
2 Topology on metric spaces and
normed spaces

2.1 Elementary notions
In the first section, we start with metric spaces and normed spaces, on which we will define the notion of

topology.

2.1.1 Metric spaces, normed spaces, and examples

Definition 2.1.1 : Given a setM . We say that a function d : M ×M → R is a distance or metric (距
離) onM if

(i) (Positive definiteness) d(x, y) ⩾ 0 with equality if and only if x = y.

(ii) (Symmetry) d(x, y) = d(y, x) for all x, y ∈ M .

(iii) (Triangle inequality) d(x, z) ⩽ d(x, y) + d(y, z) for all x, y, z ∈ M .

We also say that (M,d) is a metric space (賦距空間) if d is a distance onM .

Example 2.1.2 : Below we give a few common examples of metric spaces.

(1) On R, the function d(x, y) = |x− y| is a distance.

(2) On Rn, we may define the following Euclidean distance (歐氏距離) ,

d(x, y) =
√

|x1 − y1|2 + · · · + |xn − yn|2, x, y ∈ Rn.

(3) On Rn, the following functions are distances.

d1(x, y) = |x1 − y1| + · · · + |xn − yn|,
d∞(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

(4) For any nonempty setM , define

d(x, y) =
{

0 if x = y,
1 if x 6= y.

This is called a discrete metric and (M,d) is called a discrete metric space (離散賦距空間) .
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Definition 2.1.3 : Let V be a vector space over a field K = R or C. A map ‖·‖ : V → R+ is said to
be a norm on V if

(i) (Positive definiteness) ‖x‖ = 0 if and only if x = 0.

(ii) (Homogeneity) For every λ ∈ K and x ∈ V , we have ‖λx‖ = |λ| ‖x‖.

(iii) (Triangle inequality) For any x, y ∈ V , we have ‖x+ y‖ ⩽ ‖x‖ + ‖y‖.

If ‖·‖ is a norm on V , then we say that (V, ‖·‖) is a normed vector space (賦範向量空間) , or a normed
space (賦範空間) .

Example 2.1.4 : Given a normed space (V, ‖·‖), the map d(x, y) := ‖x− y‖ defines a distance on V ,
making (V, d) a metric space. Therefore, whenever we want to consider a normed space as a metric
space, we choose this distance by default.

Example 2.1.5 : Below are some classical norms that we consider onRn. For x = (x1, . . . , xn) ∈ Rn,
define

‖x‖1 :=
n∑
i=1

|xi|, ‖x‖2 :=

√√√√ n∑
i=1

|xi|2, ‖x‖∞ := sup
1⩽i⩽n

|xi|. (2.1)

You may check that the properties (1)–(3) in Definition 2.1.3 are satisfied.

Example 2.1.6 : The following spaces of real sequences are also normed spaces,

ℓ1(R) :=
{
a = (an)n⩾1 ∈ RN : ‖a‖1 :=

∑
n⩾1

|an| < ∞
}
,

ℓ2(R) :=
{
a = (an)n⩾1 ∈ RN : ‖a‖2 :=

√∑
n⩾1

|an|2 < ∞
}
,

ℓ∞(R) :=
{
a = (an)n⩾1 ∈ RN : ‖a‖∞ := sup

n⩾1
|an| < ∞

}
.

Example 2.1.7 : Given a set X and a normed vector space (V, ‖·‖). Write B(X,V ) for the set of
bounded functions from X to V , which can be checked to be a vector space. Then, we may equip
B(X,V ) with the following norm,

‖f‖∞ := sup
x∈X

‖f(x)‖ , f ∈ B(X,V ).

Example 2.1.8 : Let a < b be two real numbers. Consider the space of continuous functions defined
on [a, b] with values in R, denoted by C([a, b],R). It is not hard to check that C([a, b],R) is a vector
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space. We may equip the following vector subspaces with the corresponding norms,

L1([a, b],R) :=
{
f ∈ C([a, b],R) : ‖f‖1 =

∫ b

a
|f(t)| dt < ∞

}
,

L2([a, b],R) :=
{
f ∈ C([a, b],R) : ‖f‖2 =

√∫ b

a
|f(t)|2 dt < ∞

}
,

L∞([a, b],R) :=
{
f ∈ C([a, b],R) : ‖f‖∞ = sup

t∈[a,b]
|f(t)|

}
.

Example 2.1.9 : On the vector space K[X] of polynomials with coefficients in a field K = R or C,
that is

K[X] =
{ N∑
n=0

anX
n : an ∈ K, 0 ⩽ n ⩽ N,N ⩾ 0

}
.

We may define the following norms on K[X].

(a) A polynomial P can be uniquely written as P =
∑∞
n=0 anX

n, where only finitely many terms
of (an)n⩾0 are nonzero. Then, we define

‖P‖1 =
∑
n⩾0

|an|, ‖P‖2 =
√∑
n⩾0

|an|2, and ‖P‖∞ = max
n⩾0

|an|.

(b) We are given real numbers a < b and see a polynomial P as a function t 7→ P (t) on [a, b]. Then,
we define

‖P‖1 =
∫ b

a
|P (t)| dt, ‖P‖2 =

√∫ b

a
|P (t)|2 dt, and ‖P‖∞ = max

t∈[a,b]
|P (t)|.

Definition 2.1.10 : A Euclidean space (歐氏空間) is a finite dimensional vector space V over R,
equipped with an inner product (內積) 〈·, ·〉 : V × V → R satisfying

(i) (Positive definiteness) 〈x, x〉 ⩾ 0 with equality if and only if x = 0.

(ii) (Symmetry) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .

(iii) (Linearity) 〈ax+ by, z〉 = a〈x, z〉 + b〈y, z〉 for all a, b ∈ R and x, y, z ∈ V .

Example 2.1.11 : The vector space Rn with the following inner product

〈x, y〉 =
n∑
i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn

is a Euclidean space.
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Proposition 2.1.12 : Given a Euclidean space (V, 〈·, ·〉), we may define

‖x‖ =
√

〈x, x〉, ∀x ∈ Rn. (2.2)

Then, ‖·‖ is a norm on V , which is the canonical norm on the Euclidean space V .

Proof : We only need to check that the function defined in (2.2) satisfies the triangular inequality. It is
a classical proof, see Exercise 2.5. □

In what follows, we will fix a metric space (M,d) and define several notions in this space. If you need
a concrete space to help you visualize, think of (1) or (2) in Example 2.1.2, but please bear in mind that
these notions can be made sense of in any abstract metric space (M,d). Also, some behaviors might be quite
different in a general metric space, for instance, look at the balls (defined below, also see Example 2.1.30) in
a discrete metric space such as (4) in Example 2.1.2.

Definition 2.1.13 : Given x ∈ M and r ⩾ 0, we define

B(x, r) = {y ∈ M : d(x, y) < r},
B(x, r) = {y ∈ M : d(x, y) ⩽ r},
S(x, r) = {y ∈ M : d(x, y) = r}.

We say that B(x, r) is the open ball (開球) centered at x of radius r, B(x, r) is the closed ball (閉
球) centered at x of radius r, and S(x, r) is the sphere (球殼) centered at x of radius r. If the setM
is equipped with different distances, we may write Bd(x, r), Bd(x, r), or Sd(x, r) to specify the balls
are defined using the distance d.

Remark 2.1.14 : Note that we have B(x, r) ∪ S(x, r) = B(x, r) for any x ∈ M and r ⩾ 0. We also have
B(x, 0) = ∅ and B(x, 0) = {x} for any x ∈ M .

Definition 2.1.15 : Given a nonempty subset A ⊆ M , we define its diameter (直徑) by

δ(A) = sup
x,y∈A

d(x, y).

And we say that A is bounded (有界) if A = ∅ or δ(A) < +∞. Otherwise, A is unbounded (無界) .

Definition 2.1.16 : Given two nonempty subsets A and B of M , we define the distance between A
and B to be

d(A,B) = inf
x∈A
y∈B

d(x, y).

We also define the distance between a point x and a subset A ⊆ M to be

d(x,A) = d({x}, A) = inf
y∈A

d(x, y).
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Remark 2.1.17 : The distance d, originally defined on the metric space (M,d), can be generalized to a map

d : (P(M)\{∅})2 → R

as we see in Definition 2.1.16. However, this map d does not define a distance on nonempty subsets
P(M)\{∅} in the sense of Definition 2.1.1. For example, if we take (M,d) = (R, | · |), then d(A,B) = 0
for A = [0, 2] and B = [1, 3] without having A = B. However, we may still call it a distance by abuse of
language.

2.1.2 Open sets and closed sets
Below, let us fix a metric space (M,d) and define open sets and closed sets on this space. The topology of

(M,d) is characterized by such sets.

Definition 2.1.18 : Given a subset A ⊆ M . We say that A is an open set (開集) or open in M if
A = ∅ or

∀x ∈ A,∃r > 0 such that B(x, r) ⊆ A.

Example 2.1.19 : Below are a few examples of open sets.

(1) Open balls are open sets.

(2) Take (M,d) = (R, | · |), then the intervals (a, b) with −∞ ⩽ a < b ⩽ ∞ are open sets.

(3) In a metric space (M,d), fix a subset A ⊆ M and r > 0. Then, the set

Ar = {y ∈ M : d(y,A) < r}

is open for the following reason. Let y ∈ Ar , write ε = 1
2(r − d(y,A)) > 0. Then, for z ∈

B(y, ε), the triangle inequality gives

∀x ∈ A, d(z, x) ⩽ d(z, y) + d(y, x) < ε+ d(y, x).

By taking the infimum over x ∈ A in the above inequality, we find, for z ∈ B(y, ε) that,

d(z,A) = inf
x∈A

d(z, x) ⩽ ε+ inf
x∈A

d(y, x) = ε+ d(y,A) = 1
2(r + d(y,A)) < r.

That is, B(y, ε) ⊆ Ar .

Proposition 2.1.20 : Open sets in (M,d) satisfy the following properties.

(1) The empty set ∅ and the whole spaceM are both open sets.

(2) Any union of open sets is still an open set.

(3) Any finite intersection of open sets is still an open set.

Last modified: 13:42 on Wednesday 23rd October, 2024 5



Chapter 2 Topology on metric spaces and normed spaces

Proof :

(1) The empty set∅ is open by definition. The whole spaceM is open because for any point x ∈ M
and any r > 0, we have B(x, r) ⊆ M .

(2) Let (Ai)i∈I be a family of open sets inM and denote A =
⋃
i∈I Ai. We want to show that A is

also open. Given x ∈ A. By definition, we can choose i ∈ I such that x ∈ Ai. Since Ai is open,
we may take r > 0 such that B(x, r) ⊆ Ai. Therefore, we also haveB(x, r) ⊆ A. In conclusion,
we are able to find an open ball centered at any point of A that is entirely contained in A, we
have shown that A is open.

(3) Let (Ai)1⩽i⩽n be a finite family of open sets. Write A =
⋂n
i=1Ai, and we want to show that A

is also an open set. Given x ∈ A. For every i = 1, . . . , n, we have x ∈ Ai, since Ai is open, we
can find ri > 0 such that B(x, ri) ⊆ Ai. Take r := min(r1, . . . , rn) > 0, then we can check that
B(x, r) ⊆ B(x, ri) ⊆ Ai, which means that B(x, r) ⊆ A.

□

Remark 2.1.21 : It is important to note that any intersection of open sets is not necessarily an open set. For
example, consider In = (− 1

n ,
1
n), which is open in R for n ⩾ 1, but

I :=
⋂
n⩾1

In = {0}

is clearly not an open set (in R).

Remark 2.1.22 : Given a set X , we say that a collection of (some) subsets τ of X is a topology on X if
the properties in Proposition 2.1.20 are satisfied, where we replace “open set” by “element in X”. These
properties are considered as axioms of a topology. The elements in τ are called open sets, and (X, τ) is called
a topological space. This generalization is compatible with what has been discussed above, since in the case of
a metric spaceM , the topology τ simply contains all the subsets A satsfying Definition 2.1.18. We may also
note that, a setM equipped with two different distances d1 and d2 gives rise to different topological spaces.
They may also define the same topology, in the sense that a subset A ⊆ M is open in (M,d1) if and only if
it is open in (M,d2). We will see some examples in Example 2.3.4 and have a longer discussion in Section
2.5.4.

Definition 2.1.23 : GivenA ⊆ M . We say thatA is a closed set (閉集) or closed inM ifAc = M\A
is open.

Example 2.1.24 : Below are a few examples of closed sets.
(1) Closed balls are closed sets.

(2) In the metric space (M,d) = (R, | · |), the intervals [a, b] with −∞ < a < b < ∞ are closed
sets. However, the intervals [a, b) with −∞ < a < b < ∞ are neither open nor closed.

(3) In a metric space (M,d), fix a subset A ⊆ M and r > 0. Then, the set

Ar = {y ∈ M : d(y,A) ⩽ r}
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is closed. Let y ∈ M\Ar and write ε = 1
2(d(y,A) − r). Then, we may show that B(y, ε) ⊆

M\Ar .

Proposition 2.1.25 : Closed sets in (M,d) satisfy the following properties.

(1) The empty set ∅ and the whole spaceM are both closed sets.

(2) Any finite union of closed sets is still a closed set.

(3) Any intersection of closed sets is still a closed set.

Proof : We actually have the same proofs as in Proposition 2.1.20 by noting that the complementary
of a closed set is an open set. □

Question 2.1.26: Is any union of closed sets still a closed set? If yes, please prove it; otherwise, please give
a counterexample.

2.1.3 Closure, interior, boundary
In the metric space (M,d), not all the subsets are necessarily open or closed, see Example 2.1.24 (2). Given

a subset A ⊆ M , we can define its closure (closed set), interior (open set), and boundary (difference between
them).

We start with the definition of closure and discuss some of its properties.

Definition 2.1.27 : Given a subset A ofM , we denote by cl(A), or A, the closure (閉包) of A, which
is the smallest closed set containing A. In other words,

cl(A) = A :=
⋂
G⊇A

G is closed

G. (2.3)

Proposition 2.1.28 : A subset A is closed inM if and only if A = A.

Proof : We are given a subset A ofM .

⇒ We first assume that A is closed. Using the definition given in Eq. (2.3), any subset G in the
intersection on the r.h.s. contains A and we may also choose G = A. Therefore, it is clear that
the intersection gives A.

⇐ We assume that A = A. Since A is closed, A is also closed.
□
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Proposition 2.1.29 : Let A ⊆ M and x ∈ M . Then, the following properties are equivalent.

(1) x ∈ A.

(2) For all ε > 0, there exists a ∈ A such that d(a, x) < ε; or alternatively, A ∩B(x, ε) 6= ∅.

(3) d(x,A) = 0.

In other words, we may also write the closure A as

A = {y ∈ M : d(y,A) = 0}.

Proof : We prove that (1) ⇒ (2) ⇒ (3) ⇒ (1).

• (1) ⇒ (2). Let x ∈ A. Given ε > 0, we want to find a ∈ A such that d(a, x) < ε. Define

Aδ := {y ∈ M : d(y,A) ⩽ δ}, ∀δ ⩾ 0.

Since Aδ is a closed set for any δ ⩾ 0, and it contains A, by the definition of A, we deduce that
x ∈ Aδ for any δ ⩾ 0. By taking δ = ε

2 , we know that d(x,A) ⩽ ε
2 , that is, we may find a ∈ A

such that d(a, x) < ε.

• (2) ⇒ (3). Fix ε > 0. By (2), we can find a ∈ A with d(a, x) < ε. Therefore, we have d(x,A) ⩽
d(a, x) < ε. Since ε > 0 can be taken to be arbitrarily small, we conclude that d(x,A) = 0.

• (3) ⇒ (1). By contradiction, suppose that x /∈ A. Since (A)c is open and contains x, we may find
ε > 0 such that B(x, ε) ⊆ (A)c. This means that d(x, a) ⩾ ε for any a ∈ A, which contradicts
with (3).

□

Example 2.1.30 : Below are some examples of closure.

(1) In a normed space (V, ‖·‖), the closure of the centered unit open ball is the centered unit closed
ball, i.e.,

B(0, 1) = B(0, 1).

(2) If we considerM = {0, 1} with the discrete metric d(x, y) = 1x 6=y . Then, we have

B(x, 1) ⊊ B(x, 1), ∀x ∈ M.

Actually, B(x, 1) = {x} is open and closed at the same time, implying that B(x, 1) = B(x, 1).
However, the closed ball B(x, 1) is the whole spaceM . This is still valid as long as we consider
a discrete metric space (M,d) given in Example 2.1.2 (4), where the setM contains more than
2 points.

(3) For (M,d) = (R, | · |), the closure of an open interval (a, b) with −∞ < a < b < ∞ is [a, b].
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Definition 2.1.31 : A subset A ofM is said to be dense (稠密) (inM ) if A = M .

Remark 2.1.32 : To check whether a subset A is dense in M , we may use the property (2) or (3) in
Proposition 2.1.29.

Below is an interpretation of the density property in R.

Lemma 2.1.33 : For (M,d) = (R, | · |), a subset A is dense if and only if (a, b) ∩A 6= ∅ for all a < b.

Proof : Let us first assume thatA is dense inR, that isA = R. Let a < b, x = 1
2(a+b) and ε = 1

2(b−a).
Then, (a, b) ∩A = B(x, ε) ∩A, which is nonempty by (2) of Proposition 2.1.29

Let A be a subset of R such that A∩ (a, b) is nonempty for all a < b. Given x ∈ R, we want to show
that x ∈ A. For any ε > 0, take a = x− ε and b = x+ ε, since (a, b) ∩A = B(x, ε) ∩A is nonempty
by assumption, by (2) of Proposition 2.1.29, we deduce that x ∈ A. □

Example 2.1.34 : Both the set of rationals Q and the set of irrationals R\Q are dense in R, i.e. Q =
R\Q = R.

Next, we define the notion of interior points and interior of a set. We will see that it is quite similar to the
notion of closure (after taking the complement).

Definition 2.1.35 : Let A ⊆ M and x ∈ A. We call x an interior point (內點) of A if there exists
ε > 0 such that x ∈ B(x, ε) ⊆ A.

Definition 2.1.36 : Given a subset A of M , we denote by int(A), or Å, the interior (開核) of A,
which is the largest open set contained in A. In other words,

int(A) = Å :=
⋃
G⊆A

G is open

G. (2.4)

Proposition 2.1.37 : Given a subset A ofM . Then, int(A) contains exactly the interior points of A.

Proof : Let x ∈ A be an interior point of A. By Definition 2.1.35, we may find ε > 0 such that
x ∈ B(x, ε) ⊆ A. It means that B(x, ε) is an element in the union on the r.h.s. of Eq. (2.4). Therefore,
x ∈ B(x, ε) ⊆ int(A).

Given x ∈ int(A), by definition, there exists an open set G ⊆ A with x ∈ G. Since G is open, by
Definition 2.1.18, there exists ε > 0 such that the open ball B(x, ε) contains x. □
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Proposition 2.1.38 : A subset A is open inM if and only if Å = A.

Proof : The proof is similar to that of Proposition 2.1.28. □

Example 2.1.39 : Below are some examples of interior.

(1) In a normed space (V, ‖·‖), the interior of the centered unit closed ball is the centered unit open
ball, i.e.,

int(B(0, 1)) = B(0, 1).

However, in a general metric space, this equality might not hold anymore, see Example 2.1.30
(2) for a similar phenomenon.

(2) We do not necessarily have Å = A. For example, take (M,d) = (R, | · |) andA = (0, 1)∪ (1, 2).
We find A = [0, 2] and Å = (0, 2) 6= A.

(3) For (M,d) = (R, | · |), the interior of a closed interval (a, b) with −∞ < a < b < ∞ is (a, b).

(4) For (M,d) = (R, | · |), the interior of Q or R\Q is ∅.

Proposition 2.1.40 : Given a subset A ⊆ M , we have

int(A) = M\ cl(M\A) and cl(A) = M\ int(M\A).

Proof : By symmetry, it is only sufficient to show int(A) = M\ cl(M\A) for any subset A ⊆ M . Let
A ⊆ M . We are going to prove using directly Eq. (2.3) and Eq. (2.4). We write

M\ int(A) = M\
( ⋃

G⊆A
G is open

G

)
=

⋂
G⊆A

G is open

(M\G)

=
⋂

M\G⊇M\A
G is open

(M\G) =
⋂

F⊇M\A
F is closed

F = cl(M\A).

□

Definition 2.1.41 : Given a subset A ofM , we define the boundary (邊界) of A as ∂A := A\Å.

Example 2.1.42 :

(1) For (M,d) = (R, | · |) and A = [0, 1), then ∂A = {0, 1}.

(2) For (M,d) = (R2, | · |) and A = [0, 1) × {0}, then ∂A = [0, 1] × {0}.
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2.2 Adherent points and accumulation points
2.2.1 In general metric spaces

Definition 2.2.1 : Given a subset A ofM and x ∈ M .

(1) We say that x is an adherent point (附著點) of A if for any ε > 0,

B(x, ε) ∩A 6= ∅.

We write Adh(A) for the set of adhrent points of A.

(2) We say that x is an accumulation point (匯聚點) of A if for any ε > 0,

B(x, ε) ∩A 6= ∅ and B(x, ε) ∩A 6= {x}.

We write Acc(A) for the set of accumulation points of A.

(3) We say that x is an isolated point (孤立點) of A if there exists ε > 0 such that

B(x, ε) ∩A = {x}.

We write Iso(A) for the set of isolated points of A.

Remark 2.2.2 : From the definition above, we note that
(1) The set of adherent points is exactly the closure, that is Adh(A) = A, see Proposition 2.1.29.
(2) The set of adherent points can be written as the disjoin union of the two other sets, i.e., Adh(A) =

Acc(A) t Iso(A);
(3) A is dense inM if and only if all the points inM are adherent points of A, or Adh(A) = M .

Example 2.2.3 : In the metric space (M,d) = (R, | · |), consider the set A := { 1
n , n ∈ N}. Then,

• 0 is an accumulation point of A;

• all the points 1
n , where n ⩾ 1 is a positive integer, are isolated points of A;

• the points in A ∪ {0} are adherent points of A.

Proposition 2.2.4 : Given a subset A ofM and x ∈ M . The following properties are equivalent.

(1) x is an accumulation point of A.

(2) For any ε > 0, B(x, ε) ∩A contains infinitely many points.

Last modified: 13:42 on Wednesday 23rd October, 2024 11



Chapter 2 Topology on metric spaces and normed spaces

Proof : By definition, it is clear that (2) ⇒ (1).
Assume that x is an accumulation point of A. Fix ε > 0 and let us construct a pairwise distinct

sequence (xn)n⩾1 of points in B(x, ε) ∩A by induction.
Take ε1 = ε, by definition we can find x1 ∈ B(x, ε1) ∩ A with x1 6= x. Let n ⩾ 1 and assume that

pairwise distinct x1, . . . , xn and ε1 > · · · > εn have been constructed, and satisfying

ε1 > d(x, x1) = ε2 > · · · > d(x, xn) =: εn+1.

Again by definition, we can find xn+1 ∈ B(x, εn+1) ∩ A with xn+1 6= x. Moreover, we know that
d(x, xn+1) < εn+1 = d(x, xn), so xn+1 is distinct from all the previous x1, . . . , xn. □

2.2.2 In Euclidean spaces Rn

Let us consider Euclideans spaces Rn for some positive integer n ⩾ 1. Recall that the canonical norm is
defined via the associated inner product (Proposition 2.1.12), which also leads to the canonical metric on Rn
(Example 2.1.4).

Theorem 2.2.5 (Bolzano–Weierstraß theorem) : Let A ⊆ Rn be a bounded set. If A contains infinitely
many points, then there exists at least one point in Rn which is an accumulation point of A.

Remark 2.2.6 : The choice of a Euclidean space is important here. For example, if we consider the discrete
metric space as in Example 2.1.2 (4), then in R, the subset of rationals Q ⊆ B(0, 1) is bounded and infinite.
However,Q does not have any accumulation point in R. In fact, for x ∈ R and ε ∈ (0, 1), we have B(x, ε) ∩
Q = {x} or ∅, depending on whether x ∈ Q or x ∈ R\Q.

Proof : Since A is bounded, there existsM > 0 such that A ⊆ [−M,M ]n. We are going to construct
sequences (a(i)

k )k⩾1 and (b(i)
k )k⩾1 for 1 ⩽ i ⩽ n such that

(a) for all 1 ⩽ i ⩽ n, (a(i)
k )k⩾1 is non-decreasing, (b(i)

k )k⩾1 is non-increasing, and the difference
b

(i)
k − a

(i)
k tends to 0 when k → ∞,

(b) for every k ⩾ 1, the intersection A ∩Bk contains infinitely many points, where

Bk := I
(1)
k × · · · × I

(n)
k , I

(i)
k := [a(i)

k , b
(i)
k ], 1 ⩽ i ⩽ n.

We proceed by induction on k.
Let a(i)

1 = −M and b(i)
1 = M for all 1 ⩽ i ⩽ n. Let k ⩾ 1 and suppose that (a(i)

ℓ )1⩽ℓ⩽k and
(b(i)
ℓ )1⩽ℓ⩽k have been constructed, are non-decreasing and non-increasing respectively, and satisfy (b).
We may divide each of I(i)

k into two segments of equal length I(i)
k := I

(i)
k,1 ∪ I

(i)
k,2, that is

I
(i)
k,1 = [a(i)

k , c
(i)
k ], I

(i)
k,2 = [c(i)

k , b
(i)
k ], c

(i)
k := 1

2(a(i)
k + b

(i)
k ),

leading to 2n subsets of Bk whose union is Bk itself,

B
(i)
k,r = I

(i)
k,r1

× · · · × I
(i)
k,rn

, r = (r1, . . . , rn) ∈ {1, 2}n.
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Since
A ∩Bk =

⋃
r∈{1,2}n

(A ∩B
(i)
k,r)

is an infinite set, at least one of the A∩B(i)
k,r needs to be infinite as well. Let r be such that A∩B(i)

k,r is
infinite. Then, for 1 ⩽ i ⩽ n, we let

(a(i)
k+1, b

(i)
k+1) =

(a(i)
k , c

(i)
k ) if ri = 1,

(c(i)
k , b

(i)
k ) if ri = 2.

Then, it is not hard to check that a(i)
k ⩽ a

(i)
k+1, b

(i)
k ⩾ b

(i)
k+1, and b

(i)
k+1 − a

(i)
k+1 = 1

2(b(i)
k − a

(i)
k ).

Now that we have constructed the sequences (a(i)
k )k⩾1 and (b(i)

k )k⩾1 for 1 ⩽ i ⩽ n as above, we
know that (a(i)

k )k⩾1 and (b(i)
k )k⩾1 both converge and have the same limit, denoted by xi. We want to

show that x := (x1, . . . , xn) is an accumulation point of A. To see this, we are going to fix ε > 0,
and want to show that A ∩ B(x, ε) contains infinitely many points. By the above construction, it is
not hard to see that x ∈ Bk for all k ⩾ 1. For large enough k ⩾ 1, we may see that Bk ⊆ B(x, ε),
therefore, A ∩B(x, ε) also contains infinitely many points. □

Theorem 2.2.7 (Cantor intersection theorem) : Given a sequence of nonempty closed sets (Ak)k⩾1 in
Rn. Suppose that

• Ak+1 ⊆ Ak for all k ⩾ 1,

• A1 is bounded.

Then, the intersection A =
⋂
k⩾1Ak is closed and nonempty.

Remark 2.2.8 : It is important to assume that Ak’s are closed sets and that A1 is bounded.
• If Ak’s are not closed, take Ak = (0, 1

k ) for instance, then
⋂
k⩾1Ak = ∅.

• If A1 is not bounded, take Ak = [k,∞) for instance, then
⋂
k⩾1Ak = ∅.

Proof : First, it is easy to see thatA is closed being an intersection of closed sets, see Proposition 2.1.25.
Then, we need to show that A is nonempty using Bolzano–Weierstraß theorem.

If there exists an k ⩾ 1 such that Ak is finite, then it is clear that the sequence (Ak)k⩾1 needs to
stablize to a nonempty set, and the intersection A is nonempty. Therefore, we may assume that Ak is
infinite for all k ⩾ 1.

For each k ⩾ 1, we may find xk ∈ Ak such that the sequence (xk)k⩾1 is pariwise distinct. We also
note that, due to the fact that (Ak)k⩾1 is non-increasing, we have xk ∈ Am for any k ⩾ m ⩾ 1. Since
X = {xk : k ⩾ 1} is a bounded set containing infinitely many points, by Bolzano–Weierstraß theorem,
it has an accumulation point x ∈ Rn. We need to check that x is indeed in A, or equivalently, x is in
Am for allm ⩾ 1.

Given m ⩾ 1 and ε > 0. From Proposition 2.2.4, it follows that B(x, ε) contains infinitely many
points ofX . Apart from a finite number of them (those with index k < m), all the other points are also
in Am. Therefore, Am ∩ B(x, ε) is also infinite, which means that x is also an accumulation point of
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Am. Since Am is closed, we find x ∈ Am. □

Example 2.2.9 : We define a sequence of subsets of R by induction,

C0 = [0, 1], Cn+1 = 1
3Cn ∪ (1

3Cn + 2
3), ∀n ⩾ 0.

Let C := ∩n⩾0Cn. The set C is called Cantor set, and has the following properties.

(1) C is a nonempty closed set.

(2) C is equinumerous to {0, 1}N, so uncountable.

(3) The “length” of C is zero.

2.3 Subspace topology
Given a metric space (M,d) and a subset S ⊆ M , we want to equip S with a distance so that it can

become a metric space. The most natural way is consider the restricted distance dS×S , which is the distance
d restricted on S×S, sometimes also denoted by d by abuse of notations. Then, (S, d) is a metric space, and
its topology is called induced topology (誘導拓撲) , trace topology (跡拓撲) , subspace topology (子空間拓
撲) , or relative topology (相對拓撲) .

Proposition 2.3.1 : Let S be a subset ofM .

(1) The open sets of S are exactly the sets A ∩ S where A is an open set ofM .

(2) The closed sets of S are exactly the sets A ∩ S where A is a closed set ofM .

Proof : A closed set is the complement of an open set, so it is enough to check (1). An open set is
described by open balls (Definition 2.1.18), so we only need to check (1) for open balls. This is trivial,
because we have

BS(x, ε) = BM (x, ε) ∩ S, ∀x ∈ M, ε > 0. □

Example 2.3.2 : In the metric space ((0, 1], | · |),

• (0, x) and (x, 1] are open sets for x ∈ (0, 1),

• (0, x] and [x, 1] are closed sets for x ∈ (0, 1).

Remark 2.3.3 : We see from Example 2.3.2 that when we talk about closed or open sets, it is important to
mention the ambient space.
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Example 2.3.4 : On the space (0, 1], wemay consider the topology induced by themetric space (R, |·|)
as mentioned in Example 2.3.2. Alternatively, we may also define a distance d on (0, 1], given by

d(x, y) =
∣∣∣ 1
x

− 1
y

∣∣∣, ∀x, y ∈ (0, 1].

We may check in Exercise 2.23 that these two metric spaces define the same open sets. In other words,
an open set of ((0, 1], | · |) is also an open set of ((0, 1], d), and vice versa.

2.4 Limits
2.4.1 Definition and properties

In this section, we are given a sequence (an)n⩾1 with values in a metric space (M,d). When we want to
talk about a subsequence of (an)n⩾1, we may write

• either (ank
)k⩾1 for a strictly increasing sequence (nk)k⩾1 and n1 ⩾ 1,

• or (aφ(n))n⩾1 for a strictly increasing function φ : N → N, called extraction (萃取函數) .

Definition 2.4.1 :

• Let ℓ ∈ M . We say that (an)n⩾1 converges to ℓ, and write

an −−−→
n→∞

ℓ or lim
n→∞

an = ℓ,

if for any ε > 0, there exists N ⩾ 1 such that d(an, ℓ) < ε for all n ⩾ N .

• We say that (an)n⩾1 converges if there exists ℓ ∈ M such that (an)n⩾1 converges to ℓ.

• If (an)n⩾1 does not converge, we say that (an)n⩾1 diverges.

Remark 2.4.2 :
(1) For (M,d) = (R, | · |), we recover the classical (if you have seen) definition of the limit of a sequence

in R.
(2) The convergence an −−−→

n→∞
ℓ in a metric space (M,d) can also be interpreted in an equivalent way as

the convergence d(an, ℓ) −−−→
n→∞

0 in (R, | · |).

(3) The notion of convergence is a topological notion, in the sense that it only depends on the topology (we
recall its definition in Remark 2.1.22) that the space is equipped with. See Exercise 2.24.

Example 2.4.3 :

(1) For (M,d) = (R, |·|), the sequence defined by an = (−1)n, n ⩾ 1, does not converge. However,
the subsequences (a2n)n⩾1 and (a2n+1)n⩾1 converge respectively to 1 and −1.

(2) The sequence (an = 1
n)n⩾1 converges to 0 in [0, 1] but diverges in (0, 1].

(3) If we consider a discrete metric space, see Example 2.1.2 (4), then any convergent sequence
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(an)n⩾1 is eventually constant , i.e., there exists N ⩾ 1 such that an = aN for all n ⩾ N .

Lemma 2.4.4 : The sequence (an)n⩾1 can converge to at most one point ℓ ∈ M .

Proof : By contradiction, suppose that (an)n⩾1 converges to ℓ1 and ℓ2 with ℓ1 6= ℓ2. Given ε > 0, we
may find N1, N2 ⩾ 1 such that

d(an, ℓ1) < ε, ∀n ⩾ N1,

d(an, ℓ2) < ε, ∀n ⩾ N2.

Therefore, we can take n ⩾ max(N1, N2) and apply the triangle inequality to deduce that

d(ℓ1, ℓ2) ⩽ d(an, ℓ1) + d(an, ℓ2) < 2ε.

Since ε can be arbitrarily small, for ε < 1
2d(ℓ1, ℓ2), we find a contradiction. □

2.4.2 Cauchy sequences and complete spaces

Definition 2.4.5 : A sequence (an)n⩾1 is said to be a Cauchy sequence (柯西序列) if for any ε > 0,
there exists N ⩾ 1 such that

d(an, am) < ε, ∀n,m ⩾ N. (2.5)

Proposition 2.4.6 : If (an)n⩾1 is a convergent sequence in (M,d), then it is a Cauchy sequence.

Remark 2.4.7 : We note that a Cauchy sequence does not converge necessarily. For example, in the metric
space (M,d) = ((0, 1], | · |), the sequence (an = 1

n)n⩾1 is Cauchy, but does not converge.

Proof : Suppose that (an)n⩾1 is a convergent sequence with limit ℓ. Given ε > 0. By the definition of
convergence, we may find N ⩾ 1 such that for any n ⩾ N , we have d(an, ℓ) < ε

2 . Therefore, for any
n,m ⩾ N , we have

d(an, am) ⩽ d(an, ℓ) + d(am, ℓ) < ε
2 + ε

2 = ε. □

Proposition 2.4.8 : A Cauchy sequence is always bounded.

Proof : Let (an)n⩾1 be a Cauchy sequence with values in a metric space (M,d). Fix ε > 0 and N ⩾ 1
such that Eq. (2.5) holds. The set {a1, . . . , aN} is finite, so bounded. The set {an : n ⩾ N} is also
bounded because of the Cauchy condition

d(aN , an) < ε, ∀n ⩾ N.
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□

Remark 2.4.9 : We note that the notion of Cauchy sequence is not a topological notion. It cannot be defined
by open sets, and depends on the distance that the metric space is equipped with. We may come back to the
example mentioned in Example 2.3.4. The sequence (an = 1

n)n⩾1 is Cauchy in ((0, 1], | · |), but is not Cauchy
in ((0, 1], d), although they define the same notion of open sets. To see this, we have for any fixed N ⩾ 1
and n,m ⩾ N ,

|an − am| ⩽ 1
N

but d(an, am) = |n−m|.

Definition 2.4.10 :

• A metric space (M,d) is said to be complete (完備) if every Cauchy sequence in (M,d) con-
verges to a limit inM .

• A complete normed vector space (V, ‖·‖) is called a Banach space (Banach空間) .

Example 2.4.11 :

(1) Euclidean spaces Rn with n ⩾ 1 are complete.

(2) Q is not complete. We may consider an irrational point x ∈ R\Q and a sequence of rational
numbers (xn)n⩾1 converging to x in R. This sequence is a Cauchy sequence in Q but does not
converge in Q.

Leter in Section 3.2, we will have a more thorough discussion about complete spaces.

2.4.3 Limits and adhernet points
In this subsection, we are going to give sequential characterizations of some topological notions, especially

the notion of adherent points and closed sets, which can be better understood using sequences.
Below, we are given a sequence (an)n⩾1. For p ⩾ 1, let us write Ap := {an : n ⩾ p} for the range (值域)

of the sequence (an)n⩾p and A := A1. We may also define

L := {ℓ ∈ M : there exists φ : N → N that is strictly increasing such that aφ(n) −−−→
n→∞

ℓ}

to be the set of all the subsequential limits.

Proposition 2.4.12 : Let ℓ ∈ M and suppose that (an)n⩾1 converges to ℓ. Then,

(1) A is bounded,

(2) ℓ is an adherent point of A, that is ℓ ∈ A.
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Proof : (1) is a direct consequence of Proposition 2.4.6 and Proposition 2.4.8.
To show (2), let us fix ε > 0. By the definition of convergence, we can find N ⩾ 1 such that

d(an, ℓ) < ε for n ⩾ N . We deduce that B(ℓ, ε) ⊇ AN = {an : n ⩾ N}, where AN is not empty.
Since this property holds for any arbitrarily ε > 0, we deduce that ℓ is an adherent point of A. □

Proposition 2.4.13 : Let A ⊆ M be a subset and ℓ ∈ M .

(1) If ℓ is an adherent point ofA, then one can find a sequence (an)n⩾1 with values inA that converges
to ℓ.

(2) If ℓ is an accumulation point ofA, then one can find a sequence (an)n⩾1 with values inA\{ℓ} that
converges to ℓ.

Proof : The construction is similar in both cases, let us start with (1). Let ℓ ∈ M be an adherent point
ofA. For every n ⩾ 1, sinceB(ℓ, 1

n) ∩A is not empty, we may find an ∈ A such that d(ℓ, an) < 1
n . We

can easily see that the sequence (an)n⩾1 converges to ℓ. For (2), we may take an ∈ B(ℓ, 1
n) ∩ (A\{ℓ}),

which is nonempty for all n ⩾ 1. □

It is also convenient to use limits to describe closure and closed sets, which can be seen as a consequence
of the above propositions.

Corollary 2.4.14 : LetA ⊆ M be a subset and x ∈ M . Then, x ∈ A if and only if there exists a sequence
of points in A that converges to x.

Proof : It is a direct consequence of Proposition 2.4.12 and Proposition 2.4.13. □

Corollary 2.4.15 : Let A ⊆ M be a subset. Then, A is closed if and only if every convergent sequence
(inM ) of points of A converges to a limit in A.

Proof : It is a direct consequence of Corollary 2.4.14. □

The following proposition tells us when a sequence converges.

Proposition 2.4.16 : Let ℓ ∈ M . The sequence (an)n⩾1 converges to ℓ if and only if every subsequence
(aφ(n))n⩾1 converges to ℓ.

Proof : We first assume that (an)n⩾1 converges to ℓ. Let (aφ(n))n⩾1 be a subsequence of (an)n⩾1. Fix
ε > 0. By the definition of convergence, there existsN ⩾ 1 such that d(an, ℓ) < ε for n ⩾ N . Since φ
is strictly increasing, we also have φ(n) ⩾ N for n ⩾ N . Therefore, d(aφ(n), ℓ) < ε for n ⩾ N .

If every subsequence of (an)n⩾1 converges to ℓ, then the original sequence also converges to ℓ, since
φ(n) = n is also an extraction. □
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Before closing this subsection, we see a more general proposition which describes the structure of L, the
set of all the subsequential limits of (an)n⩾1.

Proposition 2.4.17 : Let ℓ ∈ M . The following properties are equivalent.

(1) ℓ ∈ L.

(2) ℓ ∈ Ap for all p ⩾ 1.

(3) ℓ is either an accumulation point of A, or ℓ appears infinitely many times in the sequence (an)n⩾1.

In particular, this implies that the set of the subsequential limits of (an)n⩾1 may also be rewritten as
L = ∩p⩾1Ap, which is closed.

Proof : We are going to show that (1) ⇒ (2) ⇒ (3) ⇒ (1).

• (1) ⇒ (2). Suppose that ℓ ∈ L, that is there exists an extraction φ : N → N such that aφ(n) −−−→
n→∞

ℓ. Therefore, it follows from Proposition 2.4.12 that

ℓ ∈ {aφ(n) : n ⩾ 1} ⊆ Aφ(1).

For any non-negative integer p ⩾ 1, the map φp : N → N, n 7→ φ(n + p) is still an extraction,
and the convergence aφp(n) −−−→

n→∞
ℓ still holds. Therefore, we deduce that ℓ ∈ Aφ(p) for p ⩾ 1.

Since the sequence of subsets (Ap)p⩾1 is non-increasing (for the inclusion), we deduce that⋂
p⩾1

Ap =
⋂
p⩾1

Aφ(p).

• (2) ⇒ (3). Suppose that ℓ ∈ Ap for all p ⩾ 1 and that ℓ does not appear infinitely many times in
(an)n⩾1. Let p ⩾ 1 such that an 6= ℓ for all n ⩾ p. Since ℓ ∈ Ap and ℓ /∈ Ap, we know that ℓ is
an accumulation point of Ap, so also an accumulation point of A.

• (3) ⇒ (1). If ℓ appears infinitely many times in (an)n⩾1, it is easy to construct a subsequence with
limit ℓ. Now, suppose that ℓ is an accumulation point of A. It follows from Proposition 2.4.13
that we may find f : N → N (not necessarily an extraction) such that af(n) −−−→

n→∞
ℓ and

af(n) ∈ A\{ℓ} for all n ⩾ 1. The map f cannot be bounded, since otherwise (af(n))n⩾1 would
only take finitely many different values, the sequence (af(n))n⩾1, being convergent, would be
eventually constant (constant for large n), and would not be able to converge to ℓ. Thus, we
may find an subsequence of (f(n))n⩾1 that is strictly increasing, denoted (f ◦ φ(n))n⩾1. Then,
ψ := f ◦ φ : N → N is an extraction and aψ(n) −−−→

n→∞
ℓ.

□

2.4.4 In a normed space
In this subsection, we are given a normed vector space (V, ‖·‖) over a field K = R or C.
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Proposition 2.4.18 : Let (xn)n⩾1 and (yn)n⩾1 be two sequences in V . Suppose that

lim
n→∞

xn = x and lim
n→∞

yn = y.

Then,

(1) xn + yn −−−→
n→∞

x+ y,

(2) λxn −−−→
n→∞

λx for any λ ∈ K,

(3) ‖xn‖ −−−→
n→∞

‖x‖.

Proof :

(1) Let us fix ε > 0 and take N ⩾ 1 such that for n ⩾ N , we have

‖xn − x‖ < ε and ‖yn − y‖ < ε.

For n ⩾ N , we have

‖(xn + yn) − (x+ y)‖ ⩽ ‖xn − x‖ + ‖yn − y‖ < 2ε.

Since ε > 0 is arbitrary, we have shown that xn + yn −−−→
n→∞

x+ y.

(2) We write directly
‖λxn − λx‖ = |λ| ‖xn − x‖ −−−→

n→∞
0.

(3) The triangular inequality gives

| ‖xn‖ − ‖x‖ | ⩽ ‖xn − x‖ −−−→
n→∞

0.
□

2.4.5 Limit of a function
We consider two metric spaces (M,d) and (M ′, d′). Let A ⊆ M be a subset ofM , and let f : A → M ′ be

a function from A toM ′.

Definition 2.4.19 : Let a be an accumulation point of A and b ∈ M ′. We say that when x tends to a,
f(x) tends to b, and write

lim
x→a

f(x) = b,

if for every ε > 0, there exists δ > 0 such that

∀x ∈ A\{a}, d(x, a) < δ ⇒ d′(f(x), b) < ε. (2.6)
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Proposition 2.4.20 : Let a be an accumulation point of A and b ∈ M ′. Then, the following properties
are equivalent.

(1) When x tends to a, f(x) tends to b, that is

lim
x→a

f(x) = b.

(2) For any sequence (xn)n⩾1 with values in A\{a} converging to a, we have

lim
n→∞

f(xn) = b.

Proof : Let us assume that (1) holds, that is f(x) → b when x → a. Fix ε > 0 and choose δ > 0 such
that Eq. (2.6) holds. Fix a sequence (xn)n⩾1 with values inA\{a} converging to a. We may findN ⩾ 1
such that for n ⩾ N , we have d(xn, a) < δ. Therefore, for n ⩾ N , we also have d′(f(xn), b) < ε. This
shows that f(xn) −−−→

n→∞
b.

For the converse, let us proceed by contradiction. We assume that (2) holds but not (1). If (1) does
not hold, we may find ε > 0 such that for every n ⩾ 1, there is xn ∈ A such that

0 < d(xn, a) < 1
n and d′(f(xn), b) ⩾ ε.

It is clear that (xn)n⩾1 converges to a, but (f(xn))n⩾1 does not converge to b since there is always a
positive distance at least ε between f(xn) and b. This contradicts (2). □

Proposition 2.4.21 : Consider a normed vector space (V, ‖·‖) over a fieldK = R orC. Let f, g : A → V
be two functions, and a be an accumulation point of A. Assume that

lim
x→a

f(x) = b, lim
x→a

g(x) = c.

Then,

(1) limx→a(f(x) + g(x)) = b+ c,

(2) limx→a λf(x) = λb for every λ ∈ K,

(3) limx→a ‖f(x)‖ = ‖b‖.

Proof : It is a direct consequence by applying Proposition 2.4.18 and Proposition 2.4.20. □

2.4.6 On the real line
Below, we are given a sequence (an)n⩾1 taking values in themetric space (M,d) = (R, |·|). In Proposition

2.4.17, we saw how to characterize the subsequential limits of the sequence. We are going to see other notions
of limits.
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Definition 2.4.22 : We define

lim
n→∞

an = lim sup
n→∞

an := inf
n⩾1

sup
k⩾n

ak,

lim
n→∞

an = lim inf
n→∞

an := sup
n⩾1

inf
k⩾n

ak,

called the upper limit (上極限) and the lower limit (下極限) of (an)n⩾1.

Remark 2.4.23 : We note that, we may rewrite lim supn→∞ an as a non-increasing limit,

lim sup
n→∞

an := lim
n→∞

↓ sup
k⩾n

ak,

because the sequence (supk⩾n ak)n⩾1 is non-increasing. Similarly, lim infn→∞ an can be rewritten as a non-
decreasing limit,

lim inf
n→∞

an := lim
n→∞

↑ inf
k⩾n

ak.

Example 2.4.24 :

(1) The sequence defined by an = (−1)n has upper limit 1 and lower limit −1.

(2) The sequence defined by an = sin(n) has upper limit 1 and lower limit −1.

Lemma 2.4.25 : If (aφ(n))n⩾1 is a convergent subsequence of (an)n⩾1, then its limit ℓ is an adherent
point of {an : n ⩾ 1} and satisfies

lim inf
n→∞

an ⩽ ℓ := lim
n→∞

aφ(n) ⩽ lim sup
n→∞

an.

Proof : Let (aφ(n))n⩾1 be a convergent subsequence of (an)n⩾1. It follows from Proposition 2.4.17
that its limit ℓ is an adherent point of the range {an : n ⩾ 1}.

Next, for any n ⩾ 1, we clearly have

inf
k⩾φ(n)

ak ⩽ aφ(n) ⩽ sup
k⩾φ(n)

ak. (2.7)

By taking a monotonic limit for the left inequality in Eq. (2.7), we find

lim inf
n→∞

an = sup
n⩾1

inf
k⩾φ(n)

ak = lim
n→∞

inf
k⩾φ(n)

ak ⩽ lim
n→∞

aφ(n) = ℓ.

If we do the same thing for the right inequality in Eq. (2.7), we find the other inequality. □
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Lemma 2.4.26 : There exist subsequences (aφ(n))n⩾1 and (aψ(n))n⩾1 such that

lim inf
n→∞

an = lim
n→∞

aφ(n), and lim sup
n→∞

an = lim
n→∞

aψ(n).

Proof : We are going to construct an extraction φ for the lower limit by induction. Let ℓ :=
lim infn→∞ an. Define

φ(1) := inf{n ⩾ 1 : ℓ− 1 ⩽ an ⩽ ℓ+ 1},
∀n ⩾ 1, φ(n+ 1) := inf{n > φ(n) : ℓ− 1

n ⩽ an ⩽ ℓ+ 1
n}.

It is not hard to check that φ(n) is well defined for all n ⩾ 1 and that φ is strictly increasing. Addi-
tionally, we easily see that lim aφ(n) = ℓ. The construction works in a similar way for the upper limit.
□

Remark 2.4.27 : The above two lemmas justify the names of upper limit and lower limit given to lim sup
and lim inf .

Proposition 2.4.28 : A sequence (an)n⩾1 in R converges if and only if lim infn→∞ an =
lim supn→∞ an < ∞.

Proof : It is a direct consequence of Proposition 2.4.16 and the above lemmas (Lemma 2.4.26 and
Lemma 2.4.25). □

Remark 2.4.29 : The limit of a real sequence needs not exist in general. However, its upper limit (resp.
lower limit) always exist in (−∞,+∞] (resp. in [−∞,+∞)). In order to write lim, or to show that the limit
exists, this proposition suggests that one may show that the upper limit and the lower limit are equal.

2.5 Continuity
2.5.1 Definition and properties

Below, we are given two metric spaces (M,d) and (M ′, d′). When we talk about balls in different metric
spaces, we may add a subscript to avoid confusion. For example, BM (x, ε) or Bd(x, ε) denotes the open ball
centered at x ∈ M with radius ε > 0 in (M,d).

Definition 2.5.1 : Given a function f : (M,d) → (M ′, d′). We say that f is continuous at x ∈ M if
for any ε > 0, there exists δ > 0 such that

∀y ∈ M, d(x, y) < δ =⇒ d′(f(x), f(y)) < ε, (2.8)

or equivalently,
f(BM (x, δ)) ⊆ BM ′(f(x), ε).
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We say that f is continuous if it is continuous at all x ∈ M .

Example 2.5.2 :

(1) If we take (M,d) = (M ′, d′) = (R, | · |), then we recover the definition of continuity that we
saw in the first-year calculus.

(2) The identity map Id : (M,d) → (M,d), x 7→ x is continuous.

(3) Fix a ∈ M . Then, the map (M,d) → (R, | · |), x 7→ d(x, a) is continuous.

Remark 2.5.3 : If a ∈ M is an accumulation point, then the continuity of f at a is equivalent to

lim
x→a

f(x) = f(a).

If a ∈ M is an isolated point, then any function f : M → M ′ is continuous at a, because for sufficiently
small δ > 0, the open ball B(a, δ) is reduced to the singleton {a}.

Proposition 2.5.4 : Consider three metric spaces (M1, d1), (M2, d2), and (M3, d3). Let f : M1 → M2
and g : M2 → M3 be two functions. Fix x ∈ M1. If f is continuous at x and g is continuous at f(x),
then the composition g ◦ f : M1 → M3 is continuous at x.

Proof : The proof is quite direct if we use Definition 2.5.1. Given ε > 0. Since g is continuous at
y := f(x), we may find η > 0 such that

g(BM2(y, η)) ⊆ BM3(g(y), ε).

Since f is continuous at x, we may find δ > 0 such that

f(BM1(x, δ)) ⊆ BM2(f(x), η) = BM2(y, η).

Putting the two above inclusions together, we find

(g ◦ f)(BM1(x, δ)) ⊆ g(BM2(y, η)) ⊆ BM3((g ◦ f)(x), ε).

This leads to the continuity of g ◦ f at x. □

2.5.2 Sequential characterization

Proposition 2.5.5 : Given a function f : (M,d) → (M ′, d′) and a ∈ M . Then, the following properties
are equivalent.

(1) f is continuous at a.

(2) For every sequence (xn)n⩾1 with values inM that converges to a, the sequence (f(xn))n⩾1 with
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values inM ′ also converges to f(a). In other words,

lim
n→∞

xn = a ⇒ lim
n→∞

f(xn) = f
(

lim
n→∞

xn
)

= f(a).

Proof : The proof is similar to that of Proposition 2.4.20. □

Example 2.5.6 : The function f : R → R is continuous at 0,

f(x) =
{
x sin(1/x), if x 6= 0,
0, if x = 0.

We can see this by taking any convergent sequence (xn)n⩾1 with limit 0, then

|f(xn)| = |xn sin(1/xn)| ⩽ |xn| −−−→
n→∞

0.

Proposition 2.5.7 : Consider a normed vector space (V, ‖·‖) over a field K = R or C. Let a ∈ M and
f, g : M → V be two functions that are continuous at a. Then,

(1) x 7→ f(x) + g(x) is continuous at a,

(2) x 7→ λf(x) is continuous at a,

(3) x 7→ ‖f(x)‖ is continuous at a.

Proof : It is a direct consequence by applying Proposition 2.5.5 and Proposition 2.4.18. □

Example 2.5.8 : Let n ⩾ 1 and P ∈ R[X1, . . . , Xn] be a multivariate polynomial. Take (M,d) =
(Rn, ‖·‖1) and (M ′, d′) = (R, | · |). Then, the map (a1, . . . , an) 7→ P (a1, . . . , an) is continuous. This
can be seen by using Proposition 2.5.5 and the following two facts.

(a) For any sequence (ak = (ak1, . . . , akn))k⩾1 with values in (Rn, ‖·‖1), we have

lim
k→∞

ak = a = (a1, . . . , an) ⇔ lim
k→∞

aki = ai, ∀i = 1, . . . , n.

(b) For any real-valued sequences (xn)n⩾1 and (yn)n⩾1, we have

lim
n→∞

xn = x and lim
n→∞

yn = y ⇒ lim
n→∞

xnyn = xy

2.5.3 Characterization using preimage
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Definition 2.5.9 : Given a function f : (M,d) → (M ′, d′) and a subset A ⊆ M ′. We recall the
definition viewed in Definition 1.1.7 of preimage or inverse image (像原) of A under f ,

f−1(A) := {x ∈ M : f(x) ∈ A}.

Remark 2.5.10 : We recall the following properties for the preimage.
(1) If f is bijective, then the preimage of A under f is exactly the image of A under f−1.
(2) If A ⊆ B ⊆ M ′, then f−1(A) ⊆ f−1(B) ⊆ M .
(3) For A ⊆ M , we have A ⊆ f−1(f(A)).
(4) For A ⊆ M ′, we have f(f−1(A)) ⊆ A.

Proposition 2.5.11 : Let f : (M,d) → (M ′, d′) be a function. The following properties are equivalent.

(1) f is continuous onM .

(2) The preimage of any open set ofM ′ is open inM .

(3) The preimage of any closed set ofM ′ is closed inM .

Proof : We are going to prove that (1) ⇔ (2) ⇔ (3).

• (1) ⇒ (2). Let A′ ⊆ M ′ be an open set and denote A = f−1(A′). Given x ∈ A, we want to show
that x is an interior point of A. Let y = f(x) ∈ A′. Since y is an interior point of A′, we may
find ε > 0 such that BM ′(y, ε) ⊆ A′. Using the continuity of f at x, we may find δ > 0 such
that f(BM (x, δ)) ⊆ BM ′(y, ε) ⊆ A′. Therefore, x ∈ BM (x, δ) ⊆ f−1(A′).

• (2) ⇒ (1). Given x ∈ M and ε > 0, it follows from (2) that A = f−1(BM ′(f(x), ε)) is open.
Since x ∈ A, we may find δ > 0 such that BM (x, δ) ⊆ A. This implies that f(BM (x, δ)) ⊆
f(A) = BM ′(f(x), ε), giving the continuity of f at x.

• (2) ⇒ (3). Let A′ be a closed set inM ′, then B′ := M ′\A′ is an open set. We know that

f−1(A′) = f−1(M ′\B′) = M\f−1(B′).

By (2), the set f−1(B′) is open, so f−1(A′) is closed.

• (3) ⇒ (2). The proof is similar.
□

Remark 2.5.12 : In practice, to check that a function f : (M,d) → (M ′, d′) is continuous, we only need to
check the following modified condition:
(2’) The preimage of any open ball ofM ′ is open inM .

26 Last modified: 13:42 on Wednesday 23rd October, 2024



Chapter 2 Topology on metric spaces and normed spaces

Example 2.5.13 : We identify the space Mn(R) of n× n real matrices as Rn2 , and equip it with the
usual norm ‖·‖1. The determinant function det : Mn(R) → R is continuous. Since R∗ := R\{0} is
open in R, the set of invertible matrices

GLn(R) := {M ∈ Mn(R) : det(M) 6= 0} = det−1(R∗)

is also open in Mn(R).

Definition 2.5.14 : Let f : (M,d) → (M ′, d′) be a function. We say that f is

• an open map (開函數) if f(A) is open inM ′ for any open set A ⊆ M ;

• a closed map (閉函數) if f(A) is closed inM ′ for any closed set A ⊆ M .

Remark 2.5.15 : Note that in Proposition 2.5.11, it is important to look at the preimage.
• A continuous function is not necessarily an open map. For example, a constant function from R to R
maps the open set R to a point which is not open.

• A continuous function is not necessarily a closed map. For example, the function R → R, x 7→ tan(x)
maps the closed set R to (−π

2 ,
π
2 ), which is not closed in R.

2.5.4 Isomorphisms
We are going to introduce two notions of isomorphisms (同構) : isometric isomorphism and topological

isomorphism (homeomorphism) (拓撲同構、同胚). Below, consider twometric spaces (M,d) and (M ′, d′).

Definition 2.5.16 :

• A bijective function f : (M,d) → (M ′, d′) is called an isometry (等距變換) if

d′(f(x), f(y)) = d(x, y), ∀x, y ∈ M.

• If there exists an isometry between (M,d) and (M ′, d′), then we say that the metric spaces
(M,d) and (M ′, d′) are isometric or isometrically isomorphic.

Example 2.5.17 : Let us fix an integer n ⩾ 1. We denote by Mn(R) = Mn×n(R) the vector space
of n by n real matrices. We may equip Mn(R) with the norm ‖·‖M,1 defined by

∀M = (mi,j)1⩽i,j⩽n, ‖M‖M,1 =
n∑
i=1

n∑
j=1

|mi,j |,

and consider the distance dM,1 induced by the norm ‖·‖M,1. Then, (Mn(R), dM,1) and (Rn2
, d1) are

isometric. For example, the map

M = (mi,j)1⩽i,j⩽n 7→ (m1,1, . . . ,m1,n,m2,1, . . . ,m2,n, . . . ,mn,1, . . . ,mn,n),
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is an isometry.

Definition 2.5.18 :

• Let f : (M,d) → (M ′, d′) be a function. Suppose that f is bijective, so that f−1 is well defined.
We say that f is a homeomorphism (同胚) , or topological isomorphism (拓撲同構) , if both f
and f−1 are continuous.

• If there exists an homeomorphism f between (M,d) and (M ′, d′), then we say that the metric
spaces (M,d) and (M ′, d′) are homeomorphic or topologically isomorphic.

Remark 2.5.19 : An isometry is also an homeomorphism.

Example 2.5.20 : Let us considerM = R2 with different distances d1 induced by ‖·‖1, d2 induced by
‖·‖2, and the discrete distance ddiscrete.

(1) The identity map Id : (R2, d1) → (R2, d2) is a homeomorphism because we have

Bd1(x, r) ⊆ Bd2(x, r) ⊆ Bd1(x,
√

2r). (2.9)

(2) The identity map Id : (R2, ddiscrete) → (R2, d1) is not a homeomorphism. This map is bijective
and continuous, but its inverse f−1 is clearly not continuous.

Definition 2.5.21 : Let d and d′ be two distances onM . We say that the two distances are topologically
equivalent (拓撲等價) if they define the same topology, in the sense that a set in (M,d) is open if
and only if it is also open in (M,d′).

Example 2.5.22 : In R2, the distances d1 and d2 are topologically equivalent, as seen in Eq. (2.9).

Proposition 2.5.23 : Let d and d′ be two distances on M . The distances d and d′ are topologically
equivalent if and only if the identity map Id : (M,d) → (M,d′) is a homeomorphism.

Proof : First, let us assume that the distances d and d′ are topologically equivalent. It is clear that
the identity map Id : (M,d) → (M,d′) is bijective. To show its continuity, consider an open set
A ⊆ (M,d′). Then,

Id−1(A) = A ⊆ (M,d)

is still an open set due to the assumption. Hence, Id is continuous. Similarly, we can also show that
Id−1 is continuous.

For the converse, we assume that the identity map Id : (M,d) → (M,d′) is a homeomorphism.
By its continuity, any open set A ⊆ (M,d′) is still open in (M,d), and vice versa. It is exactly the

28 Last modified: 13:42 on Wednesday 23rd October, 2024



Chapter 2 Topology on metric spaces and normed spaces

definition of two distances which are topologically equivalent. □

Definition 2.5.24 :

• Given a vector space V and two norms N1 and N2 on V . They are said to be equivalent if there
exist b > a > 0 such that

aN1(x) ⩽ N2(x) ⩽ bN1(x), ∀x ∈ V.

• Given a spaceM and two distances d1 and d2 onM . They are said to be equivalent if there exist
b > a > 0 such that

a d1(x, y) ⩽ d2(x, y) ⩽ b d1(x, y), ∀x, y ∈ M.

Example 2.5.25 : In Rn, the norms ‖·‖1, ‖·‖2, and ‖·‖∞ are equivalent. In fact, we have

‖x‖∞ ⩽ ‖x‖1 ⩽ ‖x‖2 ⩽
√
n ‖x‖∞ , ∀x ∈ Rn.

Remark 2.5.26 :
(1) Two equivalent norms induce two distances that are also equivalent.
(2) Two equivalent distances define two metric spaces that are topologically equivalent. This can be seen

using inclusion relations between balls defined by different distances Example 2.5.20 (1).
(3) Later in Theorem 3.2.22, we will see that on a finite dimensional vector space, all the norms are equiv-

alent.

2.5.5 Uniform continuity

Definition 2.5.27 : Let f : (M,d) → (M ′, d′) be a function. We say that f is uniformly continuous
(均勻連續) if for any ε > 0, there exists δ > 0 such that

∀x, y ∈ M, d(x, y) < δ =⇒ d′(f(x), f(y)) < ε. (2.10)

Example 2.5.28 : The function f : R>0 → R, x 7→ 1
x is continuous. It is not uniformly continuous

on (0, 1], but is uniformly continuous on [1,∞).

Remark 2.5.29 :
(1) An uniformly continuous function is continuous, but the inverse does not hold in general, as we just

saw in Example 2.5.28.
(2) In the definition of uniform continuity, the choice of δ does not depend on x and y, that is why it is

called uniform. You may compare (2.8) and (2.10) to see the difference.
(3) Uniform continuity is not a topological notion, in the sense that it cannot be defined only using the
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open sets. See Exercise 2.41.
(4) Given a uniformly continuous function f : (M1, d1) → (M2, d2) and distances d′

1 and d′
2 such that

d1 and d′
1 are equivalent, d2 and d′

2 are equivalent. Then, it is not hard to see that the function f :
(M1, d

′
1) → (M2, d

′
2) is also uniformly continuous.

Definition 2.5.30 : Let f : (M,d) → (M ′, d′) be a function. Given K > 0. We say that f is
K-Lipschitz continuous if

d′(f(x), f(y)) ⩽ K d(x, y), ∀x, y ∈ M.

We also say that f is Lipschitz continuous if there existsK > 0 such that f isK-Lipschitz continuous.

Corollary 2.5.31 : Any Lipschitz continuous function is also uniformly continuous.

Proof : It is a direct consequence by taking δ = ε/K in (2.10) if the function f : (M,d) → (M,d′) is
K-Lipschitz. □

Definition 2.5.32 : Given a spaceM and two distances d and d′ onM . They are said to be uniformly
equivalent (均勻等價) if the identity map Id : (M,d) → (M,d′) and its inverse are uniformly
continuous.

Remark 2.5.33 : Two equivalent distances are uniformly equivalent, and two uniformly equivalent distances
are topologically equivalent.

2.6 Product of metric spaces
Given n metric spaces (M1, d1), . . . , (Mn, dn). We define the product space M = M1 × · · · × Mn and

want to equip it with a distance. There are several ways to achieve this using the distances d1, . . . , dn. The
canonical way is as follows.

Definition 2.6.1 : Wemay equip the product spaceM with the product distance d defined as follows,

d(x, y) = max
1⩽i⩽n

di(xi, yi), (2.11)

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ M .

Remark 2.6.2 : The open ball centered at x = (x1, . . . , xn) with radius r under the distance (2.11) is given
by

Bd(x, r) = Bd1(x1, r) × · · · ×Bdn(xn, r).
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Remark 2.6.3 : We may also define other distances on the product spaceM . Let

D1(x, y) =
n∑
i=1

di(xi, yi) and D2(x, y) =

√√√√ n∑
i=1

di(xi, yi)2,

which are also distances onM . They are equivalent to the product distance d defined in (2.11), because

d(x, y) ⩽ D2(x, y) ⩽ D1(x, y) ⩽ nd(x, y), ∀x, y ∈ E.

Therefore, it does not really matter which of these three distances we choose on the product spaceM .

Definition 2.6.4 : For 1 ⩽ i ⩽ n, we may define the projection on the i-th coordinate of the product
spaceM ,

Proji : M = M1 × · · · ×Mn → Mi

x = (x1, . . . , xn) 7→ xi.

Proposition 2.6.5 : The projection Proji is continuous and open (Definition 2.5.14) for all 1 ⩽ i ⩽ n.

Proof : Fix 1 ⩽ i ⩽ n.

• First, let us check that Proji is continuous. Following Remark 2.5.12, we only need to check the
preimage of an open ball under Proji is open. Let y ∈ Mi and ε > 0. It is not hard to check that

Proj−1
i (BMi(y, ε)) = M1 × · · · ×Mi−1 ×BMi(y, ε) ×Mi+1 × · · · ×Mn.

The r.h.s. is clearly an open set.

• Then, let us check that Proji is an open map. Given an open set A ⊆ M and y ∈ Proji(A). Then,
there exists x ∈ A with xi = y. Since A is open, there exists r > 0 such that Bd(x, r) ⊆ A.
We know that the open ball in the product space can be written as the product of open balls
(Remark 2.6.2), we deduce that Proji(Bd(x, r)) = Bdi

(xi, r). Therefore, y = xi = Proji(x) ∈
Bdi

(xi, r) = Proji(Bd(x, r)) ⊆ Proji(A), implying that y is an interior point of Proji(A).
□

Proposition 2.6.6 : Let (M ′, d′) be a metric space, a ∈ M ′, and f : M ′ → M be a function. Then, f is
continuous at a if and only if fi := Proji ◦ f is continuous at a for all 1 ⩽ i ⩽ n.

Proof : If f is continuous at a, it is not hard to see that fi is continuous at a for all 1 ⩽ i ⩽ n by
composition (Proposition 2.5.4). Conversely, suppose that f is a function such that fi is continuous at
a for all 1 ⩽ i ⩽ n, we are goinig to show that f is also continuous at a. Let ε > 0. For each 1 ⩽ i ⩽ n,
we can find δi > 0 such that for x ∈ M ,

d′(x, a) < δi ⇒ di(fi(x), fi(a)) < ε.

Since the product space M = M1 × · × Mn is equipped with the metric defined in (2.11), by letting
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δ = min1⩽i⩽n δi, for x ∈ M , we have,

d′(x, a) < δ ⇒ d(f(x), f(a)) = max
1⩽i⩽n

di(fi(x), fi(a)) < ε.

This shows the continuity of f at a. □

M ′ M = M1 × · · · ×Mn

Mi

Proji ◦ f

f

Proji

Figure 2.1: This diagram illustrates the relation between the function f : M ′ →
M , the projection Proji : M → Mi, and thir composition.

Proposition 2.6.7 : Let (M ′, d′) be a metric space, f : M → M ′ be a function, and a = (a1, . . . , an) ∈
M . For 1 ⩽ i ⩽ n, let us define the partial function

f i : Mi → M ′

x 7→ f(a1, . . . , ai−1, x, ai+1, . . . , an).

If f is continuous at a, then f i is continuous at ai for all 1 ⩽ i ⩽ n.

Remark 2.6.8 : Note that the converse of Proposition 2.6.7 does not hold. For example, let f : R2 → R be
defined by

f(0, 0) = 0,

f(x, y) = xy

x2 + y2 , ∀(x, y) ∈ R2\{(0, 0)}.

Take a = (0, 0), then f1 ≡ 0 and f2 ≡ 0 are continuous functions, but

f(x, x) = x2

x2 + x2 = 1
2

−→ 1
2
, when x → 0.

Proof : For x ∈ Mi, let us write a(i)
x = (a1, . . . , ai−1, x, ai+1, . . . , an). If di(x, ai) < δ, then it is clear

that d(a(i)
x , a) < δ. Hence, if x ∈ Bdi

(ai, δ), then a(i)
x ∈ Bd(a, δ). This tells us that the continuity of f

at a implies the continuity of f i at ai. □
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2.7 Connectedness and arcwise connectedness
We are given a metric space (M,d), and we are going to study its connectedness properties below.

2.7.1 Connected spaces
Let us start with the definition of connected spaces.

Definition 2.7.1 (and properties) : We say that (M,d) is connected (連通) if one of the three following
equivalent properties are satisfied.

(a) There is no partition ofM into two disjoint nonempty open sets.

(b) There is no partition ofM into two disjoint nonempty closed sets.

(c) The only subsets ofM that are open and closed are ∅ andM .

Otherwise, we say that (M,d) is disconnected (不連通) . Similarly, in a metric space (M,d), a subset
A ⊆ M is said to be connected if the induced metric space (A, d) is connected.

Remark 2.7.2 : To check the property (a), one may assume that there exist open sets A,B ⊆ M with
A ∩B = ∅ and A ∪B = M , and show that either A = ∅ or B = ∅.

Proof : We are going to show that (a) ⇒ (b) ⇒ (c) ⇒ (a).

• (a) ⇒ (b). Suppose that there exist two closed sets A1 and A2 such that M = A1 ∪ A2 and
A1 ∩ A2 = ∅. Then, B1 = M\A1 and B2 = M\A2 are open sets. Moreoever, they satisfy
M = B1 ∪B2 and B1 ∩B2 = ∅. By (a), we know that either B1 = ∅ or B2 = ∅, and it follows
that A2 = ∅ or A1 = ∅.

• (b) ⇒ (c). Let A ⊆ M be open and closed. Then, B := M\A is also open and closed. Moreover,
we have M = A ∪ B and A ∩ B = ∅. Then, the assumption (b) implies that either A = ∅ or
B = ∅, or equivalently, A = ∅ orM .

• (c) ⇒ (a). Let A1 and A2 be two disjoint open sets such that M = A1 ∪ A2. Then, A1 can be
rewritten as A1 = M\A2, so it is also a closed set. By (c), we know that A1 = ∅ orM .

□

Remark 2.7.3 : The notion of connectedness is a topological notion, that is, it only depends on the notion
of open sets (in the metric space), without the knowledge on the exact distance we are considering.

Example 2.7.4 :

(1) The metric space R∗ = R\{0}, induced by the Euclidean metric (R, | · |), is not connected.
Actually, we have R∗ = (−∞, 0) ∪ (0,∞) which is a disjoint union of open sets.

(2) In any nonempty metric space, a singleton set {x} is connected for every x ∈ M .

(3) Intervals of R are connected. We will prove this in Proposition 2.7.17.
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(4) The set Q of rational numbers is disconnected.

2.7.2 Properties of connected spaces

Proposition 2.7.5 : Let f : (M,d) → (M ′, d′) be a continuous function. Suppose thatM is connected.
Then, f(M) is also connected.

Proof : Let A be an open and closed subset of f(M). Thus, there exists an open subset B1 ⊆ M ′ and
a closed subset B2 ⊆ M ′ such that

A = B1 ∩ f(M) = B2 ∩ f(M).

It follows from above that f−1(A) = f−1(B1) = f−1(B2), and the continuity of f implies that f−1(A)
is open and closed in M . Since M is connected, we know that f−1(A) = ∅ or M , that is A = ∅ or
f(M). □

Let us consider a discrete space with only two points D = {0, 1} equipped with the discrete distance δ.
Then, the metric space (D, δ) is disconnected because D = {0} ∪ {1} which is a disjoint union of closed
(also open) sets. This discrete metric space will be useful for the characterization of connectedness.

Corollary 2.7.6 : Let (M,d) be a metric space. Then, M is connected if and only if every continuous
function f : M → D is constant.

Proof : First, let us assume that M is connected. Given a continuous function f : M → D, by
Proposition 2.7.5, we know that the f(M) is connected in D. Since D is disconnected, the image
f(M) cannot be the whole space, so f(M) = {0} or {1}, that is, f is constant.

Suppose that every continuous function f : M → D is constant, and we want to show that M is
connected. By contradiction, suppose thatM is disconnected. Then, we can find two disjoint nonempty
open subsets A and B such thatM = A ∪B. Define f : M → D as follows,

f(x) =
{

0 if x ∈ A,

1 if x ∈ B.

The function f is clearly continuous because {0} and {1} are open sets in D, and their preimages
f−1({0}) = A and f−1({1}) = B are also open. However, f is not a constant function. □

Corollary 2.7.7 : Let (M,d) be a metric space, and A ⊆ M be a connected subset. Let S be a subset
satisfying A ⊆ S ⊆ A. Then, S is also connected.
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Proof : Let f : S → D = {0, 1} be a continuous function. Its restriction f|A on A is also continuous,
thus constant, since A is connected. Assume for instance that f|A ≡ 0. Let x ∈ S. By the continuity
of f , there exists ε > 0 such that

y ∈ B(x, ε) ∩ S ⇒ δ(f(y), f(x)) < 1
2 .

Thismeans that f(y) = f(x) for y ∈ B(x, ε)∩S. Additionally, since S ⊆ A, we haveB(x, ε)∩A 6= ∅.
We may choose x′ ∈ B(x, ε) ∩ A, then f(x′) = 0, giving f(y) = 0 for y ∈ B(x, ε) ∩ S. Therefore,
f ≡ 0, so the result follows from Proposition 2.7.5. □

Proposition 2.7.8 : Let (M,d) be a metric space and (Ci)i∈I be a family of connected subsets of M .
Suppose that there exists i0 ∈ I such that

Ci ∩ Ci0 6= ∅, ∀i ∈ I.

Then, C = ∪i∈ICi is connected.

Proof : Let f : C = ∪i∈ICi → D = {0, 1} be a continuous function. For every i ∈ I , since Ci is
connected, f|Ci

is constant. In particular, we may assume that f|Ci0
≡ 0. Let x ∈ C and i ∈ I such

that x ∈ Ci. Since Ci ∩ Ci0 6= ∅, we may find x0 ∈ Ci ∩ Ci0 . Due to the fact that f|Ci
is constant, it

follows that f(x) = f(x0) = 0. Therefore, f is constant on C , and we conclude by Corollary 2.7.6. □

Remark 2.7.9 : In particular, if (Ci)i∈I is a family of connected subsets such that ∩i∈ICi 6= ∅, then C =
∪i∈ICi is also connected.

Question 2.7.10: Let (Ci)i∈I be a countable family of connected subsets, i.e., I = {1, . . . , p} for some p ⩾ 1
or I = N. Suppose that for every i ∈ I , i 6= 1, we have Ci−1 ∩Ci 6= ∅. Show that C = ∪i∈ICi is connected
by rewriting the proof of Proposition 2.7.8.

Proposition 2.7.11 : Given a sequence of metric spaces (M1, d1), . . . , (Mn, dn) and consider the product
metric space (M,d) given byM = M1 × · · · ×Mn and the product distance defined in Eq. (2.11). Then,
(M,d) is connected if and only if (Mi, di) is connected for all 1 ⩽ i ⩽ n.

Proof : First, let us assume thatM is connected. Fix i ∈ {1, . . . , n} and let f : Mi → D = {0, 1} be a
continuous function. Since the projection Proji : M → Mi is continuous, the composition f ◦ Proji :
M → D is also continuous. From the connectedness ofM , we deduce that f ◦ Proji is constant. Since
Proji(M) = Mi, it follows that f is also constant, that isMi is connected.

Let us assume that (Mi, di) is connected for 1 ⩽ i ⩽ n. Consider a continuous function f : M → D.
Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ M . We want to show that f(x) = f(y). First, it follows from
Proposition 2.6.7 that the following map is continuous,

f1 : M1 → D
z1 7→ f(z1, x2, . . . , xn).
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The connectedness of M1 implies that f1 is constant, that is f(x1, x2, . . . , xn) = f(y1, x2, . . . , xn).
Then, we may look at the partial function at each of the following coordinates to conclude that
f(x1, . . . , xn) = f(y1, . . . , yn). Hence, the continuous function f is constant, and M is connected
by Corollary 2.7.6. □

2.7.3 Connected components
Let (M,d) be a metric space. In this subsection, we are going to study the connected components of M ,

whose precise definition will be given below. Intuitively speaking, we want to decompose M into disjoint
pieces of connected subspaces, and to achieve this, we will define an equivalence relation onM .

Definition 2.7.12 : We define the following binary relation R on (M,d),

xRy ⇔ there exists a connected subset C ⊆ M such that x, y ∈ C. (2.12)

Proposition 2.7.13 : The binary relation R defined in Eq. (2.12) is an equivalence relation.

Proof : It is straightforward to check.

• (Reflexivity) For every x ∈ M , we have xRx since {x} is connected.

• (Symmetry) If x, y are such that xRy, then it follows from Eq. (2.12) that yRx.

• (Transitivity) Let x, y, z ∈ M such that xRy and yRz. This means that there exist two con-
nected subsets C and C ′ such that x, y ∈ C and y, z ∈ C ′. Since C ∩ C ′ 6= ∅, it follows from
Proposition 2.7.8 that C ∪ C ′ is also connected. We have x, z ∈ C ∪ C ′, so xRz.

□

Remark 2.7.14 : Proposition 2.7.13 allows us to define equivalence classes M/R. For each x ∈ M , let us
denote by [x] its equivalence class. It is not hard to see that [x] is given by the union of all the connected
subsets containing x, which is again connected by Proposition 2.7.8. The subset [x] is called a connected
component (連通元件) of M . The connected components of M form a partition of M , that is a collection
of disjoint subsets whose union is M . And we can see that M is connected if and only if it has only one
connected component.

Corollary 2.7.15 : The connected components of a metric space (M,d) are closed subsets. Moreover, if
M only has finitely many connected components, then they are also open subsets.

Proof : Let x ∈ M and consider its connected component [x]. Since [x] ⊆ [x], it follows from
Corollary 2.7.7 that [x] is also connected. We see that [x] also contains x, so [x] = [x], that is [x]
is a closed subset.
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Suppose thatM has only finitely many connected components, that is,

M =
N⋃
i=1

[xi], N ⩾ 1, x1, . . . , xN ∈ M.

Then, for any 1 ⩽ i ⩽ N , we have
[xi] = M\

⋃
1⩽j⩽N
j 6=i

[xj ],

which is open, being the complement of a finite union of closed sets. □

Remark 2.7.16 : We give an example below of a subspace of (R, | · |) which has one connected component
that is not an open subset. Let

C =
( ⋃
n⩾1

Cn
)

∪ {0}, Cn = [2−2n−1, 2−2n].

We first note that, all the Cn’s and {0} are connected components of C . It is also not hard to see that for
each n ⩾ 1, the subset Cn is open and closed (in C) at the same time, because

Cn = [2−2n−1, 2−2n] ∩ C

= (r · 2−2n−1, r−1 · 2−2n) ∩ C, for some r ∈ (1
2 , 1).

However, {0} is a closed subset but not an open subset. To see this, suppose that it is open, that is we may
find ε > 0 such that B(0, ε) ∩C = {0}. But for any ε > 0, the intersection B(0, ε) ∩C contains not only 0
but also the subsets Cn’s for sufficiently large n (as long as n ⩾ 1

2 log2(1/ε)).

2.7.4 Open sets and connected components in R
We are going to look at the metric space (R, | · |). Let us recall that I ⊆ R is an interval if for any a, b ∈ I ,

then
x ∈ (a, b) ⇒ x ∈ I. (2.13)

There are four types of them,

(a, b), − ∞ ⩽ a ⩽ b ⩽ +∞,

[a, b), − ∞ < a ⩽ b ⩽ +∞,

(a, b], − ∞ ⩽ a ⩽ b < +∞,

[a, b], − ∞ < a ⩽ b < +∞.

We note that the last type of intervals are also called segments.

Proposition 2.7.17 : A subset I of R is connected if and only if it is an interval of R.
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Proof : Let us assume that I ⊆ R is connected. By contradiction, if I is not an interval, it means that
we may find a, b ∈ I and x ∈ (a, b) with x /∈ I . In this case, we have I ⊆ (−∞, x) ∪ (x,+∞), so I is
not connected.

For the converse, given an interval I ⊆ R, we want to show that it is connected. If I is a singleton,
it is clear. Let I = (a, b) with −∞ ⩽ a < b ⩽ +∞ and a continuous function f : I → D = {0, 1}.
Suppose that f is not constant, that is there exists x, y ∈ I such that

a < x < y < b and f(x) 6= f(y),

and, without loss of generality, we may assume f(x) = 0 and f(y) = 1. Consider the set

Γ = {z ∈ I : z ⩾ x such that f(t) = 0 for all t ∈ [x, z]}

The set Γ is nonempty because x ∈ Γ. Moreover, Γ is bounded from above by y. Let c = sup Γ ⩽ y.
By the continuity of f , we have f(c) = 0. Additionally, the continuity of f at c implies that

∃ε ∈ (0, b− y),∀t ∈ [c, c+ ε], δ(f(t), f(c)) < 1
2 .

This means that f(t) = 0 for t ∈ [c, c+ ε] ⊆ (a, b) = I , so c+ ε ∈ Γ. This contradicts the fact that c is
the supremum of Γ. Therefore, f needs to be constant, and I is connected.

For a general interval I which is not a singleton, nor an open interval, we may write J = int(I) so
that J ⊆ I ⊆ cl(J). Since J is of the form (a, b) with −∞ ⩽ a < b ⩽ +∞, which has been discussed
above, we know that J is connected. Then, it follows from Corollary 2.7.7 that I is also connected. □

The following theorem is the first application of Proposition 2.7.17.

Theorem 2.7.18 (Intermediate value theorem) : Let I be an interval of R and f : I → R be a
continuous function. Then, f(I) is also an interval.

Proof : Proposition 2.7.17 tells us that I is connected, then by applying Proposition 2.7.5, we also
know that f(I) is connected. Then, again by Proposition 2.7.17, we deduce that f(I) is an interval. □

Remark 2.7.19 : Another way to interprete or apply the above theorem is as follows. If f(a) ⩽ f(b) with
a < b, then for any γ ∈ [f(a), f(b)], we can find c ∈ [a, b] such that f(c) = γ.

Another application of Proposition 2.7.17 is the following description on the structure of the open sets in
R. Below, let us fix a nonempty open subset A ⊆ R.

Definition 2.7.20 : Let I be an open interval. We say that I is a component interval of A if

• I ⊆ A, and

• there is no open interval J 6= I with I ⊆ J ⊆ A.
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Theorem 2.7.21 (Representation theorem for open sets in R) :The subsetA is the union of a countable
collection of disjoint component intervals of A.

Proof : It follows from Remark 2.7.14 that we may write down the connected components of A as

A/R = {[xj ] : j ∈ J}, (2.14)

where J is some index set, and [xj ] denotes the equivalent class of R, or connected component of A,
represented by some xj ∈ A. From Proposition 2.7.17, we know that each of [xj ] is an interval of R.
We need to check that these intervals are component intervals in the sense of Definition 2.7.20.

Fix j ∈ J , let us denote Ij = [xj ], aj = inf Ij , and bj = sup Ij , so that (aj , bj) ⊆ Ij . First, we want
to show that Ij is an open interval, that is Ij = (aj , bj). We want to show that aj /∈ Ij .

• If aj = −∞, then it is clear that aj /∈ Ij .

• If aj > −∞ with aj ∈ Ij , then since aj ∈ A, which is an open set, we may find ε > 0 such that
I ′
j := (aj − ε, aj + ε) ⊆ A. Since I ′

j and Ij are both connected, and Ij ∩ I ′
j 6= ∅, it follows from

Proposition 2.7.8 that Ij ∪ I ′
j is still connected. This contradicts the fact that Ij is an equivalence

class for the relation R.

Therefore, aj /∈ Ij . Similarly, we may also show that bj /∈ Ij , that is Ij = (aj , bj).
To show that Ij is maximal in the sense that, there is no open intervalK such that Ij ⊊ K ⊆ A, we

use again the fact that R is an equivalence relation.
To conclude, it remains to show that J is countable. The set Q of rationals is countable and can be

enumerated Q = {q1, q2, . . . }. We may define a function F : J → N as follows,

F (j) = min{n ⩾ 1 : qn ∈ [xj ]}, ∀j ∈ J.

The fact that F is an injection follows directly from the partition structure given by the equivalence
relation. This allows us to conclude that (2.14) is a countable collection of component intervals. □

2.7.5 Arcwise connectedness
Let us fix a metric space (M,d).

Definition 2.7.22 : Let γ : [0, 1] → (M,d) be a continuous function with a = γ(0) and b = γ(1).

• We say that γ is a path from a to b.

• If a 6= b, the image γ([0, 1]) is called an arc joining a and b.

• Suppose that (M,d) is a normed space, in the sense of Example 2.1.4. If γ writes as γ(t) =
tb+(1− t)awith value inM for all t ∈ [0, 1], then we say that γ([0, 1]) is a line segment joining
a and b, denoted by [a, b].
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Definition 2.7.23 : We say thatM is arcwise connected (弧連通) if for any a 6= b ∈ M , there is an
arc joining a and b.

Theorem 2.7.24 : IfM is arcwise connected, thenM is also connected.

Proof : Let f : M → D = {0, 1} be a continuous function. Let a, b ∈ M and γ : [0, 1] → M be a
continuous function such that γ(0) = a and γ(1) = b. Then, the composition f ◦ γ : [0, 1] → D is
continuous, so constant, because [0, 1] is connected. This means that f(a) = (f ◦γ)(0) = (f ◦γ)(1) =
f(b), so f is also constant. Thus, we can conclude thatM is connected by Corollary 2.7.6. □

Example 2.7.25 :

(1) In the Euclidean space Rn, any convex set A is arcwise connected. The reason is that, for any
x, y ∈ A, the line segment [x, y] is also in A, which is the definition of a convex set.

(2) Let A ⊆ R2 be defined as follows,

A := {(0, 0)} ∪ {(x, sin(1/x)) : x ∈ (0, 1]}.

This is a classical example of a space which is connected but not arcwise connected. We will
prove this in Exercise 2.52.

Remark 2.7.26 :
(1) The above Theorem 2.7.24 is useful to show the connectedness of a metric space, because the arcwise

connectedness is easier to visualize and to manipulate.
(2) Arcwise connectedness is also a topological notion. The reason is that, to define the notion of arcwise

connectedness in Definition 2.7.23, we make use of continuous functions, which are characterized
entirely by open sets, see Proposition 2.5.11.

(3) The converse of Theorem 2.7.24 does not hold. Example 2.7.25 (2) gives an example of metric space
that is connected but not arcwise connected.

Theorem 2.7.27 : Let (V, ‖·‖) be a normed vector space andA be an open set of V . Then,A is connected
if and only if A is arcwise connected.

Remark 2.7.28 : We note that it is important to assume that A is open. For example, the set A defined in
Example 2.7.25 (2) is a subset in R2, and it is connected without being arcwise connected. Clearly, in this
case, the subset A is not open.
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Proof : IfA is arcwise connected, we have already shown in Theorem 2.7.24 thatA is connected. Now,
suppose that A is connected. We fix x0 ∈ A and let

Γ = {x ∈ A : there is a path joining x0 and x}.

Our goal is to get Γ = A by showing that Γ is open and closed in A at the same time.

• Γ is open. Let x ∈ Γ. Since x is also in the open set A, there exists r > 0 such that B(x, r) ⊆ A.
Fix y ∈ B(x, r), y 6= x0, the line segment [x, y] is also in A. Therefore, if γ0 is a path from x0 to
x, and let γ1 denote the line segment from x to y, then

γ(t) =
{
γ0(2t), t ∈ [0, 1

2 ],
γ1(2t− 1), t ∈ [1

2 , 1]
(2.15)

gives a path from x0 to y.

• Γ is closed. To achieve this, let us be given x ∈ Γ∩A and show that x is also inΓ. By the definition
of open set and closure, we can find r > 0 such that B(x, r) ⊆ A and B(x, r) ∩ Γ 6= ∅. Choose
y ∈ B(x, r)∩Γ, then the line segment [y, x] is contained inA, the same construction as Eq. (2.15)
shows that x also needs to be in Γ.

□
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