK =R C _EMEBZEM - MBRK || - V - R, HE FHUEL -
BRI RIELE V LB (norm) ©

i) [EEM] ||z|=0BBEHEz=0-
Gi) (9] BRFAE ) NcKkx eV FME |\z] = |\ ||z °
(i) [ZAFER)] HRER 2,y c V> BFE |z +yl| < |zl +[ly] °

|| REEV ENEE > BEMAR (V) SEWFEFEZER (normed vector space) T 2

HR#IZE [ (normed space) ©

Example 2.1.4 : Given a normed space (V/ ||-

), the map d(z,y) := ||z — y|| defines a distance on V,
making (V, d) a metric space. Therefore, whenever we want to consider a normed space as a metric

space, we choose this distance by default.

g 2.1.4 : FREMEBZER (V. |) » BB d(z,y) = ||z —y|| EHRE V LBIEERE - 5B (V,d) BX
SAREEZER - At - ERFIEELEEZHEENMEZRER - RFIERIEEGBIES -

Example 2.1.5: Below are some classical norms that we consider on R”. For x = (z1,...,2,) € R",
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define T

n n
lly =Dl [llly = [zil?, 2l == sup |zil. (2.1) . .
' ; v ’ ; o 7 g lzlly =D laal, lzlly o= | D1zl N2l = sup |ail. (2.1)
i=1 i=1 Isisn

You may check that the properties (1)—(3) in Definition 2.1.3 are satisfied.

BEUUBTREEE 213 FHME 1)-Q) BB RE °

Example 2.1.6 : The following spaces of real sequences are also normed spaces, il 2.1.6 : T EHEEIFAERNZTRt 2R EZR] -
1 - _ N, —
(R) = {a= (@) € R flal = 3 Jau] < 0}, AR = {a = (@)1 € BY: fal, = Y fan] < 00},
n= n=>1

(R) :={a = (ap)ns1 € RY : |a|, = anl? < oo,
(R) := {a = (an)nz1 lally /Z 2 < oo} E®) = {a = (@)t €B Jaly =[5 Janl? < o0,
n=1

(R) :=1a = (an)n> e RY: o = nl < .
(R) {a (@n)n>1 llall igll)‘a ‘ OO} 1°(R) = {a = (an)n>1 € RN . HaHoo — Suli‘an‘ < OO}
nz
Example 2.1.7 : Given a set X and a normed vector space (V,||-||). Write B(X, V) for the set of 85 2.1.7 : HAEES X REBEAEEZR (V. |-) » HME BX, V) BFFER X BV BREE
bounded functions from X to V, which can be checked to be a vector space. Then, we may equip FMAES » REREEt REMRER - HATRILE B(X, V) L& T5I5E :
B(X, V) with the following norm,
[flloe = sup f (@), feBX,V).
[flloo := sup [[f(),  feBX, V). veX
reX
Example 2.1.8 : Let a < b be two real numbers. Consider the space of continuous functions defined ‘ ’ gl 218 ¢ Da<bAMBEH - ZEHMET [0, b)) LEETE R PREERBFIERNES
on [a, b] with values in R, denoted by C([a, b], R). It is not hard to check that C([a, b],R) is a vector C([a, b, R) » B FEHREERERREMN - RETUE TANTASEMEL - EFiaNE
space. We may equip the following vector subspaces with the corresponding norms,
HYSEEX
) b
£ (0,8, ®) = {f € C(la, 8 B): 7] = [ 15(0)]de < oo}, ,,
— L'(a, Bl R) = {f € C(la, . R): 171, = [ 17(8)]dt < oo},
P10, R) = {1 € Cla b R) < 1, = [ 1502 < o0}, ;
5 L2([o, 8, R) i= {f € C(a, W R) ¢ If o =\ [ 1702t < oo},
£(la, b, R) = { f € C(la, B, R) : || ]l = i £} :
| 1 2o, ) 1= {£ € Clla 8. B) : Wl = s 17001}
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Chapter 2 Topology on metric spaces and normed spaces

Example 2.1.9 : On the vector space K[X] of polynomials with coefficients in a field K = R or C,
that is
N
KIX]={> anX" 0, €K,0<n < N,N >0}.
n=0

We may define the following norms on K[X].

(a) A polynomial P can be uniquely written as P = > 7 ; a, X", where only finitely many terms

of (an)n>0 are nonzero. Then, we define

1Pl = lanl, [IPlly = [>_lan|?, and|[P|,, = max a,|.
n=0 n=0 nz

(b) We are given real numbers a < b and see a polynomial P as a function ¢t — P(t) on [a, b]. Then,

we define

b b
1Pl = [ 1P@1as 1Pl = [TIP@®Pat and| Pl = max [P().

$-E HEERHHMEEERE

gl 2.19 ¢ BMZEHFBEERE K =R C EMNZER K[X] » YEETHEE -

() ARZIAIN P AJBRHE—RIF P = X2 g an X" HHFEF (an)nz0 FREBRIFEIE -
7 BZfiEE

1Pl = lanl, [IPlly=[>_lanf?,  BIIPll, = max|an|.
n>0 n=0 -

(b) CETEER o < b LISBIER P IBIE (0.5 LHRB o P(1) - BE > BIIEE

b b
1Pl = [ 1P@lat 1Pl =1f ["IP@®Par B(Pl, = max [P

Definition 2.1.10 : A Euclidean space (EXECZERE) is a finite dimensional vector space V over R,
equipped with an inner product (R#R) (-,-) : V x V — R satisfying

(i) (Positive definiteness) (z,x) > 0 with equality if and only if z = 0.
(i) (Symmetry) (z,y) = (y,z) forall z,y € V.

(iii) (Linearity) (azx + by, z) = a{x, z) + b(y, z) for all a,b € Rand z,y,z € V.

E & 2.1.10 : BXIKZM (Euclidean space) 2B R LN ERHEEREZRE V. WHEA

WHE (inner product) (-,-) : V x V — R & FINUEHE -
() [EEM] (v,2) >0 BERHKIIEEHE =00
(i) [EBM] (v,y) = (y,2) BRFAB v,y c Vo

i) [#RM] (ax +by,2) = alz,2) + bly, 2) BRFABE a,be R K 2,y,2 €V °

Example 2.1.11 : The vector space R" with the following inner product
n
(T y) = @iy, x=(x1,..., %),y = (y1,...,yn) ER"
i=1

is a Euclidean space.
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&l 2.1.11 @ EATLEEFREZEM R FTEEBEANTR -

n
<$7y> = leylv r = ($17"'axn)>y = (ylv"'ayn) € an
=1

fEftb AR ERRZER] -
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Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.1.12: Given a Euclidean space (V, (-, -)), we may define

|z|| = +/{z,x), VxeR" (2.2)

Then,

-|| is @ norm on V', which is the canonical norm on the Euclidean space V.

Proof : We only need to check that the function defined in (2.2) satisfies the triangular inequality. It is

a classical proof, see Exercise 2.5. O

In what follows, we will fix a metric space (M, d) and define several notions in this space. If you need
a concrete space to help you visualize, think of (1) or (2) in Example 2.1.2, but please bear in mind that
these notions can be made sense of in any abstract metric space (M, d). Also, some behaviors might be quite
different in a general metric space, for instance, look at the balls (defined below, also see Example 2.1.30) in

a discrete metric space such as (4) in Example 2.1.2.

Definition 2.1.13 : Given x € M and r > 0, we define

B(z,r)={y e M : d(z,y) <r},
B(a,r) ={y € M :d(z,y) <r},
S(z,r)={ye M :d(z,y) =r}.

We say that B(z,r) is the open ball (FAEK) centered at = of radius 7, B(x,r) is the closed ball (Ff
ER) centered at = of radius 7, and S(x,7) is the sphere (EKEX) centered at  of radius r. If the set M
is equipped with different distances, we may write By(x, 1), By(z, 1), or Sq(z,r) to specify the balls

are defined using the distance d.

Remark 2.1.14 : Note that we have B(x,7) U S(z,r) = B(x,r) for any x € M and r > 0. We also have
B(x,0) = @ and B(z,0) = {x} for any z € M.
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iR 2.1.12 1 MREBREKZER (V, () » RFIFTUER

|z|| = 1/(z,x), VzeR™ (2.2)

A ||| 2fEE Vv ERIEEE - BERENKRZER L vV ERVTRREER -

B AR FTERE 22 PERNREME =ARFL - EREKHNER RE&E 25 -0

BTE RASEE—EREZER (M,d) TEER—EEILZEFIHRE - IRITFEEZEREER
BB FRIREAL - FJIAEBERA 2.1.2 & (1) 5K (2) KIGIF » RABELRENZ - ELEHREETHRA
RREEZERE (M, d) PHIRARERMN - o - REMEERMEZEFREIEER—1 - AN IUNEE
Ef 2.1.2 (4) PROBEREEZER] - WZERAFRIER GERETES - BB R&EH 2.130) EHEA—KHIT

ETE2113 : BT zeceMEr>0 BfiEE

B(z,r)={y € M : d(z,y) < r},
B(x,r) ={y € M :d(z,y) <r},

S(x,r)={ye M :d(xz,y) =r}.

MR B(x,r) BEROTE ¢ - FE% r BIBHIK (open ball) » B(z,r) BEFROE 2 F KA r
AIPAER (closed ball) » S(z,r) BRIEHDTE z » F1E% r BIERK (sphere)  HIRES M T
EARFIBYEERE » FAMTBIAEE By(z, ) ~ Ba(v,7) 3K Sq(x, ) ZREEFFTE BAVEKZ HHEERE d E&
By o

2114 HREREre M Rr >0 HME B(x,r) US(z,r) = B(x,r)° L5 » HREER
r € M BB B(2,0) = o UK B(x,0) = {z} °
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Chapter 2 Topology on metric spaces and normed spaces

Definition 2.1.15 : Given a nonempty subset A C M, we define its diameter (BE1X) by

6(A) = sup d(z,y).
T,YyEA

And we say that A is bounded (BF}) if A = @ or 6(A) < +o0. Otherwise, A is unbounded (FE&5}).

Definition 2.1.16 : Given two nonempty subsets A and B of M, we define the distance between A
and B to be

d(4, B) = inf d(z,y).
yeB

We also define the distance between a point = and a subset A C M to be

d(z,A) =d({z},A) = ylgg d(z,y).

Remark 2.1.17 : The distance d, originally defined on the metric space (M, d), can be generalized to a map
d: (P(M)\{@})? =R

as we see in Definition 2.1.16. However, this map d does not define a distance on nonempty subsets
P(M)\{2} in the sense of Definition 2.1.1. For example, if we take (M, d) = (R,| - |), then d(A, B) = 0
for A = [0,2] and B = [1, 3] without having A = B. However, we may still call it a distance by abuse of

language.

2.1.2 Open sets and closed sets

Below, let us fix a metric space (M, d) and define open sets and closed sets on this space. The topology of
(M, d) is characterized by such sets.
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$-E HEERHHMEEERE

EH 2115 | BEIFETES AC M > ROTUEBMBHLARE diameter) :

5(A) = sup d(z,y).
z,y€A

MEA =0 HEIA) < +oo HIHKMAR A BAR (bounded) Mo K2 HFIR AR
‘Iﬂ—i_% (unbounded) B ©

EFK2.1.16 : HBEME M NIFEEFES AR B BRFIEE A HE B <ERERS

d(A,B) = :irelg d(z,y).
yeB

HPIBEE R —ER « B —EFES A C M HIERES

d(z,A) =d({z},A) = ;22 d(z,y).

sEfE 2117 @ EEZ 2116 F - ZFIBRRAEREMEZER (M, d) LRVEERE d AIBHEES TE

pER[E[B3E 24

d: (P(M)\{2})* = R.

AT WERE 211 NERKRE @ LRB J U FRBEIFETFES P(M)\{o} LAVERE - fli0 > DR
fIEY (M,d) = (R, |- ) BB A=1[0,2] e B=[1,3] B » ZMBE d(A,B) =0 BAIREHE A=DB-
HESRUNLL - PSR ETE - MAEMIBIEERE -

SBIE FARRESE

HFIBEREEMEZRE (M,d) » HERTUIZRE ERIBREERASE (M, d) BhERRELESH
FSILAY
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$-E HEERHHMEEERE

Definition 2.1.18 : Given a subset A C M. We say that A is an open set (FA%E) or open in M if
A=0or
Vo € A,3r >0 suchthat B(x,r) C A.

EF2.1.18 | MEFEBACM HEA=0HE
Vee A,3r >0 1£18

AIFRMIER A B M PRIBAEE (open set) °

B(z,r) C A.

Example 2.1.19 : Below are a few examples of open sets.
(1) Open balls are open sets.

(2) Take (M’ d) = (Ra ’ ’

), then the intervals (a, b) with —oo < @ < b < oo are open sets.

(3) In a metric space (M, d), fix a subset A C M and r > 0. Then, the set
A ={ye M:d(y,A) <r}

is open for the following reason. Let y € A,, write ¢ = 3(r — d(y, A)) > 0. Then, for z €

B(y, ), the triangle inequality gives
Vee A, d(z,x) <d(z,y) +d(y,z) <e+d(y,x).
By taking the infimum over x € A in the above inequality, we find, for z € B(y, €) that,
d(z,A) = grelgd(z,x) <e —|—gir€11f4 d(y,z) =e+d(y,A) = L(r+d(y,A) <.

That is, B(y, ) C A,.

&%l 2.1.19 1 TEHE—LHAENGF -

(1) FAERERE -

) B (M,d) = (R,|-|)* BIME —oo <a<b< oo BER (a,b) BFEE °

3) EMREEZEM (M. d) F > BEFEE ACM UK r>0° AIEE
A, ={ye M :d(y,A) <r}

EERE - HPIRFEHEEUEE - Dyec A, > Wi e = (r —d(y, 4)) > 0 ° BIERER

z € B(y, ) » I =BFFATLUISFE

Ve e A, d(z,x) <d(z,y) +d(y,z) <e+d(y,x).
TELEARFMAE 2 ¢ AREATR » BRI 2 € By, ¢) * ISR

d(z,A) = ingd(z,x) <e+ ig£ dly,z) =e+d(y,A) = L(r+d(y,A) <

xe

HWRER * B(y,e) C 4, °

Proposition 2.1.20 : Open sets in (M, d) satisfy the following properties.
(1) The empty set & and the whole space M are both open sets.
(2) Any union of open sets is still an open set.

(3) Any finite intersection of open sets is still an open set.
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AR 2.1.20 © (M, d) PHBEERE TII4E -
(1) ZZ&EE o REZTM M MEESHE
(2) EEZEMRENHENSHE

(3) BRRZERENRENEME
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Chapter 2 Topology on metric spaces and normed spaces

Proof :

(1) The empty set & is open by definition. The whole space M is open because for any point x € M
and any r > 0, we have B(x,r) C M.

(2) Let (A;)icr be a family of open sets in M and denote A = |J;c; Ai. We want to show that A is
also open. Given x € A. By definition, we can choose i € I such that x € A;. Since A; is open,
we may take r > 0 such that B(z,r) C A;. Therefore, we also have B(z,r) C A. In conclusion,
we are able to find an open ball centered at any point of A that is entirely contained in A, we

have shown that A is open.

(3) Let (A;)1<i<n be a finite family of open sets. Write A = /', A;, and we want to show that A
is also an open set. Given z € A. For every i = 1,...,n, we have x € A;, since A; is open, we
can find r; > 0 such that B(x,r;) C A;. Take r := min(rq,...,7,) > 0, then we can check that
B(z,r) C B(z,r;) C A;, which means that B(z,r) C A. O

Remark 2.1.21: It is important to note that any intersection of open sets is not necessarily an open set. For

example, consider I,, = (—2, 1), which is open in R for n > 1, but
I:=()1I,={0}
n=1

is clearly not an open set (in R).

Remark 2.1.22 : Given a set X, we say that a collection of (some) subsets 7 of X is a topology on X if
the properties in Proposition 2.1.20 are satisfied, where we replace “open set” by “element in X”. These
properties are considered as axioms of a topology. The elements in 7 are called open sets, and (X, ) is called
a topological space. This generalization is compatible with what has been discussed above, since in the case of
a metric space M, the topology 7 simply contains all the subsets A satsfying Definition 2.1.18. We may also
note that, a set M equipped with two different distances d; and dy gives rise to different topological spaces.
They may also define the same topology, in the sense that a subset A C M is open in (M, d;) if and only if
it is open in (M, d2). We will see some examples in Example 2.3.4 and have a longer discussion in Section

2.5.4.
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s B

(1) RIBER » Z&E6 o 2ERE - 2ZH M BERERSE  AAHNRERR » c M REE

r >0 FME B(x,r) C Mo

(2) B (Ai)ier 2 M FRIRAEKR T A = U, A AFIBEZRABRERE - B
re A REBRER » BMEEND i c I Gz c 4 - AR A, 2EKE > HMAETUE» > 0
818 B(z,r) C A, - Bt > HMIMEE B(z,r) C A - BEFER  HINERTE A PR &K
FIRESTRBILUMt A ORIFER - EREBRWEE A - EAR A BERE -

B) B (A)1cicn DFEBRINAIRKR - 50 A = NV, A, » BFIEERHE A HEEME - BTE
re A HREFFEMi=1,....n> BB 2 c 4, AN A, 2% - HAIBEHD) r;, > 0
618 B(x,ri) C A; o By = min(ry,...,ra) > 0+ BIRFYE Bla,r) C Bla,ri) C 4; » o3k

- O
Z#R B(z,r) C Ao

sfE 2.1.21 @ EEEMGED - RANKRKREREEDN - HEBRNEERZET—EZERE - A
o WIRFIE n > 1 BPIBEHEE L, = (-1, 1) » BMfIMRE

n

I:=()1,={0}

n>1

BATEE RHH) FHE-

BRE2122 ¢ BEES X URE X () FEAFERNES - B REHE 2120 HEM
B > HORRHEMETE (RS #as TX RHTEl - BIRMR - 28 X EOHIE (opology)
o BEME AR AT - £4 r PMTREENS > B (X, ) BIEGEE - EERRM LE
EHOHREAEN - DAEMEZRR M &> RAFEBRNEYE - RREFEHRES 2118 FI§
HMTES A BFBIED  NERFRTES M WERENESR 4 & d, - tFEoTEesss
REMIERZR B MFEEE T TR ERNEEEYN SRENRFES AC MK
3 2 AMEMWE (M, d) 2HE - BT (M, d) DHERIE - BFB7EEH 254 BE 254 /)\EHX
rhEE LT -
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Definition 2.1.23: Given A C M. We say that A is a closed set (BA%E) or closed in M if A°¢ = M\ A

is open.

Example 2.1.24 : Below are a few examples of closed sets.
(1) Closed balls are closed sets.

(2) In the metric space (M,d) = (R, ]| -

), the intervals [a, b] with —co < a < b < oo are closed

sets. However, the intervals [a, b) with —0o < @ < b < 0o are neither open nor closed.

(3) In a metric space (M, d), fix a subset A C M and r > 0. Then, the set
A ={yeM:d(y,A) <r}

is closed. Let y € M\A, and write ¢ = 1(d(y, A) — r). Then, we may show that B(y,e) C
M\A,.

Proposition 2.1.25 : Closed sets in (M, d) satisfy the following properties.
(1) The empty set & and the whole space M are both closed sets.
(2) Any finite union of closed sets is still a closed set.

(3) Any intersection of closed sets is still a closed set.

Proof : We actually have the same proofs as in Proposition 2.1.20 by noting that the complementary

of a closed set is an open set. (]

Question 2.1.26: Is any union of closed sets still a closed set? If yes, please prove it; otherwise, please give

a counterexample.
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EE2123 1 HREACM MR A = M\AZERE AIEMRAREE M FH

PAE (closed set) ©

gl 2.1.24 1 LUTFE2—LEAERES -
(1) BAEKZRALE -

(2) EREEEZERE (M,d) = R, |- ) F HRER -oc<a<b< oo’ & [a,b) B - A
o {REE —co<a<b< oo B [a,0) BIFEHE » LAZME -

3) EMHEEZEM (M, d) > BEFEE ACM UKk r>0° BIES
A, ={yeM:d(y,A) <r}

RERE - S ye M\A, W5 e = 1(d(y, A) —r) o BIFRPIRILAERR B(y,e) € M\4, °

A8 2.1.25 ¢ £ (M,d) PRUESERE TIIMEE -
(1) ZES o R2T/E M BEARHE -
(2) BRZEFAENBIETEMHE -

(3) EEZERAENRENZHE -

s2EA : FEEAEANEE 2.1.20 RUSERRMER - RARENHERERE - O

i

fIRE 2.1.26 : Rk TERZERMENMENEME) BEEAE ?NRE @ FEALLM ; IRAZ -
et —ERA -

BRIBIB : 20244 10 H 23 H 13:42



Chapter 2 Topology on metric spaces and normed spaces

2.1.3 Closure, interior, boundary

In the metric space (M, d), not all the subsets are necessarily open or closed, see Example 2.1.24 (2). Given

a subset A C M, we can define its closure (closed set), interior (open set), and boundary (difference between

them).

We start with the definition of closure and discuss some of its properties.

Definition 2.1.27 : Given a subset A of M, we denote by cl(A), or A, the closure (BAf2) of A, which

is the smallest closed set containing A. In other words,

dA)=4:= [) G (2.3)
GDA
G is closed

Proposition 2.1.28 : A subset A is closed in M if and only if A = A.

Proof : We are given a subset A of M.

We first assume that A is closed. Using the definition given in Eq. (2.3), any subset G in the

intersection on the r.h.s. contains A and we may also choose G = A. Therefore, it is clear that

the intersection gives A.

We assume that A = A. Since A is closed, A is also closed. |

Proposition 2.1.29: Let A C M and x € M. Then, the following properties are equivalent.
(1) z € A.
(2) Foralle > 0, there exists a € A such that d(a,x) < &; or alternatively, AN B(x,¢) # .
(3) d(z,A) =0.

In other words, we may also write the closure A as

A={ye M :d(y,A) =0}.
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$-E HEERHHMEEERE
SB=/E S - Rk ER

EREZR (M, d) F > FESUFAZRERERFASEWE - LEREMEHLAZ - HIMNELEH)
2124 (2) > HREFES AC M > ZfITUERMHEAE BIR) B (FAS) UREFR (WE
=8) -

I ERPAEELR - LEERE/R%EE -

E&E21.27  FBAE M BFES A FHFHE ABPHEL (closure) SEfEcl(4) Bk A HEEE AR
=/\Fgk - REEER - HfIE
dA)=4:= (] G (2.3)

GDA
G A%

MRi2128 I DABMBNFES -HAME A=A B ARKRAE-

EEA I RE M FEG A

#HFIfiRER A BRA% - AEN 23) PHER  FAEEARETHNFES G KEAES
A BEFIBEER G = A - FILEEIAM  TEMEREZ A -

O

BB A=A - AN ABHE  ALEERE -

MEE2129 ! DACM Raze M- THIHEHE:
(1) zeA-°
@) HRFIE >0 B ac AFR d(a,x) <ec; AR ANB(r,e) £2 °
3) d(z, A) =0-°

Ha)EEeR - R LUEEHE A BE -

A={ye M :d(y,A) =0}.
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Chapter 2 Topology on metric spaces and normed spaces F£T5 A7 B A &0 2 RV

Proof : We prove that (1) = (2) = (3) = (1). R BRMEFEBE 1)=02=>03)=0)-°

« (1) = (2). Let z € A. Given ¢ > 0, we want to find a € A such that d(a,x) < €. Define C W)@ DrcAd e >0 RFEERI o c A BB dla,z) < c o BB

As:={ye M :d(y,A) <6}, Vi=0. _
5= 1 v, 4) <9 As:={ye M :d(y,A) <o}, Vo=0.

Since Ay is a closed set for any § > 0, and it contains A, by the definition of A, we deduce that
/‘\ M /‘\ = ’ o q = = N ’ A N\ = ’ o =] A
x € As for any § > 0. By taking § = 5, we know that d(z, A) < 5, =, that is, we may finda € A HRENER > 0 FRE 4, RERS AWK RIR ANER  HFUES 2 c 4

such that d(a, z) < e. HREZE > 086 =5 HMAME dz,4) < 5 LABREMEEIXE o € A F]T
« (2) = (3). Fixe > 0. By (2), we can find a € A with d(a,z) < e. Therefore, we have d(z, A) < d(a,z) <e-°

d(a,x) < . Since € > 0 can be taken to be arbitrarily small, we conclude that d(z, A) = 0. C@) = () B > 00 BB @) BRATUB 0 c ABE da2) < - Bt BME

« (3) = (1). By contradiction, suppose that z ¢ A. Since (A)¢ is open and contains x, we may find d(z, A) < d(a,z) < e ° B ¢ > 0 BTUEUMAEE /) » BPHETS d(z, 4) = 0 °
€ > 0 such that B(z,e) C (A)°. This means that d(z,a) > ¢ for any a € A, which contradicts
with (3). 0 « (3)= (1) ERARFEE BRS¢ A AR (4)° EEREEES « - FTUFKFIRERE
e > 013 B(z,e) C (A)° s ERARYENER a € A HME d(z,a) > ¢ » B (3) IR
O
FE e
Example 2.1.30 : Below are some examples of closure. ‘ [ gl 2.1.30 : TEHE—LEHAENFHF -

(1) In anormed space (V,

ball, i.e.,

), the closure of the centered unit open ball is the centered unit closed (1) 7ERREEZERT (V, ||)) o - BrhEMEINRNEIE S EhE M - IR

B(0,1) = B(0,1). B(0,1) = B(0,1).

(2) If we consider M = {0, 1} with the discrete metric d(x,y) = 1,-,. Then, we have
() BBAEE M — {0, 1) WERF BKTER d(v,y) — 1, + B
B(z,1) € B(z,1), Ve € M.

B(z,1) € B(z,1), Vr € M.
Actually, B(z,1) = {x} is open and closed at the same time, implying that B(x,1) = B(x, 1).

However, the closed ball B(z, 1) is the whole space M. This is still valid as long as we consider EMBERER RMIEH B, = ) AESEAREHLIEEE FRURME
a discrete metric space (M, d) given in Example 2.1.2 (4), where the set M contains more than Bo1) = B, 1) » 8T » BBRR B, 1) BRBEZE M - SRMANSE2EQAEOHE
RERVEEE M - BT EEH) 2.1.2 (4) FRIBEREERE - BUTERERCREEZER (M, d) B - LR
HPRRNIL °

2 points.

(3) For (M,d) = (R,| -

), the closure of an open interval (a, b) with —co < a < b < 00 is [a, b].

B3) & (M.d) =R, |-|) P HR —co<a<b< oo HLE (a,b) NEABRE [a,b] °
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Chapter 2 Topology on metric spaces and normed spaces

Definition 2.1.31: A subset A of M is said to be dense (FA%Z) (in M) if A = M.

Remark 2.1.32 : To check whether a subset A is dense in M, we may use the property (2) or (3) in
Proposition 2.1.29.

Below is an interpretation of the density property in R.

Lemma 2.1.33: For (M,d) = (R, |-

), a subset A is dense if and only if (a,b) N A # & foralla < b.

Proof : Let us first assume that A is dense in R, thatis A = R. Leta < b, x = %(a—i—b) ande = %(b—a).
Then, (a,b) N A = B(z,&) N A, which is nonempty by (2) of Proposition 2.1.29

Let A be a subset of R such that AN (a, b) is nonempty for all a < b. Given x € R, we want to show
that 7 € A. For any € > 0, take a = x — e and b = x + ¢, since (a,b) N A = B(x,&) N A is nonempty
by assumption, by (2) of Proposition 2.1.29, we deduce that x € A. (]

Example 2.1.34 : Both the set of rationals Q and the set of irrationals R\Q are dense in R, i.e. Q =
R\Q =R.

Next, we define the notion of interior points and interior of a set. We will see that it is quite similar to the

notion of closure (after taking the complement).

Definition 2.1.35:Let A C M and # € A. We call = an interior point (A&) of A if there exists
e > O such that z € B(z,¢) C A.
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EE2131 : EABMMNFES BRBA=M AEMRA FEMF) SR (dense)
B9 o

32132 | ERETES AREE M PARE » IR H6E 2.1.20 P9 (2) 3 (3) °

HFIEREMNE R PREEAT

gI1# 2133 : £ (M,d) = (R,|-|) ¥ EEHEEHRFAE o <b HME (a,b))NA#£ 2 BIF

£5 A ZRER -

A BMEERATERDEMEN MR A-ReSa<b o= La+h) Re=10b—a)°
Bll (a,b) N A= B(zr,e) N A BIRME 2120 (2) RIEIFLEES °
SABRNFESHBHRAE o < b KE AN (a,0) IFE < BF « € R > HFEERH
€A HWIEE:e>0 BMa=z—-cBb=x+e BR (a,b)N A= B(z,e) N A RBIBRRAIE
» R 2.1.29 Y (2) IR 2 c Ao 0

He

862134 : ER P FEHES Q REEHESR\Q EZREN  UAMERQ=R\Q =

R o

#E > RAIEEAMURRZKIEE - ZATUED  BEES (REER) LFAEEIFEEL
By o

EE2135 . DACMRrc A IREEe> 0B rcBr,e) CA-AIFEMR 22 AN

P& (interior point) ©
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Chapter 2 Topology on metric spaces and normed spaces

Definition 2.1.36 : Given a subset A of M, we denote by int(A), or /DL the interior (BI#%) of A,

which is the largest open set contained in A. In other words,

int(d) =A== |J G. (2.4)
GCA
G isgopen

Proposition 2.1.37 : Given a subset A of M. Then, int(A) contains exactly the interior points of A.

Proof : Let x € A be an interior point of A. By Definition 2.1.35, we may find € > 0 such that
x € B(z,e) C A. It means that B(x,¢) is an element in the union on the rh.s. of Eq. (2.4). Therefore,
x € B(x,e) Cint(A).

Given z € int(A), by definition, there exists an open set G C A with x € G. Since G is open, by

Definition 2.1.18, there exists € > 0 such that the open ball B(x, €) contains x. |

Proposition 2.1.38 : A subset A is open in M if and only if A = A.

Proof : The proof is similar to that of Proposition 2.1.28. O

Example 2.1.39 : Below are some examples of interior.

(1) In a normed space (V/ ||-||), the interior of the centered unit closed ball is the centered unit open
ball, i.e.,
int(B(0,1)) = B(0,1).

However, in a general metric space, this equality might not hold anymore, see Example 2.1.30

(2) for a similar phenomenon.

(2) We do not necessarily have A= A For example, take (M, d) = (R, |-|)and A = (0,1)U(1,2).
We find 4 = [0, 2] and 4 = (0,2) # A.

(3) For (M,d) = (R, |-

), the interior of a closed interval (a, b) with —oo < a < b < oo is (a, b).

(4) For (M,d) = (R,] -

), the interior of Q or R\Q is @.
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E&E 2136 : AT M HFES A HE A BB (interior) BIE int(4) X A - 2B ETE
AR ANBE - #5ER - HME
int(A)=4:= |J G (2.4)

GCA
-1 -3

iRl 2.1.37 © #ATE M BIFES A - Blint(A) BFTE A BIRREFTER ©

f

S rcAB ANRE - BIBEEZR 2135 » BPITMUIKE ¢ > 0#F 2 € B(z,e) C A°3
RKRE » B(w,e) B (2.4) ARBREPRITRZ— < Bt » BB 2 € B(z,e) Cint(A) °

RE 2z cint(A)  IRIBEER > BEMEGCCARMB 2 c G- BN G BH%E  #EZH 2118
1350 » 12 ¢ > 0 E1FHEK B(z,c) BB 2 © O

2138 : S AABMMNFES - EEME A= A> Al A A& -

59RA : thEERAEAANRE 2.1.28 AYEERAAEML - O

gl 2.1.39 | TEE—LRAKAVEES)

(1) 7ERREEZER (V, || # » EFEAARNAXEREPEMME  WIER
int(B(0,1)) = B(0,1).

SAT - E—ARAVRREEZERE - WWENRLERIL - BAZELEER) 2.1.30 (2) FAL ©

@ BRFEF—EH A=A Bt 8 (M d) = (R,|- )’ A=(01)U(1,2) BIEKME
A=1[0,2]1BA=(0,2)£A°

(3) TE(M,d)=(R,|-|) P> HNR —cc<a<b< oo’ FHER (a,b) NFEKER (a,b) °
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Chapter 2 Topology on metric spaces and normed spaces FTE HHEZTHAEESZEENRE

(4) £ (M, d) = (R,|-) ¥ QHE R\QWFKZE o °

Proposition 2.1.40 : Given a subset A C M, we have iRl 2.1.40 : \MEFES AC M > BIERME

int(A) = M\ cl(M\A) and cl(A) = M\int(M\A). int(A) = M\ cl(M\A) MUB cl(A) = M\ int(M\A).

Proof : By symmetry, it is only sufficient to show int(A) = M\ cl(M\A) for any subset A C M. Let FHEA : IRIEEEN  RPRSESPEENREFES AC M > HME int(A) = M\ cl(M\A) B
A C M. We are going to prove using directly Eq. (2.3) and Eq. (2.4). We write A0S AC M o RFEZERR 23) B (24) PHES » 155
M\ int(A) = M\< G) _ (M\G) |
2, L, M=\ U 6)= N 0n6)
G is open G is open GCA GCA
ﬂ NG ﬂ F — d(M\A) G A% G ARE
— = = C .
M\GDM\A FDM\A = (1 (MG = [] F=c(M\A). 0
G is open F is closed O M\GDM\A FOM\A
Definition 2.1.41: Given a subset A of M, we define the boundary (G85%) of A as 0A := A\ A. EE21.41 1 BE M HFES A BIHE ARVER (boundary) EERM 0A := A\A o
Example 2.1.42: gl 2.1.42 :

(1) For (M,d) = (R,|-|) and A =[0,1), then 9A = {0, 1}. (1) B (M,d) = (R,|-|) B A=1[0,1) Bl 9A = {0,1} o

(2) For (M,d) = (R?,|-])and A = [0,1) x {0}, then dA = [0,1] x {0}.

(2 & (M,d) = (R%|-|) R A=10,1) x {0} » Bl 9A = [0,1] x {0} °

2.2 Adherent points and accumulation points W MR ERE
2.2.1 In general metric spaces S— NG E—eRERIEZeRgth
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Chapter 2 Topology on metric spaces and normed spaces F£T5 A7 B A &0 2 RV

Definition 2.2.1: Given a subset A of M and z € M. EFE 221 MEMBEFES AU e Mo
. . S 'H'E . N
(1) We say that x is an adherent point (f1Z®h) of A if for any £ > 0, (1) MEHRFE « > 0 BIE
B(z,e)NA# o. B(z,e)N A # o,
We write Adh(A) for the set of adhrent points of A. BIFIER « B A RIS (adherent point) © FffI8 A HHIEBHRIESECIE Adh(A) °

(2) We say that x is an accumulation point (FEZXEL) of A if for any € > 0,

(2) WMRERFAE >0 BME

B(x,e)NA# @ and B(z,e)NA#{z}. B(z,e)nNA#@ B B(ze)nA#{z}

We write Acc(A) for the set of accumulation points of A.

BJF IR = © A B9MERRES (accumulation point) © FHFIIE A FEFR R NESEE

(3) We say that x is an isolated point (f\iZ%k) of A if there exists ¢ > 0 such that Ace(A)
cc(A) °

Blz,e)n A = {z}. (3) MBHTE e > 0 18

We write Iso(A) for the set of isolated points of A. B(z,e) N A = {x},

HUFRPIER » B A BIIINLES (isolated point) o FRFHE A PAIIZBEERBIE S ECIE Iso(A) ©

Remark 2.2.2 : From the definition above, we note that SR 222 ¢ RIETES > BMAFATLCEED

(1) The set of adherent points is exactly the closure, that is Adh(A) = A, see Proposition 2.1.29. . N e I _ P
(1) MIERBRNESHITEME - WRUEER Adh(A) = A RapiE 2.1.29 °

(2) The set of adherent points can be written as the disjoin union of the two other sets, i.e., Adh(A) =

Acc(A) U Tso(A); () HEREREE ST LR R TEESHE FERE - AR Adh(4) = Acc(4) UTso(A) ;
(3) Ais dense in M if and only if all the points in M are adherent points of A, or Adh(A) = M. () EEMERE M PHEERE A MERL - #9555 Adh(A) = M » B ATE M RETRER -
Example 2.2.3 : In the metric space (M,d) = (R, | - |), consider the set A := {1, n € N}. Then, g6 2.23 @ EEEZME (M,d)=R,|-|)d EEBEFA:={1 neN} 8l
« 0is an accumulation point of A4; . 0 218 A EERYE ;

« all the points % where n > 1 is a positive integer, are isolated points of A;

- WRFTE n > 1 IEEE > L 218 A AOINILES ;
« the points in A U {0} are adherent points of A.

. AU {0} FEYBEES A A MOMTEEY -
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Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.2.4 : Given a subset A of M and x € M. The following properties are equivalent.
(1) x is an accumulation point of A.

(2) Foranye > 0, B(x,e) N A contains infinitely many points.

Proof : By definition, it is clear that (2) = (1).

Assume that x is an accumulation point of A. Fix ¢ > 0 and let us construct a pairwise distinct
sequence (xy,),>1 of points in B(x,e) N A by induction.

Take £1 = ¢, by definition we can find 1 € B(z,e1) N A with 1 # 2. Let n > 1 and assume that

pairwise distinct z1,..., 2, and €1 > - -- > &, have been constructed, and satisfying

g1 >d(z,x1) =e2 >+ >d(z,xn) = Eny1.

Again by definition, we can find x,, 1 € B(x,ep41) N A with 2,41 # x. Moreover, we know that

d(x,Tnt1) < €nt1 = d(x, Ty, SO T4 is distinct from all the previous z1, . . ., x,. O

2.2.2 In Euclidean spaces R"

Let us consider Euclideans spaces R™ for some positive integer n > 1. Recall that the canonical norm is
defined via the associated inner product (Proposition 2.1.12), which also leads to the canonical metric on R"

(Example 2.1.4).

Theorem 2.2.5 (Bolzano-Weierstrafd theorem) : Let A C R"™ be a bounded set. If A contains infinitely

many points, then there exists at least one point in R™ which is an accumulation point of A.

Remark 2.2.6 : The choice of a Euclidean space is important here. For example, if we consider the discrete
metric space as in Example 2.1.2 (4), then in R, the subset of rationals Q C B(0, 1) is bounded and infinite.
However, Q does not have any accumulation point in R. In fact, for x € Rand e € (0,1), we have B(x,e) N

Q = {z} or @, depending on whether z € Q or x € R\Q.
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Mg 224 I MEMBFES AUR e Mo FHMHEEE
(1) = 28 A BIETRE, o

Q) BREE >0 &8 Bz, e) N A BSEEZEL -

BE RBES  BAEAE Q= (1) ¢

B 2EANESS - BEc > 0 BAERELREERETE Br,c) N A FHEFET
(@n)ns1 * (IS EL R ETERMAES °

B, = RBES  RIERD 21 € Br.o) NAEB n #£2° B0 > 1 BERRMEE
BETRRAREN 21,..., 20 AR er > - > e, BRRE

g1 >d(z,x1) =¢e2> - >d(x,zy) = €nt1.

ﬁ:ﬂ*ﬁ*ﬁ;‘iﬁg% ’ ﬁf?ﬁﬁﬁ?ﬁﬁu Tpt+1 € B($,€n+l) NnNA @*T%': Tpt1l 7§ xT. ]J:tg‘i~ y ﬁﬂaa%nﬁ d(m,an) <
Ent+l = d(fE; xn) ’ FF[LX Tn+1 ‘@ggﬁiﬁ'ﬁﬁﬂg T1y.-.,Tp %ij:la o O

SB/hEN EEREZER R

HFIEEERURZER R - Efn > 1 2EEEH - EEKRNZERL - HMZBHNEHEHRTERE
&M (EE2.112) - EHEHRIAFIEREE R LoER (8 214) o

T 2.2.5 [Bolzano-Weierstra} EIE]

£ R PEEED—E A BUERRS -

I WACR"ZBARES - IR A BSEESER - A

8226  SEEERKEEAGHNBERESEY - BAMBRMMEH 212 (1) PEIBEEE
B RIFER T BEMES QC BO,1) EEREERNTES AT ER & BEEM QK
EEL  SEEEBHR s cRBce (0,1) BME Br,o)nQ = (o) Ho BRR 2 c QR E

reR\Q-°
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Chapter 2 Topology on metric spaces and normed spaces

Proof : Since A is bounded, there exists M > 0 such that A C [—M, M|". We are going to construct

sequences (a,i))k>1 and (b( ))k>1 for 1 < i < n such that

(@) forall 1 < i < n, (ag))@l is non-decreasing, (bg))@l is non-increasing, and the difference

b,(j) — ag) tends to 0 when k — oo,

(b) for every k > 1, the intersection A N By, contains infinitely many points, where

Bpi=T" x .. x 1™ 1= " ) 1<i<n.

We proceed by induction on k.
Leta' = —M an ) — or a < 7 < n. Let £ > 1 and suppose that a'1<g<kan
0 — _M and b\ = M for all 1 k > 1 and suppose that (a}”);</<; and
(béi))lggk have been constructed, are non-decreasing and non-increasing respectively, and satisfy (b).

We may divide each of [, ,gi) into two segments of equal length [ Igi) = ,gz)l Ul ,gg that is
=W ) 0= o = L+
leading to 2" subsets of Bj, whose union is By, itself,
- X I,gl;q)nn, r=(ry,...,m) € {1,2}".

Since
AnB,= J (AmB,(j})
re{l,2}»
is an infinite set, at least one of the AN B ,(:3" needs to be infinite as well. Let r be such that AN B ,(:3" is

infinite. Then, for 1 < 7 < n, we let

(1) 30 (a’l(c')7 Cl(cl)) ifr; =1,
(ak—l—l’ bk—i—l) = @ ()

Then, it is not hard to check that a,(g) a,(;J)rl, b( 2 b,(;)rl, nd b,(;)rl ,(;J)rl = %(bg) - a,(;)).

(4)

Now that we have constructed the sequences (a;”)g>1 and (b( ))k>1 for 1 < i < n as above, we
know that (agC ));C>1 and (b( )) k>1 both converge and have the same limit, denoted by z;. We want to
show that z := (z1,...,x,) is an accumulation point of A. To see this, we are going to fix £ > 0,
and want to show that A N B(z,¢) contains infinitely many points. By the above construction, it is
not hard to see that © € By, for all k > 1. For large enough k£ > 1, we may see that By C B(z,¢),

therefore, A N B(x, ) also contains infinitely many points. ]
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HE AR AREBRN RAREFEM > 0FERAC[-M,M" - BRFAE 1<i<n BAE
HABEFT) (al)jor MR (b)) 1818

() WIRFRE 1 <i<n - FF (o)1) BIBERET » BT (b)))1) BIEENERY - 1AM
Zb00) ol FEE koo BEBE 0 0

(b) HIFBE k> 1 K& AN B, B EES[ER > HP

Bk: = I](gl) X oo X I]En)v Il(;) = [a](;),b,(;)], 1<i<n.

I - (BB R ARRE

WAL <i<n  §a) = -MEI) =MeSk>1MRE (0\)icocr B 0)1<cr B
CHEFT - MESBRIEERRIEEENFS]  BRE (b) -
KPIAILUBRER 1) YIERMERSRENRE 1) = 1)) UL} tRER

7% — [() ()} ]]gi)_[

L1 =lag ¢ = o9 b(i)}, D L (i)—ﬁ—b;j)),

kY% k= 2\0g

mE}

@ik 2 {8 B, T A EERPWBETE B,
B = 1), x o x 1) v = (1, i) € {12

)N

AnB,= J (AmB,(j})
re{l,2}»

BREEEES  EOHT—E AN B WBREENA T o § 1 518 A0 Bl REFH o

BER1<i<n' &

(i) (1) (a;%c,(;)) Bri=1,
(%Hv bk+1) =

@0y =2

AR ERE al(:) sa (‘) N b(l) k+1 » Ak bk+1 l(czil = %(bz(f) - al(f)) °
ﬁ&ﬁm%ﬁl<i<n’ﬁﬁegﬁ%%wtmﬁwmﬁwﬂiwm%’ﬁﬁw

BB © 20244F 10 H 23 H 13:42



Chapter 2 Topology on metric spaces and normed spaces

Theorem 2.2.7 (Cantor intersection theorem) : Given a sequence of nonempty closed sets (Aj)x>1 in

R™. Suppose that
o Apq C A forallk > 1,
e A is bounded.

Then, the intersection A = ;1 Ay is closed and nonempty.

Remark 2.2.8 : It is important to assume that Aj’s are closed sets and that A; is bounded.
- If A}’s are not closed, take Ay, = (0, 1) for instance, then ()5, Ay = @.

« If Ay is not bounded, take A, = [k, co) for instance, then (.~ A = @.

Proof : First, it is easy to see that A is closed being an intersection of closed sets, see Proposition 2.1.25.
Then, we need to show that A is nonempty using Bolzano-Weierstrafl theorem.

If there exists an k£ > 1 such that Ay is finite, then it is clear that the sequence (Ay)r>1 needs to
stablize to a nonempty set, and the intersection A is nonempty. Therefore, we may assume that Ay, is
infinite for all £ > 1.

For each k > 1, we may find x;, € Ay such that the sequence (xy)>1 is pariwise distinct. We also
note that, due to the fact that (Ay)x>1 is non-increasing, we have z € A,, for any k > m > 1. Since
X = {xj : k > 1} isabounded set containing infinitely many points, by Bolzano-Weierstraf3 theorem,
it has an accumulation point z € R™. We need to check that z is indeed in A, or equivalently, x is in
A, forallm > 1.

Given m > 1 and € > 0. From Proposition 2.2.4, it follows that B(x,¢) contains infinitely many
points of X. Apart from a finite number of them (those with index £ < m), all the other points are also

in A,,. Therefore, A,,, N B(x,¢) is also infinite, which means that x is also an accumulation point of
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F-E MHFEZREHEM T MAIREE

SE (o1 B (0o MES G BMMNEEHES  2F 2 RMNBERBH L =
(€1, 2,) BB A NERE - ERHEHER > RMGEE > 0 LEBRE AN B(r,0) B
SEESEY - { ERAEE - RPRBEIENFE L > 1 BE 2 € B, - HRHAK
k>1-3HFE B, C B(x,e) > Btk AN B(z,e) L E B IMEEZER, - a

EIE 2.2.7 [Cantor REFIE] : #BTE R” FIFZEFAERFIBEEIFES (A1 © RER
c %ﬁi\ﬁﬁﬁ k >1- ﬁﬂaﬂﬁ Ak+1 - Ak ;

-A1Eﬁ°

AISEE A = (o, A SEFEZRE -

MR 228  BF A, EF%EE A, BREREEN o
- TN A, FE2A% B0 4, = (0, %) » Al ﬂk>1 Ap=@°

. IR A, RER I Ay = [k, 00) B Moy Ay = @ ©

EHA B BN A SHASERNE  AtaE 2.1.25 SRBMARMBEMAE - #E > &K
P31 A Bolzano-Weierstral FEXESREEHH A RIFZER o

MREE L > 1 F15 A, RERN > BIFET (A BEEE—EIEZES  FIUREAE
BIFZERY o L > MPIFTLURERHIRFAE k> 1 A, BEEER -

HWIRFRE k> 1 FFIRTLUERE ), € Ay BRFT (v1) 11 PRIEMMAR - HFAEIEIER -
B (Ap)es1 BIBEER  RFABE k>m > 1> BZfI€8B o, € A c R X = {z : k > 1}
EEEERESEBNERES » BIF Bolzano-Weierstral FIE - A EERE » ¢ R” - FH
FERET BT AEH > UUER  FERTHRFAEm>1 28T 4, P

MBEmMm > 1Ke>00 K224 > BMFE B(z,e) BEE X PEEZER - ELHL
o RTEREZH ERBTELE < mBIBER) - HURHEHEE 4, P BAlt &
Ay N B(z,e) BEREEN - BEER  LEME 4, WERR - AN A, SEAE - HMEE
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Chapter 2 Topology on metric spaces and normed spaces

A,,,. Since A,, is closed, we find x € A,,. O

Example 2.2.9 : We define a sequence of subsets of R by induction,
Co=1[0,1], Cpy1=3C,U(FCr+2), Yn=0.

Let C := Np>0Cy. The set C is called Cantor set, and has the following properties.
(1) C is a nonempty closed set.
(2) C is equinumerous to {0, 1}, so uncountable.

(3) The “length” of C is zero.

2.3 Subspace topology

Given a metric space (M, d) and a subset S C M, we want to equip S with a distance so that it can
become a metric space. The most natural way is consider the restricted distance dgx g, which is the distance
d restricted on S x S, sometimes also denoted by d by abuse of notations. Then, (S, d) is a metric space, and
its topology is called induced topology (FEEIRIE), trace topology (BFHEIX), subspace topology (FZEEIR
#) , or relative topology (1H¥1GHE) .

Proposition 2.3.1: Let S be a subset of M.
(1) The open sets of S are exactly the sets A N S where A is an open set of M.

(2) The closed sets of S are exactly the sets A N S where A is a closed set of M.

F-E MHFEZREHEM T MAIREE

r €Ay, ° O

#5f 2.2.9 1 BAILUERAT - ERERFPNFESFES :
Co=100,1, Cpi1=3C,UGEC,+32), Yn>0.
B C = Np0Cy © HFIFB C B Cantor 5 » HEETHIME -

(1) ¢ 2EFEZ=R%E -

(2) C B {0, 1} BFBN - FTURTRAHR o

Proof : A closed set is the complement of an open set, so it is enough to check (1). An open set is

described by open balls (Definition 2.1.18), so we only need to check (1) for open balls. This is trivial,
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B)CH TRE] A% -

S=8 FEMAE

TREMEEZERE (M, d) URFES S C M » HfEEMT 5 —(EERK - (£15thaesEalEEZER
& B AREEZENE S BREIERE dgs » LB HRITIER ¢ [RHI7E S x S £ - I EERENR
1S EEEBE—ARECIE d - ERKRFITLUSRIRREEZER (S, d) » HIHEMBFHRERBIEAZIRE (induced

topology) ™ Bht# (trace topology) ~ FZERIHHI% (subspace topology) BB EHiEE (relative topology)

o

w231 SSAMBFE-
(1) S HRIBHEERRIUEE AN S » Hh A 218 M BIFHE ©

(2) S RAIEAEERIUEE AN S » Heb A 218 M BB -

2R 1 IRIBER - HNRASNHERRSE - RFARFERE (1) B1Y - HERZBRIKFrEILE
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Chapter 2 Topology on metric spaces and normed spaces

= Jo— e s S P A s [ N T =
because we have (F# 2.1.18) - FHIEHMRIFEBHFRAERIGE (1) ° BN » RAKME
Bs(x,e) = By(z,e) NS, Vo e M,e > 0. O

Bs(x,e) = By(z,e) NS, Vo e M,e > 0.

Example 2.3.2: In the metric space ((0, 1],] -

), 85 2.3.2 : 7ERREEZERT ((0,1,]-|) H:
« (0,2) and (z, 1] are open sets for z € (0, 1),

cHR2e(0,1) &8 (0,2) & (z,1] BE2HE
« (0,z] and [z, 1] are closed sets for x € (0, 1).

c HR2c(0,1) B (0,2] K [z, 1) HEFHE ©

Remark 2.3.3 : We see from Example 2.3.2 that when we talk about closed or open sets, it is important to
mention the ambient space.

53fF 2.3.3 @ EEEM) 232 HFIATUEER - ERMISHAEHAER  FETEEHAMEEEEE
FREVZER A -

Example 2.3.4: On the space (0, 1], we may consider the topology induced by the metric space (R, |-|)

g0 2.3.4 1 GNETEEEA 2.3.2 FAIREIR » 7222/ (0,1] £ » RPIATUE BRAHMEEZM (R, |- |) Fr
as mentioned in Example 2.3.2. Alternatively, we may also define a distance d on (0, 1], given by

FHEHRAVHREE o b5 HMIBEETE (0,1]) LERERH & -
1 1
d(fL‘,y) = ‘; - 7’7

Ve, y € (0,1].
Yy

1 1
d(z,y) = ‘f — 7',
(@) =7~
We may check in Exercise 2.23 that these two metric spaces define the same open sets. In other words,

Vz,y € (0,1].
an open set of ((0, 1], |- |) is also an open set of ((0, 1], d), and vice versa.

HEMEZE 223 PERE - EMEREZEE RN - #9588 0 ((0,1],] - |) FHIE
SHER ((0,1],d) PHRAE  BRZITFA o

2.4 Limits

SEMEn R

2.4.1 Definition and properties

B—E EBEME
In this section, we are given a sequence (a, ),>1 with values in a metric space (M, d). When we want to EEENED » BRFHSEIEERIEZR (M, d) PEIFT (an)ns1 © ERFBR (a0)ne1 BFF
talk about a subsequence of (a,,),>1, we may write . _
HIEs » FfPIRTLAEE
« either (ayp, )r>1 for a strictly increasing sequence (n)r>1 and ng > 1,
« or (ay(n))n>1 for a strictly increasing function ¢ : N — N, called extraction (ZXEERIZ)

o (an, k=1 Hrh (nk)k>1 EEEEEFSE n > 1

« B (apm))nz1 * HF ¢ : N — N ZEBERSEL R EL - BIELHAEL (extraction) °
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Chapter 2 Topology on metric spaces and normed spaces

Definition 2.4.1:

« Let £ € M. We say that (ay,),>1 converges to ¢, and write

ap, —— /¢ or lim a, =¥,
n—o0 n—oo

if for any € > 0, there exists N > 1 such that d(a,,¢) < e foralln > N.
« We say that (ay,),>1 converges if there exists £ € M such that (a,,),>1 converges to /.

o If (an)n>1 does not converge, we say that (a,,),>1 diverges.

Remark 2.4.2:

(1) For (M,d) = (R, |- |), we recover the classical (if you have seen) definition of the limit of a sequence
in R.
(2) The convergence ay, — ¢ in a metric space (M, d) can also be interpreted in an equivalent way as
n—oo

the convergence d(ay, {) — 0in (R, |-

(3) The notion of convergence is a topological notion, in the sense that it only depends on the topology (we

recall its definition in Remark 2.1.22) that the space is equipped with. See Exercise 2.24.

Example 2.4.3:

(1) For (Mv d) = (Rv ‘

), the sequence defined by a,, = (—1)", n > 1, does not converge. However,

the subsequences (a2y,)n>1 and (a2,+1)n>1 converge respectively to 1 and —1.
(2) The sequence (a, = 1),>1 converges to 0 in [0, 1] but diverges in (0, 1].

(3) If we consider a discrete metric space, see Example 2.1.2 (4), then any convergent sequence

(an)n>1 is eventually constant , i.e., there exists N > 1 such that a,, = ay foralln > N.

$-E HEERHHMEEERE

EE 241 :

e DleM o WMRBRERER:>0 FEN > 1 FRERAE L > N> EfIE d(a,,0) <e
AIFRFIER (an)n>1 WELE ¢ MFCIE

anp — £ =7 lim a, = /4.
n—oo n—oo

- WREFE (€ M 17 (an)ns1 WEE ¢ BIFEPIER (an)n>1 BEK ©

* yﬂ% (an)n>1 Z:u&fﬂ ’ ,E\Uﬁﬁgﬁ (an)n>1 é;x%g& °
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242 :

(1) £ (M,d) = (R,|-|) F LERATLULE /TR MRS PEREH - FHTE R PREHE
%o

(2) 7EEREEZER] (M, d) & - KBS a, — (HBRIUAREATE (R, ||) FHIKER d(an, £) —— 0

3) WREEIX R ENSEME - WMERMIABURAREZEAE FHHRE (EREEHE2122F) - I
FREURINZERE ERVEERE - 2REE 2.24 ©

&l 2.4.3 :

(1) & (M,d)=(R,|-|) " HBap, = (-1)"n>1 EEHRBOFFIAGUE - AT - FFF5
ZiE - tFIREBRRDRIR 1 & —1°

(a2n)n>l & (a2n+1)n>1 %

(2) 5 (an = 2)nz1 7E [0, 1] FIRERE 0187 (0, 1) PEEEH

(3) MRFHMEBEEH 2.1.2 (4) PRBEARIEZTR - AEEKEFET (a,)> BEEEHEE
L URMRREEN > 168 a, =av HRFABER> N
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Chapter 2 Topology on metric spaces and normed spaces

Lemma 2.4.4 : The sequence (a,)n>1 can converge to at most one point { € M.

Proof : By contradiction, suppose that (ay,),>1 converges to ¢; and ¢y with {1 # ¢5. Given & > 0, we

may find Ny, N2 > 1 such that

d(an, l1) < e, Vn > Ny,

d(an,fz) <e¢g, Vn > No.
Therefore, we can take n > max (N7, N2) and apply the triangle inequality to deduce that
d(fl,fg) < d(an,fl) + d(an,ﬁg) < 2e.

Since € can be arbitrarily small, for ¢ < %d(ﬁl, ?3), we find a contradiction. ]

2.4.2 Cauchy sequences and complete spaces

Definition 2.4.5: A sequence (ay,),>1 is said to be a Cauchy sequence (fIFaF5!) if for any ¢ > 0,
there exists N > 1 such that
d(an, am) < &, Vn,m > N. (2.5)

Proposition 2.4.6 : If (a,)n>1 is a convergent sequence in (M, d), then it is a Cauchy sequence.

Remark 2.4.7 : We note that a Cauchy sequence does not converge necessarily. For example, in the metric

space (M, d) = ((0,1],] -

), the sequence (a, = 2),>1 is Cauchy, but does not converge.
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$-E HEERHHMEEERE

51 2.4.4 @ B (an)n>1 RZREEWEEI—ERE £ € M o

5%BA  ERRFEE - RERFT (an)n>1 FTMURERE (4 B b, BIRRE €1 # 6o ° ¥87E ¢ > 0 > Fffise

HE N, N, > 1515

d(an, l1) < e, Vn > Ny,

d(an,fg) <eg, Vn > Ns.
Ftt » FFIE n > max(Ny, Ny) MERA=AFRER & 55
d(ﬁl,gg) < d(an,él) -+ d(an,fg) < 2e¢.

MR e IMUERN Bl e < Jd(6, ) » BRPIEREIFE - O

BIE BEFIIRTHEER

E% 245 - ff@/ﬁf’%z]_'] (an)n>1 ’ yu%%ﬁ@ﬁﬁ%ﬁ e>0- @E N > 1 1%%%

d(an, am) < &, Vn,m > N, (2.5)

BFMIER 2 EMIPE)75 (Cauchy sequence) ©

iRl 2.4.6 * WIRFET (an)n>1 T (M, d) PRER - Bt EZEMTERES

SRR 247 @ RFVIED AEFFIRBGRMN - HIE0 > EREZER (M.d) = ((0,1],]]) &>
(an = L)ps1 RAEAIFERF - BRI -
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Chapter 2 Topology on metric spaces and normed spaces F£T5 A7 B A &0 2 RV

Proof : Suppose that (a,)n>1 is a convergent sequence with limit /. Given € > 0. By the definition of = L BRERES (an)n>1 EWHEIER ¢ $87E ¢ > 0 - RIBWHNNER > HFIEXBIN > 16
convergence, we may find N > 1 such that for any n > N, we have d(a,,{) < §. Therefore, for any BERER 1 > N » BIE dan, £) < c o[ EI - WIREE nom > N - B9E
n,m > N, we have

d(am am) < d(an,ﬁ) + d(am,ﬁ) < % + % = E. | d(am am) < d(an’g) + d(am”f) < % + % =¢. U
Proposition 2.4.8 : A Cauchy sequence is always bounded. fPRE 2.4.8 : MR XKEZEEFRH
Proof : Let (a,),>1 be a Cauchy sequence with values in a metric space (M, d). Fixe > 0and N > 1 $6BH I B (an)n>1 BTEMEEZER (M, d) FEIFIPERES - BEE ¢ > 0 & N > 1 #1383 (2.5 FHIE
such that Eq. (2.5) holds. The set {a1,...,an} is finite, so bounded. The set {a, : n > N} is also BERRTL o 8 {ay,...,an)} 2EREN - FUER o WBHEEN  £8 {0, :n > N) HEER
bounded because of the Cauchy condition o -

d(aN7a/TL) <€7 VTL}N 0 d((lN,(ln) <€, Vn}N -
Remark 2.4.9 : We note that the notion of Cauchy sequence is not a topological notion. It cannot be defined SR 249 © BRFSIED > HFERIBESD R 2EREES o R EmEERTES » e

by open sets, and depends on the distance that the metric space is equipped with. We may come back to the

RRIREEZE B R AVEERE - FHAIPTURIRIEA 2.3.4 FRIIBGF © 7 (an = )01 £ ((0,1],] - ]) F
AP - BTE ((0,1],d) FAIFRE - AMfEEMEZREERZ L RNFAEBSIZZ2HERER/ - ZFAFERE

example mentioned in Example 2.3.4. The sequence (a,, = 2 ),,>1 is Cauchy in ((0, 1], |-|), but is not Cauchy

n ((0, 1], d), although they define the same notion of open sets. To see this, we have for any fixed N > 1

andn,m > N, HRAEEBEEN N > 1 Uk n,m> N HEME
|an, — am| < % but d(an,an) = |n—m|.
|an — am| < % B dlan,am) = |n—m|.
Definition 2.4.10: ‘ ' EH 2.4.10 :
« A metric space (M, d) is said to be complete (5Eff) if every Cauchy sequence in (M, d) con- . MIRERRIEZR (M, d) o - FREATE RIS & 1E (M, d) RUREK - BABRRAILE M o -

verges to a limit in M.

AIFRFIER (M, d) 25 (complete) AY o

« A complete normed vector space (V, ||-||) is called a Banach space (Banach ZEfH) .

< & (V) RMETENREREZER » FHFIFBM2 Banach W] (Banach space) ©
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Chapter 2 Topology on metric spaces and normed spaces

Example 2.4.11:

(1) Euclidean spaces R™ with n > 1 are complete.

(2) Q is not complete. We may consider an irrational point z € R\Q and a sequence of rational

numbers (2, ),>1 converging to = in R. This sequence is a Cauchy sequence in QQ but does not
converge in Q.

Leter in Section 3.2, we will have a more thorough discussion about complete spaces.

2.4.3 Limits and adhernet points

In this subsection, we are going to give sequential characterizations of some topological notions, especially

the notion of adherent points and closed sets, which can be better understood using sequences.

Below, we are given a sequence (a,)n>1. For p > 1, let us write A, := {a,, : n > p} for the range ({H3X)
of the sequence (ay)n>p and A := A;. We may also define

L :={l € M : there exists ¢ : N — N that is strictly increasing such that a,) —— ¢}

n—oo
to be the set of all the subsequential limits.

Proposition 2.4.12: Let { € M and suppose that (a,)n>1 converges to . Then,
(1) A is bounded,

(2) (¢ is an adherent point of A, that is { € A.

Proof : (1) is a direct consequence of Proposition 2.4.6 and Proposition 2.4.8.
To show (2), let us fix ¢ > 0. By the definition of convergence, we can find N > 1 such that
d(an,?) < € forn > N. We deduce that B({,e) 2 Ay = {an

:n > N}, where Ay is not empty.
Since this property holds for any arbitrarily € > 0, we deduce that ¢ is an adherent point of A.

O
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& 2.4.11 :

(1) BN n>1 BKZE[R" 25CHEH

(2) Q FR=EN - BfIFTUEREIESE » ¢ R\Q UK ETE R PIKEE] » WEEEFT
(Tp)n>1 © WWEFITE Q PERAFEET » BEARAETE Q FUKEK -

£ 3.2 B - RFISHTRERE EBSTRBIER -
SB=/ED RPRE FIERE

FE/NEF - BFIE SR —ERESI A FTIREL - ERRMASRIRS SN ERE
BREEMERE - FIERFIRIUERS T (I -

BTIR HABERFT (an)n=1° HRp > 1 M

L A4, = {a, :n = p} BFEH (an)nsp Y
B (range) @ 3@BT A:= A, » HFIBAINER

L= {0e M FERBERIES o: N - NEB ) —— )

RATERE T R IBIRBRBIES

AR 2.4.12 © T 0 e M WREK (an)n>1 WHE ¢ - RIFMABE TS :
1) ABR;

(2) (2 ABMERL BRI (e Ao

8RR : (1) R UEER®E 240 UKREDRE 248 FAfEE o

BETREHAE Q) HMEBRE c > 0 RIBWHINER - HM8EXEI N > 1 FEERFAE
n > N+ 3G d(an, () < ¢ ° 8EHKMEFR) B(l,e) D Ay = {a, :n > N} » Efb Ay 2EIEZE
&5 - HRIEMEHREER ¢ > 0 I - HMABLLER) ¢ 218 A M= o O
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Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.4.13: Let A C M be a subset and { € M.

(1) If?¢ is an adherent point of A, then one can find a sequence (ay, )n>1 with values in A that converges

to /.

(2) If¢ is an accumulation point of A, then one can find a sequence (ay, )n>1 with values in A\{{} that

converges to {.

Proof : The construction is similar in both cases, let us start with (1). Let £ € M be an adherent point
of A. For every n > 1, since B(¢, 2) N A is not empty, we may find a,, € A such that d(¢,a,) < 1. We
can easily see that the sequence (a,),>1 converges to (. For (2), we may take a, € B(¢,2) N (A\{¢}),

which is nonempty for all n > 1. O

It is also convenient to use limits to describe closure and closed sets, which can be seen as a consequence

of the above propositions.

Corollary 2.4.14: Let A C M be a subset andx € M. Then, x € A if and only if there exists a sequence

of points in A that converges to x.

Proof : It is a direct consequence of Proposition 2.4.12 and Proposition 2.4.13. (]

Corollary 2.4.15:Let A C M be a subset. Then, A is closed if and only if every convergent sequence
(in M) of points of A converges to a limit in A.

Proof : It is a direct consequence of Corollary 2.4.14. g

The following proposition tells us when a sequence converges.
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EE2413 | DACMAFEE ' UKkle M-
(1) TNR ¢ B A BIKIEERL » BIFRMIEERTIEVETE A FRFE (a,),>1 * FEEMEWREE ¢ -

(2) G0R ¢ 2 A RIEREL - BIFFIse B BUETE A\{¢} FRFS (an)n>1 » ERHME D)

{ o

B EMEERE BERELN RFEERBH QD M B ANKER - HRE
B> 1 BRBULNAEE RFERD 0, € A BB dla,) < L o BRETRRER
5 (an)n1 BUREEE) (o MBEBI 2) > RAETLUEHME : WRFAE 0 > 1> RFME
B(6, 1) N (A\{¢}) BIEZeRY > EHBRFITEREER o, BIF - 0

KB L EmanBEEER - AILGERSRIBI S Z R S ML

RIB2414 : SACMBFEEUR e M - EEMEGRENETE AT BSKHE + 1

F5)BlzecAe

SHEA SR 2.4.12 BAMNEE 2.4.13 MEERR o O

Ri2415 1 TACMAFES - EEWE (M F8) WHFTEWRHE) A RS- 8 A
ZEERSE -

2R - ISR EERERIE 2414 G5 - O

TEASESHRAITERHRF Y G WR -
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Proposition 2.4.16 : Let ¢ € M. The sequence (a,,)n>1 converges to £ if and only if every subsequence

(@p(n))n=1 converges to L.

Proof : We first assume that (a,),>1 converges to £. Let (a,(,))n>1 be a subsequence of (ay )n>1. Fix
e > 0. By the definition of convergence, there exists N > 1 such that d(a,,¢) < € forn > N. Since ¢
is strictly increasing, we also have p(n) > N for n > N. Therefore, d(a,,),{) < € forn > N.

If every subsequence of (ay,),>1 converges to ¢, then the original sequence also converges to ¢, since

]

©(n) = n is also an extraction.

Before closing this subsection, we see a more general proposition which describes the structure of £, the

set of all the subsequential limits of (ay, )n>1.

Proposition 2.4.17 : Let ¢ € M. The following properties are equivalent.
(1) £ e L.
(2) € Ay forallp > 1
(3) { is either an accumulation point of A, or £ appears infinitely many times in the sequence (ay,)n>1.

In particular, this implies that the set of the subsequential limits of (ay)n>1 may also be rewritten as

L= ﬂp>1pr, which is closed.

F-E MHFEZREHEM T MAIREE

il 2.4.16 © HEFT (an)n>1 AR L € M - EEMBEFREFF (apn))n>1 EEWERE] £
B (an)n>1 EWERE ¢ o

Proof : We are going to show that (1) = (2) = (3) = (1).

* (1) = (2). Suppose that £ € L, that is there exists an extraction ¢ : N — N such that a,,) —

L. Therefore, it follows from Proposition 2.4.12 that

e {apmy:n=>1}F C Ayng).

For any non-negative integer p > 1, the map ¢, : N — N, n — ¢(n + p) is still an extraction,
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MER - FE N > | ERHERAE n > N BB d(an, () < e ° AR ¢ BEREER -
WEE o(n) > NHRFBE > N At - Bn> N B FBFIEE daynm), () <e°

MRERFFY (an)n>1 EREE] ¢ BIRFNFIIEEWRHE (- A% o(n) = n BEEZEE

RRIEX © 0
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@ HRFEp> 1 #fIE (4, -
(3) ¢ £ A E’\J[‘:mgﬁ ’ EY: L ﬁ?’_rﬁu (an)n>1 EF'HjIE#E\E%:k °

EEMEBEFEM (a0 FRIIREAEBRBRNESRERE L = Ny214, » ALBE

fEFA%E -

A BFERR D=0 =>03)=>0"

()= @ BR e L UMBRFEENRIH ¢ : N — NER ay,) —t Et - 1%
foRE 2.4.12 » FM8EER

le {amn) n = 1} - Aap(l)-

HRERFEEHp> 1> BB, : N> Non— o(n+p) HEZEZERE - MAK
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Chapter 2 Topology on metric spaces and normed spaces

and the convergence a

n(n) T ¢ still holds. Therefore, we deduce that £ € A, o(p) forp > 1.

Since the sequence of subsets (Aj),>1 is non-increasing (for the inclusion), we deduce that

ﬂ /Tp = ﬂ A«ﬁ(p)

p=1 p=1

« (2) = (3). Suppose that £ € A, for all p > 1 and that ¢ does not appear infinitely many times in
(an)n>1. Let p > 1 such that a,, # ¢ foralln > p. Since £ € A, and ¢ ¢ A, we know that / is

an accumulation point of A,, so also an accumulation point of A.

« (3) = (1). If £ appears infinitely many times in (a,, ),>1, it is easy to construct a subsequence with
limit /. Now, suppose that ¢ is an accumulation point of A. It follows from Proposition 2.4.13
that we may find f : N — N (not necessarily an extraction) such that ay,) — ¢ and

y € A\{/} for alln > 1. The map f cannot be bounded, since otherwise (@ (,))n>1 would
only take finitely many different values, the sequence (af(,))n>1, being convergent, would be
eventually constant (constant for large n), and would not be able to converge to ¢. Thus, we
may find an subsequence of (f(n)),>1 that is strictly increasing, denoted (f o ¢(n)),>1. Then,

Y := fop:N— Nisan extraction and ay;,) —— L. O

n—oo

2.4.4 In a normed space

In this subsection, we are given a normed vector space (V, ||-||) over a field K = R or C.

Proposition 2.4.18 : Let (xy,)n>1 and (yn)n>1 be two sequences in V. Suppose that

lim z, = and lim = W,

Then,
(1) opn+yn —— T+ Y,
n—o0
2) \zy, — Az forany A € K,

3) llznll — [|]|.
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B ag, ) —— (DRI Bl HRAE p > 1 RIS ( € 4, - BRFES
(A))r BIBESH (HOSRIREKR) - RS

ﬂ pr = ﬂ Aso(p)

p>1 p=1

C @)= () BEHRFEp > 1 BG4, BITE (an)no) PRELEEER - S
p> L EEEREIE n > p BfE a, £ (o BER (e 4, B¢ A BMME ¢ 208 4,
HEES: - IR A ERS -

« 3)= (1) MR (TE (an)n>1 PHIRERR » ROIFHEBSERES ( WFFT - [T KA
BE% ¢ 2@ A WERD - ARIFDE 2413 » HAEERD f: N - N CREBEERRE)
15 ay () = ! BB n > 1 BME ap,) € A0} ° KB f FHEER » FA
(af(n))n>1 ABIEBSETEER » BT (0 () 01 WH - FINESIAN n RRER
EEEFS - WA ER » MEERE ¢ - Eitk - IR (f(n))n>1 PEIEIGEG
BFRFFIHIR » B2E (f 0 o(n))ns1 © B » BB Y = fop: N NZEFERE

(]
E.ﬁ'fﬁﬁ Qyp(n) —>n_>oo £ e

SR ERREEZERP

ELNER - BPHEEEE K = R % C ERAERISEZEMH -

BRE 2.4.18 I W (zp)nz1 K (Yn)ns1 73 V PRIMERZ  (RE&

Hore = B e =y

ElESASE=I
(1) zn + yn nﬁoo) T+ Y,
(2) Az, — A EHREE N e K

®) lleall —= lle].
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Chapter 2 Topology on metric spaces and normed spaces

Proof :

(1) Letus fixe > 0 and take N > 1 such that for n > N, we have
[zn — 2l <& and |lyn —yll <e.
For n > N, we have
[(@n +yn) = (@ + )| < llzn — 2l + llyn —yll < 2e.

Since € > 0 is arbitrary, we have shown that x,, + y, —u +y.
n o

(2) We write directly

IAzy, — x| = |A| ||l&n, — || —— 0.
n—oo
(3) The triangular inequality gives

Nzl = 2l | < llen — 2] —== 0.

2.4.5 Limit of a function

We consider two metric spaces (M, d) and (M’,d’). Let A C M be a subset of M, and let f : A — M’ be

a function from A to M’.

Definition 2.4.19 : Let a be an accumulation point of A and b € M’. We say that when x tends to a,
f(x) tends to b, and write
lim f(z) = b,

r—a

if for every € > 0, there exists § > 0 such that

Vz € A\{a}, d(z,a)<d = d(f(z),b)<e. (2.6)
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£5H8 .
(1) RFEE >0 WE N > 18 n> N> EME
Jon —zll <e B lyn —yll <e.
B n> N EME
[(@n +yn) = (@ + )| <llzn — 2] + [lyn —yll < 2e.

B < > 0 ETLUERER - RAHSR v 4y — oty

(2) &M= -

Az = Az|| = Al [lan = 2| —=0.
) ZARFEEM :
[znll = llzll | < llzn — 2| —— 0. U
n—oo

SH/E RERIER

KMERMEMEZER (M, d) & (M',d)  SACMBMNFES UR [ A—> M BHAZ
M’ BYRER o

EFE24.19 I DR ANEFRUKR b M - IRHNRFAB >0 F1E 6 > 0 5

Vo € A\{a}, d(xz,a)<d = d(f(z),b)<e, (2.6)

AIFFIRE « B o B » f(a) AN b 5CIF :

lim f(z) =b.

r—ra
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Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.4.20 : Let a be an accumulation point of A and b € M'. Then, the following properties

are equivalent.

(1) When x tends to a, f(x) tends to b, that is

lim f(z) = b.

T—a

(2) For any sequence (y,)n>1 with values in A\{a} converging to a, we have

Jim f(zn) =b.

Proof : Let us assume that (1) holds, that is f(z) — b when  — a. Fix € > 0 and choose § > 0 such
that Eq. (2.6) holds. Fix a sequence (z,)n>1 with values in A\{a} converging to a. We may find N > 1
such that for n > N, we have d(z,,a) < §. Therefore, for n > N, we also have d'(f(x,),b) < ¢. This
shows that f(x,) —— b.
n—oo
For the converse, let us proceed by contradiction. We assume that (2) holds but not (1). If (1) does

not hold, we may find € > 0 such that for every n > 1, there is z,, € A such that
0<d(zn,a) <1 and d'(f(z,),b) >e.

It is clear that (z,)n>1 converges to a, but (f(x,))n>1 does not converge to b since there is always a

positive distance at least € between f(x,) and b. This contradicts (2). O

Proposition 2.4.21: Consider a normed vector space (V, ||-||) overa field K = R orC. Let f,g : A —V

be two functions, and a be an accumulation point of A. Assume that

lim f(z) =b, limg(x)=-c.

r—a T—a

Then,

(1) limyq(f(z) + 9(z)) =b+ec,

(2) limy_,q Af(x) = b forevery X € K,
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RE 2420 | Do ANERMUKDbc M > THMEREFEDN :

(1) Bz BER o B> f(2) BAR b HELER

lim f(z) =b.

(2) HREREUET A\{a} B BIREE o FT (zn)n>1  FFIE

Jim f(zn) =b.

FEA - FPIRER (1) AL URBERE 2 — o B BB f(o) 2 b BEE e > 0 LiE 5 > 0 (E1F
X (2.6) BRIL ° EIEBMETE A\{a} FEKREE o BIFF (2,)n>1 © BFIRTLIRE) N > 1 FEHHEHR
FRBE n> N> BB d(z,,a) <5 Btk » HRFABE n > N » BAIREE d'(f(2,),b) < c ° EfE
T f(zn) ——be

EPIERREERERTME - FPIMRER (2) RILE (1) ARLIL - AR (1) ARLIL @ FMIBER
He>0EEHRFABr>1 8B 1, AFR

0 < d(zp,a) < B d(f(zn),b) >e.

1
n

fgﬁgﬁi@ ’ J—%@J (mn)n>1 @”&ﬁﬂl?‘] a’ 1&’%_5'] (f(l'n))n}l §ﬂ$§”&ﬁ&§” b %Rﬁﬁ@EE’\JEﬁ%ﬁ
1B fzn) B oD - B8R 2 FE - O

2421 ZEAEH K =R C LMBEREZE[M (V. ||-|) oD f,9: A =V BRERE
B a7 A NERR - K

lim f(z) =56, limg(x)=-c.

AFME -
(1) hmxﬁa(f(x) + g(l’)) =b+c

(2) limg o Af(z) = A0 HRFIE A € K ;
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Chapter 2 Topology on metric spaces and normed spaces

(3) limg—q [f(2)]| = [|0]-

(3) limgsq || £ ()] = [|0]]-

Proof : It is a direct consequence by applying Proposition 2.4.18 and Proposition 2.4.20. O S5HR : ERFERMAE 2418 UERE 2420 O UBRINEIEER -

SBrvhEl EEEML

2.4.6 On the real line

TR HFMEERUETE (M. d) = (R,]-|) FEIFES (an)n>1 © 6008 2.4.17 B - HFIBREEE

Below, we are given a sequence (a,, ),>1 taking values in the metric space (M, d) = (R, |+|). In Proposition

2.4.17, we saw how to characterize the subsequential limits of the sequence. We are going to see other notions TN e . .
limit B F P S RAERR - SEEFFIES EEMAVRIREER -
of limits.

Definition 2.4.22 : We define EE 2422 © EESH

lim a, = limsup a, := inf sup a,

lim a, = limsup a, := inf sup a,
n—00 n—00 n2lp>p n—00 n—00 n2lp>p
lim a, = liminf a, := sup inf ay, . . .
rel n—00 n>1k>n lim a, = liminf a, := sup inf ay,
n—o0 n—oo n>1k2n
called the upper limit (EABPR) and the lower limit (FABFR) of (an)n>1.
() ) HBIE (an)n>1 BYEMRR (upper limit) & FHBER (lower limit) °

D BANERE > RPAIRTLUE limsup,,_, o, a, BA—EIFEE MR :

Remark 2.4.23 : We note that, we may rewrite lim sup,,_, . a, as a non-increasing limit, S3% 2.4.23 °

lim sup ay := nlggo v supag, limsupa, := lim | supa
n = k>
n—oo

n—o0 k>n
n—o0o k>n
because the sequence (Supy.,, @x)n>1 is non-increasing. Similarly, lim inf,, , o a,, can be rewritten as a non- o . . .
S EA& (suppsy ak)n>1 EEIFEEFF o ABLUE » lim inf,, o a,, FJARE B —ESFERMEIR

decreasing limit,

liminf a, := lim 7 inf a.

n—roo n—oo - k>n liminf a,, := lim 1 inf a.
n—oo n—oo  k>n

gl 2.4.24 :
(1) B3 a, = (-1)"H EWBREA 1 TBREA —1-°

Example 2.4.24:

(1) The sequence defined by a,, = (—1)" has upper limit 1 and lower limit —1.

(2) The sequence defined by a,, = sin(n) has upper limit 1 and lower limit —1. 1 2) FEF a, = sin(n) B9_LABIRS 1 THEMRZA —1 o
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Chapter 2 Topology on metric spaces and normed spaces

Lemma 2.4.25 : If (ay(y))n>1 is a convergent subsequence of (an)n>1, then its limit £ is an adherent

point of {a,, : n > 1} and satisfies

liminf a,, < ¢ := lim Ap(n) < lim sup ay,.
n—0o0 n—00 P

Proof : Let (a,(n))n>1 be a convergent subsequence of (ay,)n>1. It follows from Proposition 2.4.17
that its limit ¢ is an adherent point of the range {a,, : n > 1}.

Next, for any n > 1, we clearly have

inf ar <a < sup ag. (2.7)
kzp(n) = Telm) > k>p(n)

By taking a monotonic limit for the left inequality in Eq. (2.7), we find

hmlnfa =sup inf ap = lim inf a lim a = /.
n— n 7L>Il)k>§0() k n~>ook>ip() k n—oo ‘P()

If we do the same thing for the right inequality in Eq. (2.7), we find the other inequality. ]

Lemma 2.4.26 : There exist subsequences (ay(n))n>1 and (@y(n))n>1 such that

hgn géf ap = hm 0 Q) and h&s&p an = hm 0 Qy(n)-

Proof : We are going to construct an extraction ¢ for the lower limit by induction. Let ¢ :=

lim inf,,_ o @y,. Define

e(l):=inf{ln>1:4—-1<a, <l+1},
Vn > 1, e(n+1):=inf{n > p(n): €—%<an<€+%}.
It is not hard to check that ¢(n) is well defined for all n > 1 and that ¢ is strictly increasing. Addi-
tionally, we easily see that lim a,(,) = ¢. The construction works in a similar way for the upper limit.

0

Last modified: 13:42 on Wednesday 23" October, 2024

31

$-E HEERHHMEEERE

5138 2.4.25 : TR (ap(n))n>1 BIE (an)n>1 BEREEFFS - RIBBIIEIR ( §= {0, :n > 1} BY

FERRES - Bimie

liminfa, < ¢ := li < lims .
ninfan < €= Jim a0 <lmsupan

A 1 D (ap(n))nz1 2 (an)n>1 BVRERFF o R 2.4.17 IR - BIHER ¢ 2B
{an :n > 1} BYEREL -
BE > HiMMER 0 > 1 BRMERE

inf ap <a < sup ag. (2.7)
kzp) TP S o

£ (27) F o RFIEESNAEFANRERFRRESE)

Tt an = S0 0 O = i, 20t O < M0, Getn) =&
MBHRANR (27) WEHTEL LREBER - BATERS—EFER - O

513 2.4.26 : FEFFEI (ap(m))n>1 AR (apm))n=1 E1F

h%n 101gf ap = hm 0 Ay(n)s H llﬁsgp anp = hm 0 Gy (n)-

2R HAIEBBIEE - BEERRH ¢ KGR THER © & £ := liminf,, 0 a, ° EE

e(l):=inf{n >1:4—-1<a, <l{+1},

Vn > 1, pn+1):=inf{n > p(n): ¢

EMFAHERTHRAE n > 1 o(n) BREERTFN > BE ¢ @RISGEEN - kA > EHMtEE
lim ag —E TiBREEE A N IEE AL - U
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Chapter 2 Topology on metric spaces and normed spaces

Remark 2.4.27 : The above two lemmas justify the names of upper limit and lower limit given to lim sup

and lim inf.

Proposition 2.4.28 : A sequence (an)n>1 in R converges if and only if liminf, . a, =

lim sup,,_, o, an < 0o.

Proof : It is a direct consequence of Proposition 2.4.16 and the above lemmas (Lemma 2.4.26 and

Lemma 2.4.25). O

Remark 2.4.29 : The limit of a real sequence needs not exist in general. However, its upper limit (resp.
lower limit) always exist in (—o0, +00] (resp. in [—00, +00)). In order to write lim, or to show that the limit

exists, this proposition suggests that one may show that the upper limit and the lower limit are equal.

2.5 Continuity

2.5.1 Definition and properties

Below, we are given two metric spaces (M, d) and (M’,d’). When we talk about balls in different metric
spaces, we may add a subscript to avoid confusion. For example, By (z, €) or By(x,¢) denotes the open ball

centered at x € M with radius ¢ > 0 in (M, d).

Definition 2.5.1: Given a function f : (M,d) — (M’,d’). We say that f is continuous at x € M if
for any € > 0, there exists 6 > 0 such that

Yye M, d(z,y)<d = d(f(z),f(y)) <e, (2.8)

or equivalently,

f(Bu(z,06)) € Bur(f(2),€).

We say that f is continuous if it is continuous at all x € M.

Last modified: 13:42 on Wednesday 23 October, 2024

32

F-E MHFEZREHEM T MAIREE

s 2.4.27 @ FEIWIES BRHERE T B ERAFHE lim sup & lim inf 73 BIFBIE_LHRERAD B AEFR -

-3

Bl 2.4.28 I B (an)n>1 BTE R PHIFES o HBMERE liminf, o a, = limsup,,_,., a, < 00’

=2l
BUREZ (an)n>1 HUBK ©

n

B EEHME 2416 AR LEME|IE (BT 2426 and 5|3 2.4.25) FAIE3IMEERKR . O

i

sifE 2.4.29 1 —RREE - BEUFIINEBRA—EFE - B LEER (BTFER) £ (—oo, +00]
(BHTE [—o0, +00) ) KEZEEN - IRMAFBERT lim BIFCER - HEHAWRFAE - b
SRR UEFERR L THEEES -

ShEh EiREH
F—IE ERREE

ETR - BEEMEMEZRE (M, d) & (M',d) - ERFEZEBRAEEZMPRIBKE - 3
B LUINME AR 2R e G R E o Blal - FMIHETE (M, d) BE » P02 € M F#8% « > 0 BWFAEKEEE

By(w,€) 8% By(,e) °

EE251  WERE f: (M,d) —» (M, d) > BRE[ 2 ¢ M MRERFAE e > 0 77

5 > 0 fE18
Yye M, d(z,y)<d = d(f(z),f(y)) <e, (2.8)
e NFBMHEMII :

f(Bu(z,6)) € B (f(2),€),
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Example 2.5.2:

(1) If we take (M,d) = (M',d") = (R, | - |), then we recover the definition of continuity that we

saw in the first-year calculus.

(2) The identity map Id : (M, d) — (M,d), x — z is continuous.

(3) Fix a € M. Then, the map (M,d) — (R, |- |),xz — d(z, a) is continuous.

Remark 2.5.3:If a« € M is an accumulation point, then the continuity of f at a is equivalent to

lim f(x) = f(a).

T—a

If @ € M is an isolated point, then any function f : M — M’ is continuous at a, because for sufficiently

small 6 > 0, the open ball B(a, ) is reduced to the singleton {a}.

Proposition 2.5.4 : Consider three metric spaces (M, dy), (Ma,ds), and (Ms,ds). Let f : My — Mo
and g : My — M3 be two functions. Fix x € My. If f is continuous at x and g is continuous at f(x),

then the composition g o f : M} — M3 is continuous at x.

Proof : The proof is quite direct if we use Definition 2.5.1. Given € > 0. Since ¢ is continuous at

y := f(z), we may find > 0 such that

Since f is continuous at x, we may find § > 0 such that

(B, (2,0)) € B, (f(),m) = B, (y,n).
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AIFRMPIER £ 76 o B4 - tIR f EFRER « € M &EE - BIFRMIER f SEZAFRE -

&6l 252 :

(1) £ (M,d) = (M',d") = ([R,]-]) B ZAEIHNEHMAER—HMBESAETHEEENE
% ]

) HEHFEREId: (M, d) — (M,d), s — = SEEH o

3) BEE ac M BIRE (M, d) - (R,|-|),z — d(z,a) SEEERE

3253 @ MNRac M BEERR > B f F o« WEBEETIIMESFE

lim f(x) = f(a).

T—a

MR o ¢ M REMIIL » BHE@RE f: M — M 7E o B2EED - DBHERHNGE 6 > 00 BB
B(a,) BRERBEHERNES () -

fhRl 2.5.4 - EEAEEZEM (M, dy) ~ (Ma, dy) UK (Ms,d3) ° 45 f: My — My K g : My — M3
AMERE -BErc M WIR fE2ZEEBRH g7 f(v) BB IEHERE go f: My — M;

R

A - FFIRUERES 2.5.1 REZFEPALLEE - #8%E c > 0 ° AR g E y == f() ZHE - T
BEFE) n > 0 115

9(Ba (y,m)) € Bar (9(y), €).
B f7E « SE4E - FMIeekB 6 > 0 18

f(BM1($76)) - BM2(f<x)v77) = BMz(yan)'
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BoE
Putting the two above inclusions together, we find

REVEE 25 ] EARH B ZE PRI AU 3R 1R

B EEmE e S REARERE—RE - HFIFE
(g0 F) (B, (x,6))  9(Bas, (y:m) © Bars (g © [)(@), €)-

(90 f)(Ba(2,0)) € 9(Bar (y,m) € Bars((g 0 f)(),€)-
This leads to the continuity of g o f at «.

EEFEMgo f1E 2 BEEW o

2.5.2 Sequential characterization

SETE Y

Proposition 2.5.5: Given a function f : (M,d) — (M’,d") anda € M. Then, the following properties
are equivalent.

fRE 255 | FAERE f: (M, d) —» (M',d') B aec M- BITFFIEEEE -

(1) fTEaiEHE o

(1) f is continuous at a.

(2) For every sequence (xy,)n>1 with values in M that converges to a, the sequence (f(xy))n>1 with

(2) BHEREETE M FEKEE] o WFEF (zn)n>1 ° BUETE M REFES (f(z0))ns1 S
values in M’ also converges to f(a). In other words, ] fla) e HaEEsR - &MAE
nh_>nolo Tp=a = nh_)ngo fxn) f(TLlLHgO $n> = f(a). nh_>Holo Tp=0a = nh_{go f () f(nh_{go xn) = f(a).

Proof : The proof is similar to that of Proposition 2.4.20. 0 FERA ¢ LEEEAEIANRE 2.4.20 4B o O
Example 2.5.6 : The function f : R — R is continuous at 0, &l 256 @ RELf:R - RTEO0EE:

xzsin(l/x), ifx #0, vsin(1/z), x40,

- @) =
0, ifx=0. e
0, Hzx=0.
We can see this by taking any convergent sequence (z,),>1 with limit 0, then R . .
BFIETLRE  BRERREE 0 9FF (20)n1 » HAIEE
7)) = L sin(1/,)| < || —— 0.
|f(mn)| = ‘mn Sin(1/$n)’ < |:En| m 0.
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Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.5.7 : Consider a normed vector space (V, ||-||) over a field K = R or C. Let a € M and
fy9: M — V be two functions that are continuous at a. Then,

(1) z — f(z)+ g(x) is continuous at a,

(2) x — \f(z) is continuous at a,

(3) x — || f(x)| is continuous at a.

Proof : It is a direct consequence by applying Proposition 2.5.5 and Proposition 2.4.18.

Example 258 :Letn > 1 and P € R[X],.

.., Xp] be a multivariate polynomial. Take (M,d) =
(R™, [|-l,) and (M, d') = (R

.| - ). Then, the map (ay,...,a,) — P(a,..

., ap) is continuous. This
can be seen by using Proposition 2.5.5 and the following two facts.

(a) For any sequence (a* = (a},...,ak))>1 with values in (R™, ||-||,), we have

lim a”

=a=(a,...,ap) <
k—o0

khm ak—al, Vi=1,...,n.
—00

(b) For any real-valued sequences (x,,),>1 and (Y, )n>1, we have

i tn = and g Un =y = G Enn = 7Y

2.5.3 Characterization using preimage

Definition 2.5.9 : Given a function f : (M,d) — (M',d’) and a subset A C M’. We recall the

definition viewed in Definition 1.1.7 of preimage or inverse image (fRJ&) of A under f,

fHA) ={zeM: f(z) € A}.
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$-F HEEHEEREEERE

fARd 2.5.7 | ERMAEHK =R % C EAMHEE

8 fg: M-V BTHMERI :

228/ (V, |-

(1) o~ f(z) + g(z) 7E a B8 °
(2) x> \f(x) TE o 4B °

(3) x> || f(z)|| 7E o EHE °

) e % a € M RWIBTE o EAERIER

8RR : SERFERRE 2.5.5 FIfhRE 2.4.18 AALUSRIMNEEGR °

g 258 : &
(M d) = (R

n = 1 UK P c R[Xl,.
o)) o BUEREL (aq,. ..
8 2.5.5 LUR FHURGRSREAAL 4 -

,an) — P(al,..

() HRERBETE R",|],) FRIFF (af = (

k

lim z, =2 MUK lmy,=y =
n—00 n—o0

X BEBEBIEN - B (M, d) =

Lan) BRE

a’f,~-- ))k>1 » ®BE

lim a" =a=(a1,...,a,) < hmak—al, Vi=1,...,n.
k—o00 k—o0
(b) HRERBEFEY (2,)n>1 BB (yn)ns1 * HFIBE

(R™ -1l
EAERY o FPIFTIAFE B

lim =z =z
e nYn )

SBZED RIRHEEE

EF259 @ MERK f: (M, d) -
ATE f Z THIMRIR (preimage or inverse image)

- (M d)RFEEGACM - HFIEER 1.1.7 PEERB

YA :={zx e M: f(zx) c A}.
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Chapter 2 Topology on metric spaces and normed spaces

Remark 2.5.10 : We recall the following properties for the preimage.
(1) If f is bijective, then the preimage of A under f is exactly the image of A under f~!.
(2) fAC BC M, then f~1(A) C f~1(B) C M.
(3) For A C M, we have A C f~1(f(4)).
(4) For A C M’, we have f(f~1(A)) C A.

Proposition 2.5.11: Let f : (M,d) — (M',d") be a function. The following properties are equivalent.
(1) f is continuous on M.

(2) The preimage of any open set of M’ is open in M.

(3) The preimage of any closed set of M’ is closed in M.

Proof : We are going to prove that (1) < (2) < (3).

« (1) = (2). Let A’ C M’ be an open set and denote A = f~1(A’). Given z € A, we want to show
that x is an interior point of A. Lety = f(z) € A’. Since y is an interior point of A’, we may
find £ > 0 such that By (y,e) € A’. Using the continuity of f at 2, we may find 6 > 0 such
that f(By(,6)) C By (y,e) C A’ Therefore, x € Bys(z,0) C f~1(A").

« (2) = (1). Givenz € M and £ > 0, it follows from (2) that A = f~Y(Byy (f(z),¢€)) is open.
Since x € A, we may find § > 0 such that Bys(x,d) C A. This implies that f(Bas(z,0)) C
f(A) = By (f(z),€), giving the continuity of f at x.

+ (2) = (3). Let A’ be a closed set in M’, then B’ := M'\ A’ is an open set. We know that
FTHA) = FTHMNB') = M\fH(B).

By (2), the set f~1(B’) is open, so f~1(A’) is closed.

+ (3) = (2). The proof is similar. O
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ii% 2.5.10 @ HMIEEAEGRNMEE -
(1) NR f SELFRE - W AR f X THERRER AT /1 ZTHKR -
(2 WRACBCM » fHACfHB)CM-
(B) WRAC M BFE AC f1(f(A)) e
4) BRACM »&ME f(fH(A)CA-

BRE25.11 : ©f: (M, d) — (M',d) BRE - AITHMHEEEE -
(1) f1EM LE4E -
(2) fEfA M’ HREENRIRETE M PEEFRE -

(3) fEfa] M’ REAERERIRTE M R2MERSE -

8RR EFIEEEH (1) < 2) < (3) °

=@ RACMBRE ML A=F1A) BErcA BMEEZH 22 AN
Ao fFy=flx)c A -HRy= A BNAR  FHMEKE ¢ > 01515 By (y,e) C Ao
B f7£ » BUZELEM - HFIBEIR 6 > 015 f(Bum(z,0)) € Bap(y,e) C A o Atk

x € By(z,0) C f7HA) o

c Q=) reMUKe> 0@ FHMEMA=fYBu(f(x),e)) SERE - -H
R e A BHFIEERT 6 > 0 818 Byy(x,6) C A o EERPIBEHS f(By(2,0)) C f(A) =
By (f(x),e) » BEERZ f 1 = HUEREN o

c (2= @) H A B M PHEAE Al B = M\ A ERRA% - HFFE
fHA) = fTHM\B') = M\f~1(B)).
BIE (2)» £6 (B BERSE > FA f~1(4) 2ERE -

« (3) = (2) - FEEEAALL -
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Chapter 2 Topology on metric spaces and normed spaces

Remark 2.5.12: In practice, to check that a function f : (M, d) — (M’, d’) is continuous, we only need to

check the following modified condition:

(2°) The preimage of any open ball of M’ is open in M.

Example 2.5.13 : We identify the space M,,(R) of n x n real matrices as R™, and equip it with the

usual norm |-||;. The determinant function det : M, (R) — R is continuous. Since R* := R\{0} is

open in R, the set of invertible matrices

GL,(R) := {M € M,(R) : det(M) # 0} = det ™' (R*)

is also open in M,,(R).

Definition 2.5.14: Let f : (M,d) — (M’,d’) be a function. We say that f is
- an open map (FAKIEX) if f(A) is open in M’ for any open set A C M;

« a closed map (FAKIEY) if f(A) is closed in M’ for any closed set A C M.

Remark 2.5.15 : Note that in Proposition 2.5.11, it is important to look at the preimage.

« A continuous function is not necessarily an open map. For example, a constant function from R to R

maps the open set R to a point which is not open.

« A continuous function is not necessarily a closed map. For example, the function R — R, x > tan(x)

maps the closed set R to (—7, 5), which is not closed in RR.

2.5.4 Isomorphisms
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REVEE 25 ] EARH B ZE PRI AU 3R 1R

g
2512 ¢ EROBERE /: (M.d) - (M, d) SESEREE - EERMARRSRE TIIES
B -

(2)) 2 M FRERNERRE M P2ERE -

giffl 2.5.13 :
F3ETTFIR det : M, (R) — R SEEEREL - B R* := R\{0} 21E7E R FHIBIE - BBER]

WIEEIB RIS

e

BAFHE n x n BREVEREMIZER M, (R) B R > LT |||, - HM

GL,(R) := {M € M,(R) : det(M) # 0} = det ™' (R¥)

BTE M, (R) PHIFAS ©

EE 2514 1 D

PAN

[ (M, d) = (M, d) ZERE > RAIEETERERR

- BEHFERE AC M 0 f(A) B M PRIFRE IR f ZEGKEEL (open map) °

- EHBEAE AC M f(A) & M PRS- FMIER f 2EPHFEL (closed map) °©
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538 2.5.15

BfERR) > EHE 2511 - RMIBEERENZIGHE.
BEBREA—ERSMERRE - fla] > FEHER D RVEHRE > AER R PEENEERE—

E% - N2fER%E -
EBRHEA—ESEARKE - FE0 - EREHER - R,z — tan(z) » A EILEAE R XF

(-5.3) » TR R HHERLE -

SBME FE
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Chapter 2 Topology on metric spaces and normed spaces

We are going to introduce two notions of isomorphisms ([E1#8) : isometric isomorphism and topological

isomorphism (homeomorphism) (Fa#%[E)#& ~ [EAF). Below, consider two metric spaces (M, d) and (M’, d’).

Definition 2.5.16:

« A bijective function f : (M,d) — (M’,d') is called an isometry (SFEEEEHR) if

d(f(z), f(y)) =d(z,y), Vx,y € M.

« If there exists an isometry between (M, d) and (M’,d’), then we say that the metric spaces

(M, d) and (M',d') are isometric or isometrically isomorphic.

Example 2.5.17 : Let us fix an integer n > 1. We denote by M,,(R) = M, (R) the vector space

of n by n real matrices. We may equip M,,(R) with the norm ||-|| , ; defined by

n n
VM = (mij)icijen,  [1MlIpq =D Imijl,
i=1j=1

and consider the distance d 4,1 induced by the norm ||-| ;- Then, (M, (R), daq,1) and (R”z, dy) are

isometric. For example, the map
M = (mi’jhg@jgn — (le, ey, ML, M2 15, M2y oo, Mg 150 vy mmn),

is an isometry.

Definition 2.5.18:

e Let f: (M,d) — (M’,d") be a function. Suppose that f is bijective, so that f~! is well defined.
We say that f is a homeomorphism ([EFF) , or topological isomorphism (FA¥£R)48) , if both f

and f~! are continuous.

« If there exists an homeomorphism f between (M, d) and (M, d’), then we say that the metric

spaces (M, d) and (M’,d") are homeomorphic or topologically isomorphic.
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BMIBRENEBMIEFRMN (isomorphisms) FUBER : FIERIMMURIGERM (FAR) - TR 52

KMEZEWEMEZM (M,d) & (M',d) -

B 2.5.16 :
e S f:(M,d) — (M, d) BESRE - NR
d(f(z), f(y)) = d(z,y), Y,y €M,
RUFFITE 2 B FHEE R (sometry) ©

« NRTE (M, d) &R (M',d) 2 EFEZFESE > AIFRMRMEEZRE (M, d) M (M, d) 2
FFRRYE IR FIRERY -

G 2517 BMEETEY 0 > 1o BIHE 0 x n BRNEEHERNEBEMENE M, (R) =
Mosn(R) © BPETLURT M, (R) G ||, , + AT :

n n
VM = (mij)icijen,  [1MlIpq =D Imijl,
i=1j=1

A TR ||, B RBOEERE dr s © BBEE > (M (R), drer) B (R, dy) REEEE
o - FTEEERMEESER ;

M = (mij)i<ijcn = (M1, -, Min, M2 1, ., M2n, s My 1, s Mpy).

EE2518 1 BDf: (Md - (M, d)RRB - BRE fRELEHRE LHIR
EERF MR/ RfMESEE BAKMR f 2 EFRKEEM (homeomorphism) 3K
ERMSEH (topological isomorphism) ° SIREFRNRKE f FEMNGE > KPREEZEMRE
(M,d) B (M',d') ZRIIRBY - 2R EEFERY o
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Chapter 2 Topology on metric spaces and normed spaces

Remark 2.5.19 : An isometry is also an homeomorphism.

Example 2.5.20 : Let us consider M = R? with different distances d; induced by ||-||;, d2 induced by

o, and the discrete distance dgigcrete-

(1) The identity map Id : (R?,d;) — (R?,dz) is a homeomorphism because we have

By, (z,7) C Ba,(z,7) C By, (x,V2r). (2.9)

(2) The identity map Id : (R?, dgiserere) — (R?, d1) is not a homeomorphism. This map is bijective

and continuous, but its inverse f~! is clearly not continuous.

Definition 2.5.21: Let d and d’' be two distances on M. We say that the two distances are topologically
equivalent (YA¥EZHEE) if they define the same topology, in the sense that a set in (M, d) is open if

and only if it is also open in (M, d’).

Example 2.5.22:In R?, the distances d; and ds are topologically equivalent, as seen in Eq. (2.9).

Proposition 2.5.23 : Let d and d’ be two distances on M. The distances d and d' are topologically
equivalent if and only if the identity map1d : (M, d) — (M, d’) is a homeomorphism.

Proof : First, let us assume that the distances d and d’ are topologically equivalent. It is clear that
the identity map Id : (M,d) — (M,d’) is bijective. To show its continuity, consider an open set
A C (M,d). Then,

IdY(A)=AC (M,d)

is still an open set due to the assumption. Hence, Id is continuous. Similarly, we can also show that
Id~! is continuous.
For the converse, we assume that the identity map Id : (M,d) — (M,d’) is a homeomorphism.

By its continuity, any open set A C (M, d’) is still open in (M, d), and vice versa. It is exactly the
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S 2519 ¢ RSS2 ERKES -

g6 2.5.20 : BFIER/IE M = R2 FROTIERREIIES : d, 26 ||, 51880 - d, 2 ||, 3138
E"J ’ J'X&%E%&EE%E ddiscrete °

(1) EEREId: (R?,d)) — (R?,dp) RERRKEHRRAZKME

By, (z,7) C Bay(z,7) C By, (2, \/§T) (2.9)

(2) TEZRB 1A : (R, dyiserere) — (R, dy) FRAEFEREE o tRBSEEEEH N - Bt
BRI [~ BESATOREAE o

EFE2521 I [HdE I A M ENREER - (R « M ¢ EELHEKRNEHESERDN > LS
0 EEMSE > EESE (M, d) PAMBE > BT (M, ) PHEERE  EENERT » FM
M EEE BRI EETE(E (topologically equivalent) BY ©

$8f 2.5.22 : £ R Lk - BB d) & d, BIREFER - IREBRFIE 2.9 FHRAEIIL -

Wi 2523 1 DdMd B M EHWERERE EEMEEEFREI: (M, d) — (M,d) 28R
ARii - BIFERE ¢ B @ BRIREEEDN -

208 1 Bt BFIREREERE d M  BIREFER - IRFRHId : (M, d) — (M, d) BBARELE
SYRRIE - BAREEAEEN - RFIZEHASE A C (M, d) @ RIERFK - HFAIFE

IdY(A)=AC (M,d)

SEEERE - FE - 14 SEEN o ABL0t - BT [ S -
Bk RPBRESRE A : (M,d) — (M, d) SEREEE - REA0EEYE - EHHE
AC (M, d) T (M, d) F2EEE - BR2TR - SR SMERLSEEENES . O

BRIBIB : 20244 10 H 23 H 13:42



Chapter 2 Topology on metric spaces and normed spaces

definition of two distances which are topologically equivalent. (]

Definition 2.5.24:

« Given a vector space V and two norms N1 and N2 on V. They are said to be equivalent if there

exist b > a > 0 such that

a Ni(x) < Na(z) < bNy(z), Ve e V.

+ Given a space M and two distances d; and d on M. They are said to be equivalent if there exist

b > a > 0 such that

adl(:ﬂ,y)<d2(a€,y)<bd1(£€,y), VSU,Z/GM-

Example 2.5.25:In R", the norms ||-||;, ||-||5, and [|-|| ., are equivalent. In fact, we have

Il < llzlly < llzlly < Vollzly, Vo eR™

Remark 2.5.26:
(1) Two equivalent norms induce two distances that are also equivalent.

(2) Two equivalent distances define two metric spaces that are topologically equivalent. This can be seen

using inclusion relations between balls defined by different distances Example 2.5.20 (1).

(3) Later in Theorem 3.2.22, we will see that on a finite dimensional vector space, all the norms are equiv-

alent.

2.5.5 Uniform continuity
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EFE 2524 :

- feEREEZERE V UIRMEERTE V LS N, M N, c ARFE L > o > 0 &5
a Ni(z) < No(x) < bNy(z), Vz eV,

BB PIR A RS 0 -

- MMEZER M URERTE M ERIMIEERE d 8 dy ° WIRBFZE b > a > 0 1T

adl(sc,y)<d2($,y)<bd1(fc,y), VJU;Z/GM,

AT PIR L T B Zo B 2 0 -

g 2.5.25 © FERY o BB ||, ~ (], R || BEEN - EELE > BB

1l < llzlly < llzlly < VRl , Vo eR™

5% 2.5.26
(1) MEFEEEFR5 B RV EEE -

(2) MEFEERES S HRMNMEZHAZRREFEN © ErTLAREEA 2520 (1) PARERER LR
BVEKZ FEIBY BL S RATRFRE H2K o

3) WREEE 32229 HMAESEIETEREENEDEZRE L - IEERHMBEFEN -

BH/E G9EENE
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Chapter 2 Topology on metric spaces and normed spaces

Definition 2.5.27 : Let f : (M,d) — (M’,d’) be a function. We say that f is uniformly continuous
(3945)E4E) if for any € > 0, there exists 6 > 0 such that

Yo,y € M, dz,y) <6 = d(f(x),f(y)) <e. (2.10)

Example 2.5.28 : The function f : Ryg — R, 2 — % is continuous. It is not uniformly continuous

on (0, 1], but is uniformly continuous on [1, c0).

Remark 2.5.29:

(1) An uniformly continuous function is continuous, but the inverse does not hold in general, as we just

saw in Example 2.5.28.

(2) In the definition of uniform continuity, the choice of § does not depend on x and y, that is why it is

called uniform. You may compare (2.8) and (2.10) to see the difference.

(3) Uniform continuity is not a topological notion, in the sense that it cannot be defined only using the

open sets. See Exercise 2.41.

(4) Given a uniformly continuous function f : (Mi,d;) — (Ma,ds) and distances d} and df such that
dy and d are equivalent, ds and d/, are equivalent. Then, it is not hard to see that the function f :

(M, dy) — (Ma,d5) is also uniformly continuous.

Definition 2.5.30 :Let f : (M,d) — (M’,d’) be a function. Given K > 0. We say that f is

K-Lipschitz continuous if

d'(f(z), f(y) < Kd(z,y), Va,y € M.

We also say that f is Lipschitz continuous if there exists K > 0 such that f is K-Lipschitz continuous.

$-E HEERHHMEEERE

EE2527 1 §f: (M, d) — (M',d) BRE - MREREE >0 FES > 0 FE
Ve,ye M,  d(z,y)<d = d(f(2),f(y) <e, (2.10)

BUFMIER f Y944 (uniformly continuous) BY ©

5 2.5.28 1 KB f:Roo — R,z — 1 BEEH - t17F (0,1] LFRBHIEEN » B (1, 0)
ERGTEER -
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5% 2529 :

(1) FEEBRBBIEEN - BE—ARKRER - PenEAG AL > WFRFHFITEEH 2.5.28 FREE
B o

(2) EHEEBNERT > ¢ FEERBURN o Ry FiAA EWBIEYS o AIUELLE (2.8)
(2.10) PEVIES - BEERHTERRED °

3) BEEETZEHRERR » SREME AR EEMERMEL - IUBERE 241 ©

(4) FEETENEIBRE [ 2 (M1, d1) — (Mo, do) ARIERE M dy 5 1 B, FE - B, Ha, F
18 - BRERHE I » B f: (M, d) — (Mo, dy) BITEEN -

EF2530 : S f: (M, d) — (M,d)BRE (T K > 0° f0R
d'(f(x), f(y) < Kd(z,y),  Va,y €M,

AIFRMPIER £ B8 K-Lipschitz MR EN  tNRFTE K > 0 618 f 2fE K-Lipschitz ZEAERE > A
HER f = Lipschitz B ©
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Chapter 2 Topology on metric spaces and normed spaces

Corollary 2.5.31: Any Lipschitz continuous function is also uniformly continuous.

Proof : It is a direct consequence by taking 0 = /K in (2.10) if the function f : (M,d) — (M,d') is
K -Lipschitz. (|

Definition 2.5.32: Given a space M and two distances d and d’ on M. They are said to be uniformly
equivalent (35 F{B) if the identity map Id : (M,d) — (M,d’) and its inverse are uniformly

continuous.

Remark 2.5.33 : Two equivalent distances are uniformly equivalent, and two uniformly equivalent distances

are topologically equivalent.

2.6 Product of metric spaces

Given n metric spaces (Mi,d;),...,(My,d,). We define the product space M = M; X --- x M, and
want to equip it with a distance. There are several ways to achieve this using the distances dy, . .., d,. The

canonical way is as follows.

Definition 2.6.1: We may equip the product space M with the product distance d defined as follows,

d(z,y) = max di(zi, i), (2.11)

1<isn

forx:(azl,...,xn),y:(l/h---»l/n) € M.

Remark 2.6.2 : The open ball centered at x = (z1, ..., x,) with radius r under the distance (2.11) is given

by
Bi(z,r) = Bg, (x1,7) X - -+ X Bg, (xn, 7).
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RIF 2.5.31 : {E{A Lipschitz BiERE B2 EEN -

8EE R f: (M, d) — (M, d") 218 K-Lipschitz BREZ » BI7E (2.10) & » FFIATUE 6 = /K

g

E&E2532 | HMEEH M BEMBETERE M LWERE M ¢ - NRIESFSREd: (M, d) —
(M, d") Mt R RBE 5 ZEEN - RIEPREMEERHEIIFE (uniformly equivalent)
Y °

5% 2,533 | MEFEEHRIHIFERN - MENIFEERSIHESEN -

SB7\H BHEEZERRYRIR

AT n BRIBZERT (Mo, dy), ..., (M, dy) ° BIFIEHFEZERIB M = My x - x M, TABBEL
EEHE - RPESB5H 4, ... 4, FES  MAGESFRAARITNERFEREW - STt
B o

EFK2.6.1 @ BRATUERZER M LFEER - ERWOTF -

d(z,y) = max di(zi, yi), (2.11)

1<i<n

Etpx:(xla"wxn)?y:(ylv"'>yn)EMO

s3fF 2.6.2 : EHEERE (2.11) ERHR » FIOE © = (21,. .., 2,) BFES r WEKEE

Bi(z,r) = By, (x1,7) X -+ X Bg, (2, 1).
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Remark 2.6.3 : We may also define other distances on the product space M. Let
Dy(z,y) =Y di(zi,y;) and Dy, y) = | > di(wi,y:)%,

=1 i=1

which are also distances on M. They are equivalent to the product distance d defined in (2.11), because
d(l‘,y) gDQ('xay) <D1($7y) <nd(:c,y), V%yEE

Therefore, it does not really matter which of these three distances we choose on the product space M.

Definition 2.6.4 : For 1 < ¢ < n, we may define the projection on the i-th coordinate of the product

space M,
Proj,: M =M; x---xM, — M,

x=(r1,...,Ty) =T,

Proposition 2.6.5 : The projection Proj; is continuous and open (Definition 2.5.14) for all1 < ¢ < n.

Proof : Fix 1 <7 < n.

« First, let us check that Proj; is continuous. Following Remark 2.5.12, we only need to check the

preimage of an open ball under Proj;, is open. Let y € M; and € > 0. It is not hard to check that
Proj; (B (y,€)) = My X -+ X M1 X By, (y,€) X Miy1 X -+ X My,

The r.h.s. is clearly an open set.

« Then, let us check that Proj, is an open map. Given an open set A C M and y € Proj;(A). Then,
there exists x € A with x; = y. Since A is open, there exists > 0 such that By(z,r) C A.
We know that the open ball in the product space can be written as the product of open balls
(Remark 2.6.2), we deduce that Proj,(Bg4(z, 1)) = Bg,(x;,r). Therefore, y = x; = Proj,(z) €
By, (z, 1) = Proj;(B4(z,r)) C Proj,(A), implying that y is an interior point of Proj,(A). O
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#2663 1 ETEZEM M L FHFItHEESHERHthEER -

n n

Dy(z,y) => di(zi,yi) B Da(z,y) = | D di(zi, i)
i=1 i=1
tPIERERTE (2.11) PIVFEEERE « FE > RAKME

d(z,y) < Da(z,y) < Di(z,y) < nd(z,y), Vz,ye€ E.

Fit > FRZEE M L FERMGE = EEREEER—E - #SHEER -

EFE264 @ HR1<i<n> BFTUERTERZER M £ E5  AERLERBGEEY

Proj,: M =My x---x M, — M

x=(x1,...,2p) =T,

A8 2.6.5 1 HIRETE 1 <i < n - RERE Proj, BEEENRERE (E& 25.14) o

A EEL1I<i<ne

- B BFIRIEE Proj, BFAER o WETAE 2.5.12 FFIRDE - RPIRFERERIRTE Proj,
Z THREMERFERE » %y € M; UK e > 0 - HFIFHRE

Proj; (B, (y,€)) = My % -+ x Mi_y X Bagy(y,€) X Mijy % - x M,

RS EAZERE

- EE > HPIRBE Proj, SERKE - SBEME A C M UK y € Proj;(4) - BBEFTE
reA MBr =y HR AZBHE  FEr > 08 By(z,r) C A BFIFERZEREF
AUBRBKET AR A BABRAVSRTE (FEME 2.6.2) - FPIBULIETS Proj,(Ba(z, 7)) = By, (i, 7) ©
FRM y = x; = Proj,(x) € By, (zi,r) = Proj;(Ba(z,7)) C Proj,(A) » EEHKMBE y 2@

O
Proj;(A) BYPRIES ©
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Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.6.6 : Let (M’,d’) be a metric space,a € M', and f : M' — M be a function. Then, f is R 2.6.6 : B (M, d) BMEZEE ae MUK f: M — M BERE - AIFEBMEHNFRE
continuous at a if and only if f; := Proj, o f is continuous at a forall1 < i < n. 1 <i<n: EEBf = Proj, o f 1F o SEMEN » B [ 75 o 2B o
S b 7 i i 1 i
Proof : If f is continuous at a, it is not hard to see that f; is continuous at a for all 1 < ¢ < n by SEHH MR fEoBEEN EEEHMERENME (& 254) RPFAHBLENRFAE
composition (Proposition 2.5.4). Conversely, suppose that f is a function such that f; is continuous at l<i<n> B[ GSEEN - KEBK > BR [ SERBEEHRFE L <i<n’ f; a2
Xt x = rREY © 2 ’ a F2Y/R X?x > Ji

aforall 1 < i < n, we are goinig to show that f is also continuous at a. Lete > 0. Foreach 1 < ¢ < n,

EHERY » FMIEREERR f E o FUERBM - T e > 0 BREME 1 <i <n BFIBEHE 6, > 0 E
"Rz e M BME

we can find d; > 0 such that for x € M,

d(xz,a) <6 = di(fi(z), fi(a)) <e.
d(z,a) <d6; = di(fi(z), fila)) <e.

Since the product space M = M; x - x M, is equipped with the metric defined in (2.11), by letting .
FRRRTEZER M = My x - x M, LFrRR-FBYEERER (2.11) PEZRMY > IS 0 = minicic, 6; * A

IR 2z e M > BFEER

0 = minj;<y 9;, for x € M, we have,

d(z,a) <6 = d(f(x),f(a)) = max d;(fi(x), fi(a)) < &.

1<i<n

d(z,a) <d = d(f(x),f(a)) = max d;(f;(z), fi(a)) < e.

This shows the continuity of f at a. O Isisn
EEFANME [ 1F o BEEN - O
Mo % M oM % M
Pro Pro
Proj; o f i Proj; o f i
Mz Mz
Figure 2.1: This diagram illustrates the relation between the function f : M’ — 2.1: WWENEIM T BB f: M) — M » RERE Proj, : M — M; MR fth{f
M, the projection Proj; : M — M;, and thir composition.

pro) : P SRR AR -

Proposition 2.6.7 : Let (M, d’) be a metric space, f : M — M’ be a function, anda = (aq, . ..,a,) € 267 - & (M, d)ABEZE f: M - M BRE > Uk a=(a1,...,a,) € M o EHR
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Chapter 2 Topology on metric spaces and normed spaces

M. For1 < ¢ < n, let us define the partial function

fii Mz — M’

T = f(alv"waiflawvaﬂrlw"aan)-

If f is continuous at a, then f' is continuous at a; forall 1 < i < n.

Remark 2.6.8 : Note that the converse of Proposition 2.6.7 does not hold. For example, let f : R? — R be
defined by

f(0,0) =0,

flay) = sy V) €R0.0))

Take a = (0,0), then f! = 0 and f? = 0 are continuous functions, but

72 1 1
f(x,x):m:§—>§, when z — 0.
Proof : For x € M;, let us write ag) = (a1, .., Qi—1,T,Qjy1,...,0y). f di(x,a;) < 0, then it is clear

that d(ag), a) < §. Hence, if v € By, (a;, §), then al e By(a, ). This tells us that the continuity of f

at a implies the continuity of f? at a;. (|

2.7 Connectedness and arcwise connectedness
We are given a metric space (M, d), and we are going to study its connectedness properties below.

2.7.1 Connected spaces
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1 <i<n HPATLUERIROEAEL

fit M, — M’

Zz = f<a17"'7a/i—17$7ai+17"-70/71)-

SNR f1E o R BIEHRRABE 1 <i<n [ HETEq EE -

sif# 2.6.8 1 BFVEEE - vl 2.0.7 BB ARGRIL - HFIRIUERE [ : R? —» R EHM

f(OﬂO) = 07

B a=(0,0) BBEE f1l =0 AR f2 =0 BEERE - B

T 1

'u.ﬁ
- 2 0.
2422 2

flw.2) — s

A B e M BRIFEIUE o) = (a1,...,qim1, 2, aists - . an) © B di(2, a;) < 6 BBEE
BEREMIBE d(al”,a) < 6 ° FRLL » BB z € By, (a;,8) » BEE o) € By(a,6) o BEFEM £ 1E
o BEEMES £ 1E o BEAE - 0

B ERERINESE

HFHEEREEZM (M, d) - EBTIREMAGHRUERIEE -

S—IE EBZEE
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Chapter 2 Topology on metric spaces and normed spaces F£T5 A7 B A &0 2 RV

Let us start with the definition of connected spaces. B EBZEENERBRRE -
Definition 2.7.1 (and properties) : We say that (M, d) is connected (Z38) if one of the three following EE 271 [RME] MR TE=ZEZFEMEZ—MKIL - FHMHMR (M, d) 2% (connected)
equivalent properties are satisfied. 9 o

(a) There is no partition of M into two disjoint nonempty open sets.

(a) HFEEL M DBRHMEEFIFENFRE

(b) There is no partition of M into two disjoint nonempty closed sets.

(b) FfFIEELE M DEMEWEEFIEZERIRALE -
(c) The only subsets of M that are open and closed are & and M.

, o e _ . © M HFEEST eHRKEREXEHAENFES  REoM M-
Otherwise, we say that (M, d) is disconnected (A3&if) . Similarly, in a metric space (M, d), a subset

A C M is said to be connected if the induced metric space (A, d) is connected. N FSRARARIT » BfFIER (M, d) A (disconnected) B9 © HFEN » EERIEZER (M, d) I8

EFES AC M WFR5IFEHRIAERER (4, d) BEE - IFRFIRMSEEDN -

Remark 2.7.2 : To check the property (a), one may assume that there exist open sets A, B C M with HWE272 : MBEEHRBENE ) RATUBREEEEABC MEBANB-oRAUB =M
ANB =@and AU B = M, and show that either A = @ or B = @. N P -
i MHESEME A=cHEB=90"°

Proof : We are going to show that (a) = (b) = (c) = (a). FEER  MEFEBH )= b) = ()=>@)-°
 (a) = (b). Suppose that there exist two closed sets A; and Ay such that M = A; U Ay and c) = (b) o BRIFEMEEE A Al Ay (518 M = A, U Ay R A N Ay — oo BF

A1 N As = @. Then, By = M\A; and By = M\ Ay are open sets. Moreoever, they satisfy = . SRR HA ] P =
% By = M\A; #l By = M\A o ’ EE==S M = B U Bs i®
M = B1 U Bs and B1 N By = @. By (a), we know that either B; = @ or By = &, and it follows = \Ai 2 \A2 BER =E ! 2=

that Ay = @ or A; = @. BiNBy=o °$EF§E(3) ’ :ﬁ'fﬁ%ﬂﬁBl :QE‘ZBQ =g ’mﬁt%%ﬁAg :QEEAl =ge
« (b) = (c). Let A C M be open and closed. Then, B := M\ A is also open and closed. Moreover, ch)=@C R ACMRBRARAERESE - BE B = M\ABERKARERRESE - It
we have M = AU B and AN B = @. Then, the assumption (b) implies that either A = & or NoRPEE M = AUBMR ANDB = o o SHE—%  1BR b) RATUEH A= o

B = @, or equivalently, A = @ or M. n =
XB=0o HHERA=0H M-

« (c) = (a). Let A1 and Ay be two disjoint open sets such that M = A; U As. Then, A; can be
rewritten as A; = M\ Ay, so it is also a closed set. By (c), we know that A; = & or M. 0 c@O=>@ T AMAZMEEFHAE EF M = AU Ay BRE A, TR EF

U
Ay = M\ Ay » FRAfth i & 2MERASE - 1RIR (o) » BFIME Ay =B M -
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Chapter 2 Topology on metric spaces and normed spaces

Remark 2.7.3 : The notion of connectedness is a topological notion, that is, it only depends on the notion

of open sets (in the metric space), without the knowledge on the exact distance we are considering.

Example 2.7.4:

(1) The metric space R* = R\{0}, induced by the Euclidean metric (R, | - |), is not connected.

Actually, we have R+ = (—00,0) U (0, 00) which is a disjoint union of open sets.
(2) In any nonempty metric space, a singleton set {z} is connected for every x € M.

(3) Intervals of R are connected. We will prove this in Proposition 2.7.17.

(4) The set QQ of rational numbers is disconnected.

2.7.2 Properties of connected spaces

Proposition 2.7.5: Let f : (M,d) — (M’,d’) be a continuous function. Suppose that M is connected.

Then, f(M) is also connected.

Proof : Let A be an open and closed subset of f(M). Thus, there exists an open subset B; C M’ and

a closed subset By C M’ such that
A=BiNf(M)=DByN f(M).

It follows from above that f ~1(A) = f~1(B;) = f~'(By), and the continuity of f implies that f ~!(A)
is open and closed in M. Since M is connected, we know that f~!(A) = @ or M, thatis A = & or

f(M). O

Let us consider a discrete space with only two points D = {0, 1} equipped with the discrete distance ¢.
Then, the metric space (D, ) is disconnected because D = {0} U {1} which is a disjoint union of closed

(also open) sets. This discrete metric space will be useful for the characterization of connectedness.
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BRE273 1 EEMNERREERES  RANMIIAR (RERMAN) BEENBETE - B
R BEHERR IR -

&5l 2.7.4 :
(1) FHEVREREEZER (R, |- |) 5B HRAE R* = R\{0} LAIREEZERRIEEN - RARFAT
BB MERREMNTHE : Rx = (—00,0) U (0,00) °

(2) EEMIEEMEZMT  BHRET 2 € M > BRHES {2} BEEW -

(3) £ R FHRMESERBN - ZFIGE=E 2.7.17 FREHFS -

(4) BFTEREFIBRINES Q BIBEERT

BIEN ERERENEE

@275 1 S 1 (Md) - (M,d) BEEEE - B M BEBL - BE (M) oS
B o

A © AA f(M) PREKEAELEHAENFES - NEERKEERSE B C M UKESE
By C M' 15

A=Bin f(M) = Bar f(M).
REXEMATUEER 1A = fYB1) = f1(B) > EER FBGEEM > HMAAME F1(A4)

£ M HPRRESEMEDLEEHE - AN M 2EEN - HFEBHM F1(4) = o B M UHER
A=a = f(M) - O

HFIZER R AEMERAVBEERZER D = {0,1} - WS EREULZERE EVBEBEERESCIE 6 - B -
BREBEZERE (D, o) B NERBH » A% D = {0} u {1} RERMAE (LEHE) HNME - SEREIHEE

AR REEEREIFEER -
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Chapter 2 Topology on metric spaces and normed spaces

Corollary 2.7.6 : Let (M, d) be a metric space. Then, M is connected if and only if every continuous

function f : M — D is constant.

Proof : First, let us assume that M is connected. Given a continuous function f : M — D, by
Proposition 2.7.5, we know that the f(M) is connected in D. Since D is disconnected, the image
f(M) cannot be the whole space, so f(M) = {0} or {1}, that is, f is constant.

Suppose that every continuous function f : M — D is constant, and we want to show that M is
connected. By contradiction, suppose that M is disconnected. Then, we can find two disjoint nonempty

open subsets A and B such that M = AU B. Define f : M — D as follows,

0 ifxe A,
f(z) =
1 ifrxeB.

The function f is clearly continuous because {0} and {1} are open sets in D, and their preimages

~1({0}) = Aand f~1({1}) = B are also open. However, f is not a constant function. O

Corollary 2.7.7 : Let (M, d) be a metric space, and A C M be a connected subset. Let S be a subset
satisfying A C S C A. Then, S is also connected.

Proof : Let f : S — D = {0, 1} be a continuous function. Its restriction f|4 on A is also continuous,
thus constant, since A is connected. Assume for instance that f|4 = 0. Let x € S. By the continuity

of f, there exists € > 0 such that

yeBx,e)nNS = 0(fy), f(x)) <

D=

This means that f(y) = f(z) fory € B(x,e)NS. Additionally, since S C A, we have B(z,e)NA # &.
We may choose 2’ € B(x,e) N A, then f(z') = 0, giving f(y) = 0 fory € B(z,e) N S. Therefore,
f =0, so the result follows from Proposition 2.7.5. U
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RiE276 ¢ B (M, d) BHHEZRH - EEHMEFREEBRE - M - D EEEHXRE - 8l M

BEE e

BB 1 B BIRER M BEEN o IMEEERE f: M — D> W& 2.7.5 RPIRTUEA
f(M)1E D RREBHN - AR D BREBH - AR f(M) BEREZTM - UHERRMESE
f(M) = {0} 8% {1} > WAER [ SEZBRH -

REFMEEERE [ M - D EREHRE - RPEEFR M BEEN - BAREE &
|’ M FEE o ERAVEE - IR EIMEERIEERFES AN BERS M = AUB - €&

f:M—DEITF:
0 BrxcA,

f(z) =
1 HzxzeB.

BB f BEARERN A {0} A {1} & D AHIRE - BMFANKRE f1({0}) = A UK
f7H{1}) = B 5 2FE - A f AR ZEEBRE - O

RIE27.7 1 D (M,d) BREZME AC M ABBEFEL S SBRBAC S C ANTFE
& o BBE S 2B -

L I ) — D ={0,1} ZEFERH - HRHITE A LRIRE /), W EZEER - AN AR
EER  EERERHRE - HFIATURK flu=0°Tzec S RIF fBVERME - FEe >0
fE15

—

N[ —

y€ B(z,e)NS = (f(y), f(x)) <

BERXREBHRAE y € Bz.e)n S HME f(y) = fx)c WA HR S C A HMEH
B(z,e) N A # @° HMIATLGE 2/ € B(z,e) N A BERFMERFE f(2/) =0 BHERFAE
y € B(z,e)NS > WEE f(y) =0° ALt f =0 FIAKPHEEMRE 2.7.5 §24E © O
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Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.7.8 : Let (M, d) be a metric space and (C;);c; be a family of connected subsets of M.

Suppose that there exists ig € I such that
CiﬂCiO;é@, Viel.

Then, C' = U;c1C; is connected.

Proof : Let f : C = U;e;C; — D = {0,1} be a continuous function. For every i € I, since C; is
connected, f|c, is constant. In particular, we may assume that f\CiO =0. Letz € Cand i € I such
that z € C;. Since C; N C;, # &, we may find zg € C; N Cj,. Due to the fact that f|, is constant, it
follows that f(z) = f(z¢) = 0. Therefore, f is constant on C, and we conclude by Corollary 2.7.6. OJ

Remark 2.7.9 : In particular, if (C;);cs is a family of connected subsets such that N;c;C; # &, then C' =

U;erC; is also connected.

Question 2.7.10: Let (C;);cr be a countable family of connected subsets, i.e, I = {1,...,p} for somep > 1
or I = N. Suppose that for every i € 1,7 # 1, we have C;_1 N C; # @. Show that C' = U,;¢;C; is connected

by rewriting the proof of Proposition 2.7.8.

Proposition 2.7.11: Given a sequence of metric spaces (M1, d1), . .., (My, dy,,) and consider the product
metric space (M, d) given by M = Mj X --- x M,, and the product distance defined in Eq. (2.11). Then,
(M, d) is connected if and only if (M;, d;) is connected for all1 < i < n.

Proof : First, let us assume that M is connected. Fixi € {1,...,n}andlet f : M; - D = {0,1} be a
continuous function. Since the projection Proj, : M — M; is continuous, the composition f o Proj; :
M — D is also continuous. From the connectedness of M, we deduce that f o Proj, is constant. Since
Proj,(M) = M,, it follows that f is also constant, that is M; is connected.

Let us assume that (M;, d;) is connected for 1 < i < n. Consider a continuous function f : M — D.

Letz = (x1,...,2n),y = (Y1,-.-,Yn) € M. We want to show that f(z) = f(y). First, it follows from
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D278 1 D (M, d) BREZE > B (C)ie FHTEA M NEETES - BREE i [
12

CiﬂCio#Q, Vi e .

AE C = Uie C; BB ©

FEA: B f:C =UesC; — D =1{0,1} ZEBRE - HRFABG i c [ 1B ¢, BEBY% -
BRFAEA fio, RRBRB - BRATUERR fo, =0°PreCRic IRz e @R
CiNGCy, # @ BAIREIRE] 20 € CNC;, © AR fio, REEBRE - HPWER f(2) = f(z0) =0
At f1E ¢ LRESHRE > KPIEARIE 2.7.6 AR O

37279 @ HRHWBERZT R (C)ic; PEIHZEEBEFES » BRRE Nic/C; # 2 > BBE

C = UierC; 1 ZEER o

fIRE 2.7.10 1 & (C))ic; AAIBZEEBFESHBN  BMRBREEp > 1EFI1={1,....p} * K
BRI =N-BEERABicli#1FFIE C.1nC # @ - HIEREE 2.7.8 FRTER - FEEA

C = U;ierC; BB o

Rl 2.7.11  RREREZEREFY (M, d1),. .., (M, d,) TERIREERZER (M, d) - RPIRZE
RIRERMR M = My x --- x M, > TREBREFAT (2.11) FAERE - BESEMEEHRABE 1<i<n

(M;, d;) BB » B (M, d) R EsEe -

A Eh RABHR M BEEN BT i€ {1,...,n} XD f: M, » D = {0,1} BEEX
B o R R B Proj, : M — M, BELER > SRS f o Proj, : M — D thEFIER - 5Bl
M BEEM » FFIHER [ o Proj; REREBRE - BN Proj;(M) = M; » HFIFH f BEREEH
R - HaEEERR 0 M, BEBH -

BOBEHRABE1I<i < n KRB (M,,d) BEBHN - ZEREBERE f: M > DB

BB : 20244F 10 A 23 H 13:42



Chapter 2 Topology on metric spaces and normed spaces

Proposition 2.6.7 that the following map is continuous,

f1:M1—> D

21 = f(zl,l'g,...,l'n).

Tn) = f(y1, T2, ..., xn).

Then, we may look at the partial function at each of the following coordinates to conclude that

The connectedness of M7 implies that f! is constant, that is f(z1, zo,. ..,

f(x1,...,2n) = f(y1,-..,yn). Hence, the continuous function f is constant, and M is connected

by Corollary 2.7.6. O

2.7.3 Connected components

Let (M, d) be a metric space. In this subsection, we are going to study the connected components of M,
whose precise definition will be given below. Intuitively speaking, we want to decompose M into disjoint

pieces of connected subspaces, and to achieve this, we will define an equivalence relation on M.

Definition 2.7.12 : We define the following binary relation R on (M, d),

2Ry <& there exists a connected subset C' C M such that x,y € C. (2.12)

Proposition 2.7.13 : The binary relation R defined in Eq. (2.12) is an equivalence relation.

Proof : It is straightforward to check.
« (Reflexivity) For every = € M, we have xRz since {x} is connected.
« (Symmetry) If z, y are such that Ry, then it follows from Eq. (2.12) that yR=.

o (Transitivity) Let x,y, 2z € M such that 2Ry and yRz. This means that there exist two con-
nected subsets C' and C’ such that x,y € C and y,z € C’. Since C N C’" # &, it follows from
Proposition 2.7.8 that C'U C” is also connected. We have z,z € C' U (', so zRz. O
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r=(z1,...,20),y = (Y1,...,yn) € M o HMEEFE f(2) = f(y) - Bk > WA 2.6.7 HFI=F
> TR EED -
fl : M1 — D

21 —> f(21,$2,...,l‘n).

€ My BSEBIERFIRTLUES /1 REBRE - BARER f(v1,22,...,%0) = f(y1,22, ..., 3n) ©
ER—EK  RMIEHESEERRRDRE  AIURER (21, 20) = f(Y1, - ¥n) ©
It o SERERE [ RIEEBERE  FIARIE 2.7.6 HHREF M ZEE - O

S=E EETTH

T (M, d) BRREEZER - EIVNEF  ZRFAEESR M PEE TR - LEHRAMANEE - B
BLERR - ZAEEL M oBAERFNERFER - RASEEER M LHFERFRIGERLLE
By o

E&E2.7.12 @ HAIERT (M, d) ENZTRERR :

TRy & BTEEBFESCCMFER2,yecC. (2.12)

il 2.7.13 ¢ I (2.12) PEERN TR R 2EFERFR ©

20 HPTUEERET -
- [BRY%) 8RFiE v c M > B% {+} SE8 - HMEE 2R ©
. [HEM] R 2,y WE 2Ry » BBEEERR (2.12) » L EE yRa ©

. [EBM] © 2,9,z € M EE Ry AR yR2z - ERBEEEIMEEEFES CM O F
BrycCURKy,zcC' HRCONC' # o #timi# 278 FFIFH C U C' LEREE °
] O

BB z,zcCUC » UFLEER 2Rz ©
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Chapter 2 Topology on metric spaces and normed spaces

Remark 2.7.14 : Proposition 2.7.13 allows us to define equivalence classes M /R. For each x € M, let us
denote by [z] its equivalence class. It is not hard to see that [z] is given by the union of all the connected
subsets containing x, which is again connected by Proposition 2.7.8. The subset [z] is called a connected
component (EBITHF) of M. The connected components of M form a partition of M, that is a collection
of disjoint subsets whose union is M. And we can see that M is connected if and only if it has only one

connected component.

Corollary 2.7.15 : The connected components of a metric space (M, d) are closed subsets. Moreover, if

M only has finitely many connected components, then they are also open subsets.

Proof : Let z € M and consider its connected component [z]. Since [z] C [z], it follows from
Corollary 2.7.7 that [z] is also connected. We see that [z] also contains z, so [z] = [z], that is [x]
is a closed subset.

Suppose that M has only finitely many connected components, that is,

N
M=Jx], N>1l2,...,ay€M.

Then, for any 1 < i < N, we have

= M\ U

1<<N
j#i

which is open, being the complement of a finite union of closed sets. O

Remark 2.7.16 : We give an example below of a subspace of (R, | - |) which has one connected component

that is not an open subset. Let

C=(UCu)u{o}, Cp=l2"" 27,

n>1

We first note that, all the C,,’s and {0} are connected components of C'. It is also not hard to see that for

each n > 1, the subset (), is open and closed (in C') at the same time, because

On — [2—271—1’ 2—277,} m C

=(r- 27271*17 r1. 2*2”) NC, forsomer € (%, 1).
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Chapter 2 Topology on metric spaces and normed spaces
However, {0} is a closed subset but not an open subset. To see this, suppose that it is open, that is we may

find € > 0 such that B(0,e) N C = {0}. But for any € > 0, the intersection B(0,e) N C' contains not only 0
but also the subsets C,,’s for sufficiently large n (as long as n > £ logy(1/¢)).

2.7.4 Open sets and connected components in R

We are going to look at the metric space (R, | - |). Let us recall that / C R is an interval if for any a, b € 1,

then

z € (a,b) = =xzel. (2.13)
There are four types of them,

(a,b), —oo<a<b< +oo,

[a,b), —o0o<a<b<+oo,

(a,b], —oo<a<b<+oo,

[a,b], —o0<a<b<4oo.

We note that the last type of intervals are also called segments.

Proposition 2.7.17 : A subset I of R is connected if and only if it is an interval of R.

Proof : Let us assume that / C R is connected. By contradiction, if I is not an interval, it means that
we may find a,b € [ and x € (a,b) with x ¢ I. In this case, we have I C (—o0,z) U (x,400), so I is

not connected.
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Chapter 2 Topology on metric spaces and normed spaces

For the converse, given an interval I C R, we want to show that it is connected. If I is a singleton,
it is clear. Let I = (a,b) with —co < a < b < +00 and a continuous function f : I — D = {0, 1}.

Suppose that f is not constant, that is there exists x,y € I such that

a<z<y<b and f(z)# f(y),

and, without loss of generality, we may assume f(x) = 0 and f(y) = 1. Consider the set

I'={z€1l:z>uzsuchthat f(t) =0forallt € [z, 2]}

The set I is nonempty because x € I'. Moreover, I" is bounded from above by y. Let ¢ = supl' < y

By the continuity of f, we have f(c) = 0. Additionally, the continuity of f at ¢ implies that

Je € (0,b—y),Vt€lc,c+e], (f(t),f(c)) <

N[

This means that f(t) = 0fort € [c,c+¢] C (a,b) = I, so ¢+ ¢ € I'. This contradicts the fact that c is
the supremum of I". Therefore, f needs to be constant, and [/ is connected.

For a general interval I which is not a singleton, nor an open interval, we may write J = int([) so
that J C I C cl(J). Since J is of the form (a, b) with —oco < a < b < 400, which has been discussed

above, we know that J is connected. Then, it follows from Corollary 2.7.7 that I is also connected. []

The following theorem is the first application of Proposition 2.7.17.

Theorem 2.7.18 (Intermediate value theorem) : Let I be an interval of R and f : I — R be a

continuous function. Then, f(I) is also an interval.

Proof : Proposition 2.7.17 tells us that [ is connected, then by applying Proposition 2.7.5, we also
know that f(I) is connected. Then, again by Proposition 2.7.17, we deduce that f(I) is an interval. (J
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Chapter 2 Topology on metric spaces and normed spaces

Remark 2.7.19 : Another way to interprete or apply the above theorem is as follows. If f(a) < f(b) with
a < b, then for any v € [f(a), f(b)], we can find ¢ € [a, b] such that f(c) = ~.

Another application of Proposition 2.7.17 is the following description on the structure of the open sets in

R. Below, let us fix a nonempty open subset A C R.

Definition 2.7.20 : Let I be an open interval. We say that I is a component interval of A if
« ] C A, and

« there is no open interval J # I with I C J C A.

Theorem 2.7.21 (Representation theorem for open sets in R) : The subset A is the union of a countable

collection of disjoint component intervals of A.

Proof : It follows from Remark 2.7.14 that we may write down the connected components of A as
AR = {la)] s j € T}, (214)

where J is some index set, and [a:j} denotes the equivalent class of R, or connected component of A,
represented by some z; € A. From Proposition 2.7.17, we know that each of [z] is an interval of R.
We need to check that these intervals are component intervals in the sense of Definition 2.7.20.

Fix j € J, let us denote I; = [z;], a; = inf I}, and b; = sup I}, so that (a;,b;) C I;. First, we want

to show that [ is an open interval, that is I; = (a;, b;). We want to show that a; ¢ I;.
« If aj = —oo0, then it is clear that a; ¢ I;.

« Ifa; > —oo with a; € I, then since a; € A, which is an open set, we may find € > 0 such that
I]’» = (aj —e,aj+¢) C A. Since Ij’- and I; are both connected, and I; N Ij’- # @, it follows from
Proposition 2.7.8 that I; U I is still connected. This contradicts the fact that I; is an equivalence

class for the relation R.

Therefore, a; ¢ I;. Similarly, we may also show that b; ¢ I, that is I; = (a;, b;).
To show that /; is maximal in the sense that, there is no open interval K such that I; C K C A, we

use again the fact that R is an equivalence relation.
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Chapter 2 Topology on metric spaces and normed spaces

To conclude, it remains to show that J is countable. The set QQ of rationals is countable and can be

enumerated Q = {q1, g2, . . . }. We may define a function F' : J — N as follows,
F(j) =min{n > 1: ¢, € [z;]}, VjeJ

The fact that F' is an injection follows directly from the partition structure given by the equivalence

relation. This allows us to conclude that (2.14) is a countable collection of component intervals. ([l

2.7.5 Arcwise connectedness

Let us fix a metric space (M, d).

Definition 2.7.22:Let~ : [0,1] — (M, d) be a continuous function with a = v(0) and b = y(1).
« We say that 7 is a path from a to b.
« If a # b, the image ([0, 1]) is called an arc joining @ and b.

« Suppose that (M, d) is a normed space, in the sense of Example 2.1.4. If v writes as y(t) =
tb+ (1 —t)a with value in M for all ¢ € [0, 1], then we say that v([0, 1]) is a line segment joining
a and b, denoted by [a, b].

Definition 2.7.23 : We say that M is arcwise connected (33&#i&) if for any a # b € M, there is an

arc joining a and b.

Theorem 2.7.24 : If M is arcwise connected, then M is also connected.
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Proof : Let f : M — D = {0, 1} be a continuous function. Let a,b € M and v : [0,1] — M be a
continuous function such that 7(0) = a and v(1) = b. Then, the composition f o~ : [0,1] — D is
continuous, so constant, because [0, 1] is connected. This means that f(a) = (fov)(0) = (fov)(1) =
f(b), so f is also constant. Thus, we can conclude that M is connected by Corollary 2.7.6. (]

Example 2.7.25:

(1) In the Euclidean space R”, any convex set A is arcwise connected. The reason is that, for any

x,y € A, the line segment [z, y] is also in A, which is the definition of a convex set.

(2) Let A C R? be defined as follows,

A :={(0,0)} U{(x,sin(1/x)) : = € (0,1]}.

This is a classical example of a space which is connected but not arcwise connected. We will

prove this in Exercise 2.52.

Remark 2.7.26:

(1) The above Theorem 2.7.24 is useful to show the connectedness of a metric space, because the arcwise

connectedness is easier to visualize and to manipulate.

(2) Arcwise connectedness is also a topological notion. The reason is that, to define the notion of arcwise
connectedness in Definition 2.7.23, we make use of continuous functions, which are characterized

entirely by open sets, see Proposition 2.5.11.

(3) The converse of Theorem 2.7.24 does not hold. Example 2.7.25 (2) gives an example of metric space

that is connected but not arcwise connected.

Theorem 2.7.27: Let (V, ||-||) be a normed vector space and A be an open set of V. Then, A is connected

if and only if A is arcwise connected.
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Remark 2.7.28 : We note that it is important to assume that A is open. For example, the set A defined in
Example 2.7.25 (2) is a subset in R2, and it is connected without being arcwise connected. Clearly, in this

case, the subset A is not open.

Proof: If A is arcwise connected, we have already shown in Theorem 2.7.24 that A is connected. Now,

suppose that A is connected. We fix o € A and let
I' = {z € A : there is a path joining z¢ and z}.
Our goal is to get I' = A by showing that I" is open and closed in A at the same time.

« I'is open. Let z € I'. Since z is also in the open set A, there exists 7 > 0 such that B(z,r) C A.
Fix y € B(x,r), y # w0, the line segment [z, y] is also in A. Therefore, if 7 is a path from z to

x, and let 7y denote the line segment from z to y, then

1
'y(t) _ '70(2t)7 te [07 2]7 (2.15)
n@t-1), tels 1

gives a path from xg to y.

« T'is closed. To achieve this, let us be given € I'N A and show that z is also in I'. By the definition
of open set and closure, we can find 7 > 0 such that B(x,r) C A and B(z,7) NI # @. Choose
y € B(z,r)NT, then the line segment [y, | is contained in A, the same construction as Eq. (2.15)

shows that x also needs to be in I". 0
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