Topology on metric spaces and
normed spaces

2.1 Elementary notions

In the first section, we start with metric spaces and normed spaces, on which we will define the notion of
topology.

2.1.1 Metric spaces, normed spaces, and examples

Definition 2.1.1: Given a set M. We say that a function d : M x M — R is a distance or metric (EE
2#) on M if

(i) (Positive definiteness) d(z,y) > 0 with equality if and only if x = y.
(i) (Symmetry) d(z,y) = d(y,z) forall z,y € M.
(ili) (Triangle inequality) d(z, z) < d(z,y) + d(y, z) forall x,y, z € M.

We also say that (M, d) is a metric space (BREEZEfE]) if d is a distance on M.

Example 2.1.2 : Below we give a few common examples of metric spaces.
(1) On R, the function d(x,y) = |z — y| is a distance.

(2) On R", we may define the following Euclidean distance (ERECEER),

d(x,y) = \Jlrr — 12+ 4 o —yal?, 2y € R
(3) On R", the following functions are distances.

di(z,y) = |v1 —y1| + - + |0 — Yl
doo(z,y) = max{|z1 — y1],. .-, [Tn — Ynl}-

(4) For any nonempty set M, define

) 0 ifx=y,
d(fc,y)—{ 1 ifx#y.

This is called a discrete metric and (M, d) is called a discrete metric space (BERIAREEZE) .
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Definition 2.1.3 : Let V be a vector space over a field K = Ror C. Amap |-|| : V — R, is said to
be a normon V if

(i) (Positive definiteness) ||z|| = 0 if and only if 2 = 0.
(i) (Homogeneity) For every A € K and x € V, we have | Az|| = |A| [|z]].
(iii) (Triangle inequality) For any z,y € V, we have ||z + y|| < ||z + ||ly]|-

If ||| is a norm on V/, then we say that (V/ ||-||) is a normed vector space (FREEFZEZEME), or a normed

space (RREEZEM]).

Example 2.1.4 : Given a normed space (V, ||-||), the map d(x, y) := ||« — y|| defines a distance on V,
making (V, d) a metric space. Therefore, whenever we want to consider a normed space as a metric
space, we choose this distance by default.

Example 2.1.5: Below are some classical norms that we consider on R". For x = (z1,...,2,) € R",

define
n n
lzlly =D lail,  Nally o= | Do lwil? Nzl = sup |ail. (2.1)
i=1 i=1 Isisn

You may check that the properties (1)—(3) in Definition 2.1.3 are satisfied.

Example 2.1.6 : The following spaces of real sequences are also normed spaces,

C(R) = {a= (an)=1 €RY: fla; = 3 Jan| < oo},

n=1

KQ(R) = {a = (an)n>1 € RN . lally == \/m < oo},
n=1

(> (R) = {a = (an)n>1 € RN : |lal|, = sup |an| < oo}.
n=1

Example 2.1.7 : Given a set X and a normed vector space (V/|-||). Write B(X, V) for the set of
bounded functions from X to V, which can be checked to be a vector space. Then, we may equip
B(X, V) with the following norm,

[flloe :==sup [f()l,  feBX,V).
zeX

Example 2.1.8 : Let a < b be two real numbers. Consider the space of continuous functions defined
on [a, b] with values in R, denoted by C([a, b],R). It is not hard to check that C([a, b],R) is a vector
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space. We may equip the following vector subspaces with the corresponding norms,
n b
LN(fa, b)) = {f € Cla, b R): Ifll, = [ 17@)]de < oo},

b
L3(ja, b, R) = {£ € C(la b B |l = | [ 1£()Pdt < oo},
1((a,b) B) = {1 € C((a, b} B) : [ f]l.o = sup £(0)]}.

t€[a,b]

Example 2.1.9 : On the vector space K[X] of polynomials with coefficients in a field K = R or C,
that is

N
K[X]:{ZanX”:aneK,OgngN,N20}.

n=0

We may define the following norms on K[X].

(a) A polynomial P can be uniquely written as P = Y>> ; a, X", where only finitely many terms
of (an)n>0 are nonzero. Then, we define

1Pl = lanl,  [1Plly = /> lan|?, and [P, = max|a,|.
n=0 n=>0 nz

(b) We are given real numbers a < b and see a polynomial P as a function ¢t — P(t) on [a, b]. Then,
we define

b b
1Pl = [ 1P@1at 1Pl = ["1P@Par and Pl = max |P(1)

Definition 2.1.10 : A Euclidean space (ERECZEE) is a finite dimensional vector space V over R,
equipped with an inner product (R*&) (-,-) : V x V — R satisfying

(i) (Positive definiteness) (z,x) > 0 with equality if and only if z = 0.
(i) (Symmetry) (x,y) = (y,z) forallz,y € V.

(iii) (Linearity) (ax + by, z) = a{x, z) + b(y, z) for all a,b € Rand z,y,z € V.

Example 2.1.11 : The vector space R" with the following inner product
n
<IE,y> = Z:Ely“ xr = (l‘l,. ..,.’En),y = (yl,... ,yn) e R"
i=1

is a Euclidean space.
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Proposition 2.1.12: Given a Euclidean space (V, (-, -)), we may define
|lz|| = \/(z,x), VzeR"™ (2.2)

Then,

-|| is @ norm on V', which is the canonical norm on the Euclidean space V.

Proof : We only need to check that the function defined in (2.2) satisfies the triangular inequality. It is
a classical proof, see Exercise 2.5. O

In what follows, we will fix a metric space (M, d) and define several notions in this space. If you need
a concrete space to help you visualize, think of (1) or (2) in Example 2.1.2, but please bear in mind that
these notions can be made sense of in any abstract metric space (M, d). Also, some behaviors might be quite
different in a general metric space, for instance, look at the balls (defined below, also see Example 2.1.30) in
a discrete metric space such as (4) in Example 2.1.2.

Definition 2.1.13: Given z € M and r > 0, we define

B(z,r)={y € M : d(z,y) <r},
B(z,r)={y e M :d(x,y) <r},
S(x,r)={ye M :d(x,y) =r}.

We say that B(xz,7) is the open ball (BIEK) centered at x of radius r, B(z,r) is the closed ball (Ef
ER) centered at = of radius 7, and S(x,7) is the sphere (EKEX) centered at  of radius r. If the set M
is equipped with different distances, we may write By(x,r), Bg(x,r), or Sy(z,r) to specify the balls
are defined using the distance d.

Remark 2.1.14 : Note that we have B(z,7) U S(z,r) = B(x,r) for any x € M and r > 0. We also have
B(z,0) = @ and B(z,0) = {z} forany z € M.

Definition 2.1.15 : Given a nonempty subset A C M, we define its diameter (BE1E) by

5(4) = sup d(x,y).
z,y€A

And we say that A is bounded (B5}) if A = @ or §(A) < +oo. Otherwise, A is unbounded (¥ZF).

Definition 2.1.16 : Given two nonempty subsets A and B of M, we define the distance between A
and B to be
d =i .
(4, B) = inf d(z,y)
yeB

We also define the distance between a point = and a subset A C M to be

d(z,A) =d({z},A) = ylgg d(z,y).
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Remark 2.1.17 : The distance d, originally defined on the metric space (M, d), can be generalized to a map
d: (P(M)\{@})? =R

as we see in Definition 2.1.16. However, this map d does not define a distance on nonempty subsets
P(M)\{2} in the sense of Definition 2.1.1. For example, if we take (M,d) = (R, |- |), then d(4,B) = 0
for A = [0,2] and B = [1, 3] without having A = B. However, we may still call it a distance by abuse of
language.

2.1.2 Open sets and closed sets

Below, let us fix a metric space (M, d) and define open sets and closed sets on this space. The topology of
(M, d) is characterized by such sets.

Definition 2.1.18 : Given a subset A C M. We say that A is an open set (Fi%E) or open in M if
A= or
Ve € A,3r >0 suchthat B(z,r) C A.

Example 2.1.19 : Below are a few examples of open sets.
(1) Open balls are open sets.
(2) Take (Ma d) = (Rv‘ ’

), then the intervals (a, b) with —oo < @ < b < 00 are open sets.
(3) In a metric space (M, d), fix a subset A C M and r > 0. Then, the set
A ={ye M:d(y,A) <r}

is open for the following reason. Let y € A,, write ¢ = 3(r — d(y, A)) > 0. Then, for z €
B(y, ), the triangle inequality gives

Ve e A, d(zx) <d(zy)+dy,z) <e+dy )
By taking the infimum over z € A in the above inequality, we find, for z € B(y, ¢) that,

d(2,A) = inf d(z,7) <e + inf d(y,z) = e +d(y, A) = 3(r +d(y, 4)) <.

That is, B(y,¢) C A,.

Proposition 2.1.20 : Open sets in (M, d) satisfy the following properties.
(1) The empty set & and the whole space M are both open sets.

(2) Any union of open sets is still an open set.

(3) Any finite intersection of open sets is still an open set.
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Proof :

(1) The empty set & is open by definition. The whole space M is open because for any point x € M
and any r > 0, we have B(x,r) C M.

(2) Let (A;)icr be a family of open sets in M and denote A = | J;c; Ai. We want to show that A is
also open. Given x € A. By definition, we can choose ¢ € I such that x € A;. Since A; is open,
we may take r > 0 such that B(xz,r) C A;. Therefore, we also have B(z,r) C A. In conclusion,
we are able to find an open ball centered at any point of A that is entirely contained in A, we
have shown that A is open.

(3) Let (A;)i<i<n be a finite family of open sets. Write A = (i, A;, and we want to show that A
is also an open set. Given x € A. For every i = 1,...,n, we have x € A;, since A; is open, we
can find 7; > 0 such that B(x,r;) C A;. Take r := min(ry,...,r,) > 0, then we can check that

B(z,r) C B(z,r;) € A;, which means that B(z,r) C A. -

Remark 2.1.21:1It is important to note that any intersection of open sets is not necessarily an open set. For

example, consider I,, = (—%, %), which is open in R for n > 1, but
I:=()1I,={0}
n=1

is clearly not an open set (in R).

Remark 2.1.22 : Given a set X, we say that a collection of (some) subsets 7 of X is a topology on X if
the properties in Proposition 2.1.20 are satisfied, where we replace “open set” by “element in X”. These
properties are considered as axioms of a topology. The elements in 7 are called open sets, and (X, 7) is called
a topological space. This generalization is compatible with what has been discussed above, since in the case of
a metric space M, the topology 7 simply contains all the subsets A satsfying Definition 2.1.18. We may also
note that, a set M equipped with two different distances d; and dy gives rise to different topological spaces.
They may also define the same topology, in the sense that a subset A C M is open in (M, d;) if and only if
it is open in (M, d2). We will see some examples in Example 2.3.4 and have a longer discussion in Section

2.5.4.

Definition 2.1.23 : Given A C M. We say that A is a closed set (BI%E) or closed in M if A = M\ A
is open.

Example 2.1.24 : Below are a few examples of closed sets.

(1) Closed balls are closed sets.

(2) In the metric space (M,d) = (R,| - |), the intervals [a, b] with —co < a < b < oo are closed
sets. However, the intervals [a, b) with —0o < a < b < oo are neither open nor closed.

(3) In a metric space (M, d), fix a subset A C M and r > 0. Then, the set

Ay ={ye M:d(y,A) <r}
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is closed. Let y € M\A, and write ¢ = 1(d(y, A) — r). Then, we may show that B(y,e) C
M\A,.

Proposition 2.1.25: Closed sets in (M, d) satisfy the following properties.
(1) The empty set & and the whole space M are both closed sets.
(2) Any finite union of closed sets is still a closed set.

(3) Any intersection of closed sets is still a closed set.

Proof : We actually have the same proofs as in Proposition 2.1.20 by noting that the complementary
of a closed set is an open set. n

Question 2.1.26: Is any union of closed sets still a closed set? If yes, please prove it; otherwise, please give

a counterexample.

2.1.3 Closure, interior, boundary

In the metric space (M, d), not all the subsets are necessarily open or closed, see Example 2.1.24 (2). Given
a subset A C M, we can define its closure (closed set), interior (open set), and boundary (difference between
them).

We start with the definition of closure and discuss some of its properties.

Definition 2.1.27 : Given a subset A of M, we denote by cl(A), or A, the closure (BE) of A, which
is the smallest closed set containing A. In other words,

cl(A)=A:= ﬂ G. (2.3)
GDA
G is closed

Proposition 2.1.28 : A subset A is closed in M if and only if A = A.

Proof : We are given a subset A of M.

We first assume that A is closed. Using the definition given in Eq. (2.3), any subset G in the
intersection on the r.h.s. contains A and we may also choose G = A. Therefore, it is clear that

the intersection gives A.

We assume that A = A. Since A is closed, A is also closed.
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Proposition 2.1.29: Let A C M and x € M. Then, the following properties are equivalent.
(1) z € A.
(2) Foralle > 0, there exists a € A such that d(a,x) < €; or alternatively, AN B(z,¢e) # &.
(3) d(z,A) = 0.

In other words, we may also write the closure A as

A={yeM:dy,A) =0}

Proof : We prove that (1) = (2) = (3) = (1).
« (1) = (2). Let x € A. Given € > 0, we want to find @ € A such that d(a,x) < e. Define
As:={ye M :d(y,A) <5}, Vi=>0.

Since Aj is a closed set for any ¢ > 0, and it contains A, by the definition of A, we deduce that
x € Ag for any 6 > 0. By taking § = 5, we know that d(z, A) < §, that is, we may finda € A
such that d(a, z) < e.

« (2) = (3). Fixe > 0. By (2), we can find a € A with d(a,x) < e. Therefore, we have d(z, A) <
d(a,z) < e. Since € > 0 can be taken to be arbitrarily small, we conclude that d(x, A) = 0.

« (3) = (1). By contradiction, suppose that z ¢ A. Since (A)¢ is open and contains z, we may find

€ > 0 such that B(z,e) C (A)°. This means that d(x,a) > € for any a € A, which contradicts

with (3).
3) .

Example 2.1.30 : Below are some examples of closure.

(1) In a normed space (V, ||-]|), the closure of the centered unit open ball is the centered unit closed

ball, i.e.,

B(0,1) = B(0,1).

(2) If we consider M = {0, 1} with the discrete metric d(x,y) = 1,+,. Then, we have

B(z,1) € B(z,1), Vr € M.

Actually, B(z,1) = {x} is open and closed at the same time, implying that B(x,1) = B(x, 1).
However, the closed ball B(x, 1) is the whole space M. This is still valid as long as we consider
a discrete metric space (M, d) given in Example 2.1.2 (4), where the set M contains more than
2 points.

(3) For (M,d) = (R, |-

), the closure of an open interval (a, b) with —oo < a < b < o0 is [a, b].
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Definition 2.1.31: A subset A of M is said to be dense (¥8%&) (in M)if A = M.

Remark 2.1.32 : To check whether a subset A is dense in M, we may use the property (2) or (3) in
Proposition 2.1.29.

Below is an interpretation of the density property in R.

Lemma 2.1.33: For (M,d) = (R, |-

), a subset A is dense if and only if (a,b) N A # & foralla < b.

Proof: Let us first assume that A is dense in R, thatis A = R. Leta < b,z = 1(a+b) ande = 1 (b—a).
Then, (a,b) N A = B(x,e) N A, which is nonempty by (2) of Proposition 2.1.29

Let A be a subset of R such that AN (a, b) is nonempty for all a < b. Given x € R, we want to show
that x € A. Forany € > 0, take a = x — ¢ and b = z + ¢, since (a,b) N A = B(x,¢) N A is nonempty
by assumption, by (2) of Proposition 2.1.29, we deduce that = € A. 0

Example 2.1.34 : Both the set of rationals Q and the set of irrationals R\Q are dense in R, i.e. Q =
R\Q =R.

Next, we define the notion of interior points and interior of a set. We will see that it is quite similar to the
notion of closure (after taking the complement).

Definition 2.1.35:Let A C M and # € A. We call x an interior point (R&) of A if there exists
e > O such that x € B(z,¢) C A.

Definition 2.1.36 : Given a subset A of M, we denote by int(A), or A the interior (B#%) of A,
which is the largest open set contained in A. In other words,

int(4) =A== |J G (2.4)

GCA
G is open

Proposition 2.1.37 : Given a subset A of M. Then, int(A) contains exactly the interior points of A.

Proof : Let x € A be an interior point of A. By Definition 2.1.35, we may find ¢ > 0 such that
x € B(z,e) C A. It means that B(x, ¢) is an element in the union on the rh.s. of Eq. (2.4). Therefore,
x € B(z,e) Cint(A).

Given z € int(A), by definition, there exists an open set G C A with € G. Since G is open, by
Definition 2.1.18, there exists € > 0 such that the open ball B(x, ¢) contains x. O
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Proposition 2.1.38 : A subset A is open in M if and only if A = A.

Proof : The proof is similar to that of Proposition 2.1.28. O

Example 2.1.39 : Below are some examples of interior.

(1) In a normed space (V/, ||-||), the interior of the centered unit closed ball is the centered unit open

ball, i.e.,

int(B(0,1)) = B(0,1).

However, in a general metric space, this equality might not hold anymore, see Example 2.1.30
(2) for a similar phenomenon.

(2) We do not necessarily have A= A. For example, take (M, d) = (R, |-|)and A = (0,1)U(1,2).
We find A = [0,2] and A = (0,2) # A.

(3) For (Mv d) = (R7| ’

), the interior of a closed interval (a, b) with —0co < a < b < o0 is (a, b).

(4) For (M,d) = (R,] -

), the interior of Q or R\Q is @.

Proposition 2.1.40 : Given a subset A C M, we have

int(A) = M\ cl(M\A) and cl(A)= M\int(M\A).

Proof : By symmetry, it is only sufficient to show int(A) = M\ cl(M\ A) for any subset A C M. Let
A C M. We are going to prove using directly Eq. (2.3) and Eq. (2.4). We write

M\int(A):M\< U G>: N 16

GCA GCA
G is open G is open
= [ MG = () F=cdM\A).
M\GDM\A FOM\A
G is open F is closed

Definition 2.1.41: Given a subset A of M, we define the boundary (i%«??) of Aas 0A := Z\A

Example 2.1.42:

(1) For (M,d) = (R,|-|) and A = [0,1), then 9A = {0, 1}.

(2) For (M,d) = (R?,|-|)and A = [0,1) x {0}, then A = [0,1] x {0}.
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2.2 Adherent points and accumulation points

2.2.1 In general metric spaces

Definition 2.2.1: Given a subset A of M andx € M.
(1) We say that x is an adherent point (H1Z#h) of A if for any ¢ > 0,
B(z,e)NA# @.
We write Adh(A) for the set of adhrent points of A.
(2) We say that x is an accumulation point (FEFXE) of A if for any £ > 0,
B(z,e)NA# @ and B(z,e)NA# {z}.
We write Acc(A) for the set of accumulation points of A.
(3) We say that x is an isolated point (\iZ%k) of A if there exists ¢ > 0 such that
B(z,e) N A = {x}.

We write Iso(A) for the set of isolated points of A.

Remark 2.2.2 : From the definition above, we note that
(1) The set of adherent points is exactly the closure, that is Adh(A) = A, see Proposition 2.1.29.

(2) The set of adherent points can be written as the disjoin union of the two other sets, i.e., Adh(A) =
Acc(A) UIso(A);

(3) Ais dense in M if and only if all the points in M are adherent points of A, or Adh(A) = M.

Example 2.2.3 : In the metric space (M, d) = (R, | -

), consider the set A := {1, n € N}. Then,
« 0 is an accumulation point of A;
« all the points %, where n > 1 is a positive integer, are isolated points of A;

« the points in AU {0} are adherent points of A.

Proposition 2.2.4 : Given a subset A of M and x € M. The following properties are equivalent.

(1) x is an accumulation point of A.

(2) Foranye > 0, B(x,e) N A contains infinitely many points.
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Proof : By definition, it is clear that (2) = (1).

Assume that x is an accumulation point of A. Fix ¢ > 0 and let us construct a pairwise distinct
sequence (&, )n>1 of points in B(x,¢) N A by induction.

Take 1 = ¢, by definition we can find 1 € B(z,e1) N A with 1 # x. Let n > 1 and assume that
pairwise distinct z1,...,2, and €1 > - -- > &, have been constructed, and satisfying

g1 >d(z,xy) =¢e2> - >d(x,zy) = €nt1.

Again by definition, we can find z,4; € B(x,ep41) N A with 41 # x. Moreover, we know that
d(z,xpy1) < Eny1 = d(x,xy), S0 Ty is distinct from all the previous x4, . . ., Tp,. O

2.2.2 In Euclidean spaces R"

Let us consider Euclideans spaces R™ for some positive integer n > 1. Recall that the canonical norm is
defined via the associated inner product (Proposition 2.1.12), which also leads to the canonical metric on R"
(Example 2.1.4).

Theorem 2.2.5 (Bolzano-Weierstrafy theorem) : Let A C R™ be a bounded set. If A contains infinitely
many points, then there exists at least one point in R™ which is an accumulation point of A.

Remark 2.2.6 : The choice of a Euclidean space is important here. For example, if we consider the discrete
metric space as in Example 2.1.2 (4), then in R, the subset of rationals Q C E(O, 1) is bounded and infinite.
However, Q does not have any accumulation point in R. In fact, for x € Rand ¢ € (0, 1), we have B(x,e) N
Q = {z} or @, depending on whether z € Q or z € R\Q.

Proof : Since A is bounded, there exists M > 0 such that A C [—M, M]™. We are going to construct
sequences (a,(;))k% and (b,(;))@l for 1 < i < n such that

(@) forall 1 < i < n, (a,(j))k% is non-decreasing, (bg))@l is non-increasing, and the difference

bg) — a,(j) tends to 0 when k — oo,

(b) for every k > 1, the intersection A N By, contains infinitely many points, where
Bp:=I" x-oox 1™ 10 =0 3P 1<i<n

We proceed by induction on k.
Let agz) = —M and bgl) = M forall 1 < i < n. Let k > 1 and suppose that (agl))lggk and
(béz))lggk have been constructed, are non-decreasing and non-increasing respectively, and satisfy (b).

We may divide each of [, Igi) into two segments of equal length [ ]Ef) = ,gz)l Ul ,gg that is

B =0, 1=l = bl )

leading to 2" subsets of By whose union is By, itself,

Bl(il = I’g?d X oo X Ilgl;v)"n’ r = (T1,~~-,Tn) c {1’2}71‘

12 Last modified: 13:42 on Wednesday 23" October, 2024



Chapter 2 Topology on metric spaces and normed spaces

Since '
AnBy,= J (AmB,(j’)r)
re{l,2}m

is an infinite set, at least one of the AN B ,(;1 needs to be infinite as well. Let r be such that AN B ,(;l is
infinite. Then, for 1 < ¢ < n, we let

(0 b)) = (o)) cf) ifri =1,
k+1> Yk+1 (C](;>7 bg)) ifr; = 2.

Then, it is not hard to check that a,(;) < a,(jil, b,(;) > bl(;)rl’ and b,(clj_l — a,(i)rl = %(b,(;) — a,(;)).

Now that we have constructed the sequences (a,(;)) k>1 and (bg))@l for 1 < i < n as above, we
know that (a,(;)) k>1 and (bfj)) i>1 both converge and have the same limit, denoted by z;. We want to
show that  := (z1,...,x,) is an accumulation point of A. To see this, we are going to fix ¢ > 0,
and want to show that A N B(z, ) contains infinitely many points. By the above construction, it is
not hard to see that x € By, for all k > 1. For large enough k£ > 1, we may see that By C B(z,¢),
therefore, A N B(x, ) also contains infinitely many points. 0

Theorem 2.2.7 (Cantor intersection theorem) : Given a sequence of nonempty closed sets (Ay)r>1 in
R™. Suppose that

e Apiq C Ay forallk > 1,
e A is bounded.

Then, the intersection A = (51 Ay, is closed and nonempty.

Remark 2.2.8 : It is important to assume that A;’s are closed sets and that A; is bounded.
- If A)’s are not closed, take A;, = (0, 1) for instance, then ;- 4y, = @.
« If Ay is not bounded, take A, = [k, co) for instance, then ;1 A = @.

Proof : First, it is easy to see that A is closed being an intersection of closed sets, see Proposition 2.1.25.
Then, we need to show that A is nonempty using Bolzano-Weierstrafl theorem.

If there exists an £ > 1 such that Ay is finite, then it is clear that the sequence (Ay)x>1 needs to
stablize to a nonempty set, and the intersection A is nonempty. Therefore, we may assume that Ay, is
infinite for all £ > 1.

For each k > 1, we may find x;, € Ay, such that the sequence (xy)>1 is pariwise distinct. We also
note that, due to the fact that (A)x>1 is non-increasing, we have x, € A, for any k > m > 1. Since
X ={xy : k > 1} isabounded set containing infinitely many points, by Bolzano-Weierstraf} theorem,
it has an accumulation point x € R™. We need to check that z is indeed in A, or equivalently, x is in
A, forallm > 1.

Given m > 1 and £ > 0. From Proposition 2.2.4, it follows that B(x,¢) contains infinitely many
points of X. Apart from a finite number of them (those with index &k < m), all the other points are also
in A,,. Therefore, A,, N B(x,¢) is also infinite, which means that x is also an accumulation point of
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A,,,. Since A,, is closed, we find x € A,,. O

Example 2.2.9 : We define a sequence of subsets of R by induction,
Co=1[0,1, Cpi1=3C,URC,+2), VYn>0.
Let C := Np>0Cyp. The set C is called Cantor set, and has the following properties.
(1) C is a nonempty closed set.

(2) C is equinumerous to {0, 1}, so uncountable.

(3) The “length” of C is zero.

2.3 Subspace topology

Given a metric space (M, d) and a subset S C M, we want to equip S with a distance so that it can
become a metric space. The most natural way is consider the restricted distance dgx g, which is the distance
d restricted on S x S, sometimes also denoted by d by abuse of notations. Then, (S, d) is a metric space, and
its topology is called induced topology (FEBIRIE), trace topology (FFHAIE) , subspace topology (FZEfEIh
#) , or relative topology (1B¥I¥01) .

Proposition 2.3.1: Let S be a subset of M.
(1) The open sets of S are exactly the sets AN S where A is an open set of M.

(2) The closed sets of S are exactly the sets A N S where A is a closed set of M.

Proof : A closed set is the complement of an open set, so it is enough to check (1). An open set is
described by open balls (Definition 2.1.18), so we only need to check (1) for open balls. This is trivial,

because we have

Bgs(z,e) = By(z,e) NS, Vxe M,e> 0. 0

),

« (0,z) and (z, 1] are open sets for x € (0, 1),

Example 2.3.2: In the metric space ((0, 1],] -

+ (0,z] and [z, 1] are closed sets for x € (0, 1).

Remark 2.3.3 : We see from Example 2.3.2 that when we talk about closed or open sets, it is important to
mention the ambient space.
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Example 2.3.4 : On the space (0, 1], we may consider the topology induced by the metric space (R, |-|)
as mentioned in Example 2.3.2. Alternatively, we may also define a distance d on (0, 1], given by

1

1
d(x>y):‘;_§7 vx??Je(O?l]

We may check in Exercise 2.23 that these two metric spaces define the same open sets. In other words,
an open set of ((0, 1], - |) is also an open set of ((0, 1], d), and vice versa.

2.4 Limits
2.4.1 Definition and properties

In this section, we are given a sequence (a,,),>1 with values in a metric space (M, d). When we want to
talk about a subsequence of (a,,),>1, we may write
« either (ap, )r>1 for a strictly increasing sequence (ny)r>1 and nq > 1,

« or (ay(n))n>1 for a strictly increasing function ¢ : N — N, called extraction (ZEEXERIZ) .

Definition 2.4.1:

« Let ¢ € M. We say that (a,)n>1 converges to ¢, and write

ap, — ¢ or lim a, =/,

n—oo n—oo
if for any € > 0, there exists N > 1 such that d(a,, ) < e foralln > N.
« We say that (ay,)n>1 converges if there exists £ € M such that (a,),>1 converges to £.

« If (an)n>1 does not converge, we say that (a,,),>1 diverges.

Remark 2.4.2:
(1) For (M, d) = (R, | - |), we recover the classical (if you have seen) definition of the limit of a sequence
in R.
(2) The convergence a,, — ¢ in a metric space (M, d) can also be interpreted in an equivalent way as
the convergence d(ay, ) — > 0in (R,|- -

(3) The notion of convergence is a topological notion, in the sense that it only depends on the topology (we
recall its definition in Remark 2.1.22) that the space is equipped with. See Exercise 2.24.

Example 2.4.3:

(1) For (M,d) = (R, |-|), the sequence defined by a,, = (—1)",n > 1, does not converge. However,
the subsequences (a2, )n>1 and (a2,+1)n>1 converge respectively to 1 and —1.

(2) The sequence (a, = 1),>1 converges to 0 in [0, 1] but diverges in (0, 1].

(3) If we consider a discrete metric space, see Example 2.1.2 (4), then any convergent sequence
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{ (an)n>1 is eventually constant , i.e., there exists N > 1 such that a,, = ay foralln > N. J

[ Lemma 2.4.4 : The sequence (a,)n>1 can converge to at most one point { € M. ]

Proof : By contradiction, suppose that (a,),>1 converges to ¢1 and {5 with ¢; # ¢5. Given ¢ > 0, we
may find Ny, Ny > 1 such that

Therefore, we can take n > max (N7, N2) and apply the triangle inequality to deduce that
d(ﬁl,eg) < d(an,él) + d(an,ég) < 2e.

Since € can be arbitrarily small, for ¢ < %d(ﬁl, 3), we find a contradiction.

2.4.2 Cauchy sequences and complete spaces

Definition 2.4.5: A sequence (ay,),>1 is said to be a Cauchy sequence (fIFaFF%!) if for any ¢ > 0,

there exists N > 1 such that
d(an,am) < e, Vn,m > N. (2.5)

Proposition 2.4.6 : If (a,)n>1 is a convergent sequence in (M, d), then it is a Cauchy sequence.

Remark 2.4.7 : We note that a Cauchy sequence does not converge necessarily. For example, in the metric
space (M,d) = ((0,1],] - |), the sequence (a,, = 2),>1 is Cauchy, but does not converge.

Proof : Suppose that (a,,),>1 is a convergent sequence with limit £. Given € > 0. By the definition of
convergence, we may find N > 1 such that for any n > N, we have d(a,, () < % Therefore, for any

n,m = N, we have
£

d(an, am) < d(an, 0) + d(am, 0) < § + 5 = . 0

Proposition 2.4.8 : A Cauchy sequence is always bounded.

Proof : Let (ay),>1 be a Cauchy sequence with values in a metric space (M, d). Fixe > 0and N > 1
such that Eq. (2.5) holds. The set {a1,...,an} is finite, so bounded. The set {a,, : n > N} is also

bounded because of the Cauchy condition

dlan,ap) < e, Vn > N.
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O

Remark 2.4.9 : We note that the notion of Cauchy sequence is not a topological notion. It cannot be defined
by open sets, and depends on the distance that the metric space is equipped with. We may come back to the
example mentioned in Example 2.3.4. The sequence (a,, = +),>1 is Cauchy in ((0, 1], | -|), but is not Cauchy
in ((0, 1], d), although they define the same notion of open sets. To see this, we have for any fixed N > 1
andn,m > N,

lan, — am| < but d(an,am) =|n—m.

1
N

Definition 2.4.10:

« A metric space (M, d) is said to be complete (5tf#) if every Cauchy sequence in (M, d) con-
verges to a limit in M.

« A complete normed vector space (V, ||-||) is called a Banach space (Banach ZEf&]) .

Example 2.4.11:
(1) Euclidean spaces R"” with n > 1 are complete.

(2) Q is not complete. We may consider an irrational point z € R\Q and a sequence of rational
numbers (z,,),>1 converging to x in R. This sequence is a Cauchy sequence in Q but does not
converge in Q.

Leter in Section 3.2, we will have a more thorough discussion about complete spaces.

2.4.3 Limits and adhernet points

In this subsection, we are going to give sequential characterizations of some topological notions, especially
the notion of adherent points and closed sets, which can be better understood using sequences.

Below, we are given a sequence (a,,),>1. For p > 1, let us write A, := {a,, : n > p} for the range ({EIH)
of the sequence (ay)n>p and A := A;. We may also define

L :={l € M : there exists ¢ : N — N that is strictly increasing such that a,,) —— /(}

n—o0

to be the set of all the subsequential limits.

Proposition 2.4.12: Let { € M and suppose that (ay,)n>1 converges to {. Then,
(1) A is bounded,

(2) ( is an adherent point of A, that is{ € A.
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Proof : (1) is a direct consequence of Proposition 2.4.6 and Proposition 2.4.8.

To show (2), let us fix ¢ > 0. By the definition of convergence, we can find N > 1 such that
d(an,l) < e forn > N. We deduce that B(¢,e) O Ay = {a, : n > N}, where Ay is not empty.
Since this property holds for any arbitrarily € > 0, we deduce that ¢ is an adherent point of A. O

Proposition 2.4.13 : Let A C M be a subset and ¢ € M.

(1) If¢ is an adherent point of A, then one can find a sequence (ay,)n>1 with values in A that converges
to (.

(2) If¢ is an accumulation point of A, then one can find a sequence (ay,)n>1 with values in A\{{} that
converges to (.

Proof : The construction is similar in both cases, let us start with (1). Let / € M be an adherent point
of A. For every n > 1, since B({, 2) N A is not empty, we may find a,, € A such that d(¢,a,) < L. We
can easily see that the sequence (a,),>1 converges to (. For (2), we may take a, € B((,2) N (A\{¢}),
which is nonempty for all n > 1. ]

It is also convenient to use limits to describe closure and closed sets, which can be seen as a consequence
of the above propositions.

Corollary 2.4.14: Let A C M be a subset andx € M. Then, x € A if and only if there exists a sequence
of points in A that converges to x.

Proof : It is a direct consequence of Proposition 2.4.12 and Proposition 2.4.13. O

Corollary 2.4.15:Let A C M be a subset. Then, A is closed if and only if every convergent sequence
(in M) of points of A converges to a limit in A.

Proof : It is a direct consequence of Corollary 2.4.14. ]

The following proposition tells us when a sequence converges.

Proposition 2.4.16 : Let { € M. The sequence (a,)n>1 converges to { if and only if every subsequence
(@p(n))n=1 converges to L.

Proof : We first assume that (a,)n>1 converges to £. Let (ay(,))n>1 be a subsequence of (an)n>1. Fix
£ > 0. By the definition of convergence, there exists N > 1 such that d(a,,,¢) < € forn > N. Since ¢
is strictly increasing, we also have ¢(n) > N for n > N. Therefore, d(ay(y),£) < € forn > N.

If every subsequence of (ay, ),>1 converges to ¢, then the original sequence also converges to ¢, since
©(n) = n is also an extraction. O
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Before closing this subsection, we see a more general proposition which describes the structure of £, the
set of all the subsequential limits of (ay,),>1.

Proposition 2.4.17 : Let ¢ € M. The following properties are equivalent.
(1) L e L.
(2) L € A, forallp > 1.
(3) ¢ is either an accumulation point of A, or { appears infinitely many times in the sequence (G, )n>1.

In particular, this implies that the set of the subsequential limits of (an)n>1 may also be rewritten as
L = Np>1A4p, which is closed.

Proof : We are going to show that (1) = (2) = (3) = (1).

« (1) = (2). Suppose that ¢ € L, that is there exists an extraction ¢ : N — N such thata
¢. Therefore, it follows from Proposition 2.4.12 that

) }

e(n) T 500

le {aw(n) n > 1} - As&(l)'

For any non-negative integer p > 1, the map ¢, : N = N, n — ¢(n + p) is still an extraction,
and the convergence a,, () — ¢ still holds. Therefore, we deduce that £ € A, forp > 1.
n—oo

Since the sequence of subsets (Aj),>1 is non-increasing (for the inclusion), we deduce that

ﬂ Ap = ﬂ Ag(p)-

p=1 p=1

« (2) = (3). Suppose that £ € A, for all p > 1 and that ¢ does not appear infinitely many times in
(@n)n>1. Let p > 1 such that a,, # £ for alln > p. Since £ € A, and ¢ ¢ A, we know that ¢ is
an accumulation point of A, so also an accumulation point of A.

« (3) = (1). If £ appears infinitely many times in (a,, ), >1, it is easy to construct a subsequence with
limit /. Now, suppose that ¢ is an accumulation point of A. It follows from Proposition 2.4.13
that we may find f : N — N (not necessarily an extraction) such that ay,) — ¢ and
afm)y € A\{£} foralln > 1. The map f cannot be bounded, since otherwise (a(,))n>1 would
only take finitely many different values, the sequence (af(,))n>1, being convergent, would be
eventually constant (constant for large n), and would not be able to converge to /. Thus, we
may find an subsequence of (f(n)),>1 that is strictly increasing, denoted (f o ¢(n)),>1. Then,

Y= fop:N— Nisan extraction and a,p,) — L. -

2.4.4 In a normed space

In this subsection, we are given a normed vector space (V, ||-||) over a field K = R or C.
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Proposition 2.4.18 : Let (xy,)n>1 and (yn)n>1 be two sequences in V. Suppose that
nh_}rglo Tp = and nh_}rrgo Yn = Y-
Then,
n— o0

2) Az, — Az forany A € K,

@ llzall —= lla].

Proof :

(1) Let us fix ¢ > 0 and take N > 1 such that for n > N, we have
[zn —zf| <& and |lyn —yll <e.
For n > N, we have
[(@n +yn) = (@ + )| < llzn — 2l + [lyn —yll < 2e.
Since € > 0 is arbitrary, we have shown that x,, + y, —o +y.

(2) We write directly
Aty — Az|| = |A| ||zn — z|]] —— 0.
n—oo

(3) The triangular inequality gives

Hznll = 2l | < flzn = 2]} === 0.

2.4.5 Limit of a function

We consider two metric spaces (M, d) and (M’,d’). Let A C M be a subset of M, and let f : A — M’ be
a function from A to M.

Definition 2.4.19 : Let a be an accumulation point of A and b € M’. We say that when « tends to a,
f(z) tends to b, and write
lim f(z) = b,

r—ra

if for every € > 0, there exists 0 > 0 such that

Vo € A\{a}, d(xz,a)<d = d(f(x),b)<e. (2.6)
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Proposition 2.4.20 : Let a be an accumulation point of A and b € M. Then, the following properties
are equivalent.

(1) When z tends to a, f(x) tends to b, that is

lim f(z) =b.

T—a
(2) For any sequence (y,)n>1 with values in A\{a} converging to a, we have

35, /(o) =B

Proof : Let us assume that (1) holds, that is f(z) — b when x — a. Fix € > 0 and choose 6 > 0 such
that Eq. (2.6) holds. Fix a sequence (zy,),>1 with values in A\{a} converging to a. We may find N > 1
such that for n > N, we have d(x,, a) < §. Therefore, for n > N, we also have d'(f(zy,),b) < e. This
shows that f(x;,) ——b

For the converse, let us proceed by contradiction. We assume that (2) holds but not (1). If (1) does
not hold, we may find € > 0 such that for every n > 1, there is x,, € A such that
and d'(f(xn),b) > €.

1
n

0 < d(zp,a) <

It is clear that (z,,)n>1 converges to a, but (f(x,))n>1 does not converge to b since there is always a
positive distance at least € between f(x,,) and b. This contradicts (2). O

Proposition 2.4.21: Consider a normed vector space (V, ||-||) overa field K =R orC. Let f,g: A -V
be two functions, and a be an accumulation point of A. Assume that

lim f(z) =b, lim g(z)=rc.

T—ra Tr—a

Then,
(1) limg o (f(2) + g(z)) = b+c,
(2) limg_yq Af(x) = Ab for every A € K,
(3) limgsq || f(2)]| = [[0]]-

Proof : It is a direct consequence by applying Proposition 2.4.18 and Proposition 2.4.20. g

2.4.6 On the real line

Below, we are given a sequence (a,, ),>1 taking values in the metric space (M, d) = (R, |-|). In Proposition
2.4.17, we saw how to characterize the subsequential limits of the sequence. We are going to see other notions

of limits.
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Definition 2.4.22 : We define

hm a, = limsup a, := inf sup ay,
n—o00 n2lp>p

lim a, = liminf a,, := sup inf ag,

n—00 n—oo n>1k=n

called the upper limit (EABPR) and the lower limit (FHEFR) of (ay)n>1

Remark 2.4.23 : We note that, we may rewrite lim sup,,_, . a, as a non-increasing limit,

limsup a,, := hm J sup ag,
n—o00 k>n

because the sequence (supk>n ak)n>1 is non-increasing. Similarly, lim inf,,_,« a,, can be rewritten as a non-

decreasing limit,

lim 1nfa = lim 1 inf a
n— n n—oo T k>n ke

Example 2.4.24:
(1) The sequence defined by a,, = (—1)" has upper limit 1 and lower limit —1.

(2) The sequence defined by a,, = sin(n) has upper limit 1 and lower limit —1.

Lemma 2.4.25 : If (a,(n))n>1 is a convergent subsequence of (an)n>1, then its limit £ is an adherent
point of {ay, : n > 1} and satisfies

liminfa, <?¢:= lim a < lim sup a,,.
n—oo " oo (M) n_,oop "

Proof : Let (a,(n))n>1 be a convergent subsequence of (ay)n>1. It follows from Proposition 2.4.17
that its limit ¢ is an adherent point of the range {a,, : n > 1}.
Next, for any n > 1, we clearly have

inf ap <a < sup ag. (2.7)
kp(n) Lp(n)\k%,o(n)

By taking a monotonic limit for the left inequality in Eq. (2.7), we find

liminfa, =sup inf ar= lim inf ar < lim a = /.
n—oo " n>P1)k>g0(n) k n—00 k> (n) kS 05 o)

If we do the same thing for the right inequality in Eq. (2.7), we find the other inequality. O
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Lemma 2.4.26 : There exist subsequences (a(n))n>1 and (@y(n))n>1 such that

liminfa, = lim a and limsupa, = lim a .
oo T nooo PN n_ﬂ)op ™ T oo (M)

Proof : We are going to construct an extraction ¢ for the lower limit by induction. Let ¢ :=
lim inf,,_ o a,. Define

e(l):==inf{ln>1:0—-1<a, <{+1},
Vn > 1, e(n+1):=inf{n>pn): {— L <a, <l+1}.
It is not hard to check that ¢(n) is well defined for all n > 1 and that ¢ is strictly increasing. Addi-

tionally, we easily see that lim a = {. The construction works in a similar way for the upper limit.
O

w(n)

Remark 2.4.27 : The above two lemmas justify the names of upper limit and lower limit given to lim sup
and lim inf.

Proposition 2.4.28 : A sequence (ap)n>1 in R converges if and only if liminf, ,a, =
lim sup,,_,o, an < 00.

Proof : It is a direct consequence of Proposition 2.4.16 and the above lemmas (Lemma 2.4.26 and
Lemma 2.4.25). O

Remark 2.4.29 : The limit of a real sequence needs not exist in general. However, its upper limit (resp.
lower limit) always exist in (—o0, +00] (resp. in [—00, +00)). In order to write lim, or to show that the limit
exists, this proposition suggests that one may show that the upper limit and the lower limit are equal.

2.5 Continuity
2.5.1 Definition and properties

Below, we are given two metric spaces (M, d) and (M’,d’). When we talk about balls in different metric
spaces, we may add a subscript to avoid confusion. For example, By (z, €) or By(x, €) denotes the open ball
centered at x € M with radius € > 0 in (M, d).

Definition 2.5.1: Given a function f : (M,d) — (M’,d’). We say that f is continuous at x € M if
for any € > 0, there exists § > 0 such that

Yy € M, dz,y) <d = d(f(x),f(y)) <e, (2.8)

or equivalently,

f(Bu(,6)) € Bur(f(2),¢€).
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We say that f is continuous if it is continuous at all z € M.

Example 2.5.2:

(1) If we take (M,d) = (M',d") = (R, |-
saw in the first-year calculus.

), then we recover the definition of continuity that we

(2) The identity map Id : (M, d) — (M,d), x — x is continuous.

(3) Fix a € M. Then, the map (M,d) — (R, |- |),z — d(x, a) is continuous.

Remark 2.5.3:If a € M is an accumulation point, then the continuity of f at a is equivalent to

lim f(x) = f(a).

T—a

If @ € M is an isolated point, then any function f : M — M’ is continuous at a, because for sufficiently
small 6 > 0, the open ball B(a, ) is reduced to the singleton {a}.

Proposition 2.5.4 : Consider three metric spaces (M, dy), (Ms,ds), and (Ms,ds). Let f : My — Mo
and g : My — M3 be two functions. Fix x € M. If f is continuous at x and g is continuous at f(x),
then the composition g o f : M} — M3 is continuous at x.

Proof : The proof is quite direct if we use Definition 2.5.1. Given € > 0. Since g is continuous at
y := f(x), we may find > 0 such that

9(Bu,(y,m)) € B (9(y), €)-
Since f is continuous at x, we may find 6 > 0 such that
f(Ba, (%,6)) € B, (f(2),m) = Bary (y,m)-
Putting the two above inclusions together, we find
(g0 /) (B (2,0)) € 9(Bar, (y:m)) € Bass((9 0 f)(x), €)-

This leads to the continuity of g o f at x.

2.5.2 Sequential characterization

Proposition 2.5.5: Given a function f : (M,d) — (M’,d’) anda € M. Then, the following properties

are equivalent.
(1) f is continuous at a.

(2) For every sequence (xy,)n>1 with values in M that converges to a, the sequence (f(xy,))n>1 with
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values in M’ also converges to f(a). In other words,

Jim 2z, =a = lim e = f( lim xn) = f(a).

n—o0 n—oo

Proof : The proof is similar to that of Proposition 2.4.20.

Example 2.5.6 : The function f : R — R is continuous at 0,

_ Jxsin(l/z), ifz#0,
f(@) = {0, ifz=0.

We can see this by taking any convergent sequence (z,),>1 with limit 0, then

f(@n)] = [z sin(1/)] < || —— 0.

Proposition 2.5.7 : Consider a normed vector space (V. ||-||) over a field K = R or C. Leta € M and
f,9: M — V be two functions that are continuous at a. Then,

(1) x — f(z)+ g(z) is continuous at a,

(2) x — \f(z) is continuous at a,

(3) x — || f(x)] is continuous at a.

Proof : It is a direct consequence by applying Proposition 2.5.5 and Proposition 2.4.18. 0

Example 2.5.8:Letn > 1and P € R[X},..., X,,] be a multivariate polynomial. Take (M,d) =
(R™,[]|l;) and (M’',d") = (R, | - |). Then, the map (a1, ...,a,) — P(ai,

..., ay) is continuous. This
can be seen by using Proposition 2.5.5 and the following two facts.

(a) For any sequence (a* = (af, ..., aF))r>1 with values in (R",||-||;), we have
limak:a:(al,...,an) & limaf:ai, Vi=1,...,n.
k—o0 k—o0

(b) For any real-valued sequences (zy,)n,>1 and (Y, )n>1, we have

d o= and -l g =y >l sy = 2y

2.5.3 Characterization using preimage
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Definition 2.5.9 : Given a function f : (M,d) — (M’,d') and a subset A C M’. We recall the
definition viewed in Definition 1.1.7 of preimage or inverse image (fR/&) of A under f,

YA ={zeM: f(z) € A}.

Remark 2.5.10 : We recall the following properties for the preimage.
(1) If f is bijective, then the preimage of A under f is exactly the image of A under f~!.
(2) fAC BC M, then f~1(A) C f~Y(B) C M.
(3) For A C M, we have A C f~1(f(4)).
(4) For A C M’, we have f(f~1(A)) C A.

Proposition 2.5.11: Let f : (M,d) — (M',d") be a function. The following properties are equivalent.
(1) f is continuous on M.
(2) The preimage of any open set of M’ is open in M.

(3) The preimage of any closed set of M’ is closed in M.

Proof : We are going to prove that (1) < (2) < (3).

« (1) = (2). Let A’ C M’ be an open set and denote A = f~1(A’). Given z € A, we want to show
that z is an interior point of A. Let y = f(x) € A’. Since y is an interior point of A’, we may
find £ > 0 such that By (y,e) € A’. Using the continuity of f at 2, we may find 6 > 0 such
that f(Bys(,6)) C By (y,e) C A’ Therefore, z € Bys(z,0) C f~1(A").

« (2) = (1). Given z € M and £ > 0, it follows from (2) that A = f~Y(Byy(f(x),¢)) is open.
Since x € A, we may find § > 0 such that Bys(x,d) C A. This implies that f(Bas(z,0)) C
f(A) = Byp(f(x),€), giving the continuity of f at x.

+ (2) = (3). Let A’ be a closed set in M’, then B’ := M'\ A’ is an open set. We know that
FTHA) = FTHMNB') = M\fH(B).
By (2), the set f~1(B’) is open, so f~!(A’) is closed.

* (3) = (2). The proof is similar. .

Remark 2.5.12: In practice, to check that a function f : (M, d) — (M’, d’) is continuous, we only need to

check the following modified condition:

(2°) The preimage of any open ball of M is open in M.
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Example 2.5.13 : We identify the space M,,(R) of n x n real matrices as R"™, and equip it with the
usual norm ||-||;. The determinant function det : M, (R) — R is continuous. Since R* := R\{0} is
open in R, the set of invertible matrices

GL,(R) := {M € M,(R) : det(M) # 0} = det ™' (R¥)

is also open in M,,(R).

Definition 2.5.14: Let f : (M,d) — (M’',d’) be a function. We say that f is
« an open map (BIRE) if f(A) is open in M’ for any open set A C M;
- a closed map (FABREN) if f(A) is closed in M’ for any closed set A C M.

Remark 2.5.15 : Note that in Proposition 2.5.11, it is important to look at the preimage.

+ A continuous function is not necessarily an open map. For example, a constant function from R to R
maps the open set R to a point which is not open.

« A continuous function is not necessarily a closed map. For example, the function R — R, = — tan(z)
maps the closed set R to (—7, 7), which is not closed in RR.

2.5.4 Isomorphisms

We are going to introduce two notions of isomorphisms ([El##) : isometric isomorphism and topological
isomorphism (homeomorphism) (}5#£[E]#% ~ [EAF). Below, consider two metric spaces (M, d) and (M, d').

Definition 2.5.16:

« A bijective function f : (M,d) — (M’,d') is called an isometry (SFEB%EER) if
d'(f(z),f(y)) = d(z,y), Vz,ye M

« If there exists an isometry between (M, d) and (M’,d’), then we say that the metric spaces
(M,d) and (M', d’) are isometric or isometrically isomorphic.

Example 2.5.17 : Let us fix an integer n > 1. We denote by M,,(R) = M, (R) the vector space
of n by n real matrices. We may equip My, (R) with the norm ||-|| , ; defined by

n n
VM = (mij)icijen, 1My =D Imajl,
i=1j—=1

and consider the distance d 4,1 induced by the norm ||| ; ;. Then, (M, (R), dp,1) and (R™, dy) are
isometric. For example, the map

M = (mi’j)lgi,jgn — (ml’l, ey M1, M21, -, M2y, M 15 - - ,mn?n),
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is an isometry.

Definition 2.5.18:

e Let f: (M,d) — (M’,d') be a function. Suppose that f is bijective, so that f~! is well defined.
We say that f is a homeomorphism ([EIRE) , or topological isomorphism (Fh¥#R)48) , if both f

and f~! are continuous.

« If there exists an homeomorphism f between (M, d) and (M’,d’), then we say that the metric
spaces (M, d) and (M’,d') are homeomorphic or topologically isomorphic.

Remark 2.5.19 : An isometry is also an homeomorphism.

Example 2.5.20 : Let us consider M = R? with different distances d; induced by ||-
||-||5, and the discrete distance dgiscrete-

1» d2 induced by

(1) The identity map Id : (R?,d;) — (R?,dz) is a homeomorphism because we have

By, (z,7) C Ba,(z,7) C By, (x,V2r). (2.9)

(2) The identity map Id : (R?, dgiserere) — (R?, d1) is not a homeomorphism. This map is bijective
and continuous, but its inverse f —1is clearly not continuous.

Definition 2.5.21: Let d and d’' be two distances on M. We say that the two distances are topologically
equivalent (YA¥EFE) if they define the same topology, in the sense that a set in (M, d) is open if
and only if it is also open in (M, d").

Example 2.5.22:In R?, the distances d; and ds are topologically equivalent, as seen in Eq. (2.9).

Proposition 2.5.23 : Let d and d' be two distances on M. The distances d and d' are topologically
equivalent if and only if the identity map1d : (M, d) — (M, d') is a homeomorphism.

Proof : First, let us assume that the distances d and d’ are topologically equivalent. It is clear that
the identity map Id : (M,d) — (M,d’) is bijective. To show its continuity, consider an open set
A C (M,d). Then,

IdY(A)=AC (M,d)

is still an open set due to the assumption. Hence, Id is continuous. Similarly, we can also show that
Id~? is continuous.

For the converse, we assume that the identity map Id : (M,d) — (M,d’) is a homeomorphism.
By its continuity, any open set A C (M, d’) is still open in (M, d), and vice versa. It is exactly the
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definition of two distances which are topologically equivalent. U

Definition 2.5.24 :

« Given a vector space V' and two norms N7 and N3 on V. They are said to be equivalent if there
exist b > a > 0 such that

a Ni(z) < Na(x) < bNi(z), Ve eV.

+ Given a space M and two distances dj and d2 on M. They are said to be equivalent if there exist
b > a > 0 such that

adl(fﬁ,y) <d2($ay) <bd1($7y)7 Vm,yGM.

Example 2.5.25:In R", the norms ||-

2lloo < llzlly < llzlly < VR llzlly, Vo e R™

1> [Illy, and [|-|| ,, are equivalent. In fact, we have

Remark 2.5.26:
(1) Two equivalent norms induce two distances that are also equivalent.

(2) Two equivalent distances define two metric spaces that are topologically equivalent. This can be seen
using inclusion relations between balls defined by different distances Example 2.5.20 (1).

(3) Later in Theorem 3.2.22, we will see that on a finite dimensional vector space, all the norms are equiv-
alent.

2.5.5 Uniform continuity

Definition 2.5.27 :Let f : (M,d) — (M’,d’) be a function. We say that f is uniformly continuous
(FIEIERE) if for any € > 0, there exists § > 0 such that

Va,y € M, dz,y) <d = d(f(x),f(y)) <e. (2.10)

Example 2.5.28 : The function f : Ryg — R,z — % is continuous. It is not uniformly continuous
on (0, 1], but is uniformly continuous on [1, c0).

Remark 2.5.29:

(1) An uniformly continuous function is continuous, but the inverse does not hold in general, as we just
saw in Example 2.5.28.

(2) In the definition of uniform continuity, the choice of § does not depend on x and y, that is why it is
called uniform. You may compare (2.8) and (2.10) to see the difference.

(3) Uniform continuity is not a topological notion, in the sense that it cannot be defined only using the
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open sets. See Exercise 2.41.

(4) Given a uniformly continuous function f : (M;,d;) — (Ma,ds) and distances d} and df such that
dy and d’l are equivalent, ds and d’2 are equivalent. Then, it is not hard to see that the function f :
(M, d}) — (Maz,d,) is also uniformly continuous.

Definition 2.5.30 :Let f : (M,d) — (M’,d’) be a function. Given K > 0. We say that f is
K-Lipschitz continuous if

d'(f(z), f(y) < Kd(z,y), Vz,y € M.

We also say that f is Lipschitz continuous if there exists K > 0 such that f is K-Lipschitz continuous.

Corollary 2.5.31: Any Lipschitz continuous function is also uniformly continuous.

Proof : It is a direct consequence by taking 0 = /K in (2.10) if the function f : (M,d) — (M,d') is
K-Lipschitz. O

Definition 2.5.32: Given a space M and two distances d and d’ on M. They are said to be uniformly
equivalent (355 {8) if the identity map Id : (M,d) — (M,d’) and its inverse are uniformly
continuous.

Remark 2.5.33 : Two equivalent distances are uniformly equivalent, and two uniformly equivalent distances
are topologically equivalent.

2.6 Product of metric spaces

Given n metric spaces (M1,d;),...,(My,d,). We define the product space M = M; X --- x M, and
want to equip it with a distance. There are several ways to achieve this using the distances dy, ..., d,. The
canonical way is as follows.

Definition 2.6.1: We may equip the product space M with the product distance d defined as follows,

d(z,y) = max d;(zi, i), (2.11)

1<i<n

forz = (z1,...,2n),y = (Y1,---,Yn) € M.

Remark 2.6.2 : The open ball centered at x = (z1,. .., x,) with radius r under the distance (2.11) is given

by
Bi(z,r) = Bg, (x1,7) X -+ X Bg, (xn, 7).
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Remark 2.6.3 : We may also define other distances on the product space M. Let
n n
Di(z,y) = di(zs,yi) and Da(z,y) = | > di(zi, yi)%,
i=1 i=1
which are also distances on M. They are equivalent to the product distance d defined in (2.11), because

d(z,y) < Da(z,y) < Di(z,y) < nd(z,y), Vz,y€E.

Therefore, it does not really matter which of these three distances we choose on the product space M.

Definition 2.6.4 : For 1 < i < n, we may define the projection on the i-th coordinate of the product
space M,
PI‘OjZ-Z M = M, X--~><Mn — Mz
x=(T1,...,Tp) o x;.

Proposition 2.6.5 : The projection Proj; is continuous and open (Definition 2.5.14) for all1 < i < n.

Proof : Fix1 <7 < n.

» First, let us check that Proj; is continuous. Following Remark 2.5.12, we only need to check the
preimage of an open ball under Proj;, is open. Let y € M; and € > 0. It is not hard to check that

Proj; ' (B, (y,€)) = My X -+ x M;_1 x B, (y,€) X Mipq X --- X M.
The rhs. is clearly an open set.

« Then, let us check that Proj, is an open map. Given an open set A C M and y € Proj,(A). Then,
there exists z € A with x; = y. Since A is open, there exists » > 0 such that By(z,r) C A.
We know that the open ball in the product space can be written as the product of open balls
(Remark 2.6.2), we deduce that Proj,(Bg4(z,7)) = Bg,(x;,r). Therefore, y = x; = Proj;(z) €

By, (zi,r) = Proj;(Bq(z,r)) C Proj,(A), implying that y is an interior point of Proj;(A). -

Proposition 2.6.6 : Let (M',d’) be a metric space, a € M', and f : M' — M be a function. Then, f is
continuous at a if and only if f; := Proj, o f is continuous at a forall1 < i < n.

Proof : If f is continuous at «, it is not hard to see that f; is continuous at a for all 1 < 7 < n by
composition (Proposition 2.5.4). Conversely, suppose that f is a function such that f; is continuous at
aforall 1 < i < n, we are goinig to show that f is also continuous at a. Let e > 0. Foreach 1 < ¢ < n,
we can find §; > 0 such that for x € M,

d/(l‘,a) <0 = dl(fl(l'), fz(a)) <E.

Since the product space M = M; x - x M, is equipped with the metric defined in (2.11), by letting
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0 = minj;<y 9;, for x € M, we have,

d(z,a) <6 = d(f(z), f(a) = max di(fi(x), fia)) <e.

1<i<n

This shows the continuity of f at a. O
M — MMy X x M,

Proj.
Proj; o f ol

M;

Figure 2.1: This diagram illustrates the relation between the function f : M’ —
M, the projection Proj; : M — M;, and thir composition.

Proposition 2.6.7: Let (M', d’) be a metric space, f : M — M’ be a function, anda = (aq, . ..,a,) €
M. For1 < ¢ < n, let us define the partial function

fir M, — M
T = f(alv"'yai—laxvai—i-lw"aan)-

If f is continuous at a, then f is continuous at a; forall 1 < i < n.

Remark 2.6.8 : Note that the converse of Proposition 2.6.7 does not hold. For example, let f : R? — R be
defined by

f(OaO) =0,

f(z,y) atl

=24 V(z,y) € R*\{(0,0)}.

Take a = (0,0), then f! = 0 and f2 = 0 are continuous functions, but

f(z,x) 2 L — L h =0

T,x) = s = = - nx )

Ty r T2 Ty U

Proof : For x € M;, let us write ag) = (a1, ,Qi—1, %, Ajy1, ..., 0pn). fdi(x,a;) < 0, then it is clear
that d(ag(f), a) < 0. Hence, if x € By, (a;,0), then ag) € By(a,9). This tells us that the continuity of f
at a implies the continuity of f? at a;. (|
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2.7 Connectedness and arcwise connectedness

We are given a metric space (M, d), and we are going to study its connectedness properties below.

2.7.1 Connected spaces

Let us start with the definition of connected spaces.

Definition 2.7.1 (and properties) : We say that (M, d) is connected (Eif) if one of the three following
equivalent properties are satisfied.

(a) There is no partition of M into two disjoint nonempty open sets.
(b) There is no partition of M into two disjoint nonempty closed sets.
(c) The only subsets of M that are open and closed are & and M.

Otherwise, we say that (M, d) is disconnected (F3E38) . Similarly, in a metric space (M, d), a subset
A C M is said to be connected if the induced metric space (A, d) is connected.

Remark 2.7.2 : To check the property (a), one may assume that there exist open sets A, B C M with
ANB=@and AU B = M, and show that either A = @ or B = @.

Proof : We are going to show that (a) = (b) = (c) = (a).

« (a) = (b). Suppose that there exist two closed sets A; and Ay such that M = A; U Ay and
A1 N Ay = @. Then, By = M\A; and By = M\ Ay are open sets. Moreoever, they satisfy
M = B1 U By and By N By = &. By (a), we know that either B} = @ or By = &, and it follows
that Ay = @ or 4] = @.

+ (b) = (c). Let A C M be open and closed. Then, B := M\ A is also open and closed. Moreover,
we have M = AU B and AN B = @. Then, the assumption (b) implies that either A = & or
B = @, or equivalently, A = @ or M.

« (c) = (a). Let Ay and As be two disjoint open sets such that M = A; U As. Then, A; can be

rewritten as A; = M\ Ag, so it is also a closed set. By (c), we know that A} = @ or M. .

Remark 2.7.3 : The notion of connectedness is a topological notion, that is, it only depends on the notion
of open sets (in the metric space), without the knowledge on the exact distance we are considering.

Example 2.7.4:

(1) The metric space R* = R\{0}, induced by the Euclidean metric (R, | - |), is not connected.
Actually, we have R+ = (—o00,0) U (0, c0) which is a disjoint union of open sets.

(2) In any nonempty metric space, a singleton set {z} is connected for every = € M.

(3) Intervals of R are connected. We will prove this in Proposition 2.7.17.
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(4) The set Q of rational numbers is disconnected.

2.7.2 Properties of connected spaces

Proposition 2.7.5: Let f : (M,d) — (M’,d’) be a continuous function. Suppose that M is connected.
Then, f(M) is also connected.

Proof : Let A be an open and closed subset of f(M). Thus, there exists an open subset By C M’ and
a closed subset By C M’ such that

A:Blﬂf(M) :Bgﬂf(M)

It follows from above that f ~1(A) = f~(B1) = f~!(By), and the continuity of f implies that f ~!(A)
is open and closed in M. Since M is connected, we know that f~!(A) = @ or M, thatis A = & or
f(M). O

Let us consider a discrete space with only two points D = {0, 1} equipped with the discrete distance ¢.
Then, the metric space (D, ) is disconnected because D = {0} U {1} which is a disjoint union of closed
(also open) sets. This discrete metric space will be useful for the characterization of connectedness.

Corollary 2.7.6 : Let (M, d) be a metric space. Then, M is connected if and only if every continuous
function f : M — D is constant.

Proof : First, let us assume that M is connected. Given a continuous function f : M — D, by
Proposition 2.7.5, we know that the f(M) is connected in D. Since D is disconnected, the image
f(M) cannot be the whole space, so f(M) = {0} or {1}, that is, f is constant.

Suppose that every continuous function f : M — D is constant, and we want to show that M is
connected. By contradiction, suppose that M is disconnected. Then, we can find two disjoint nonempty
open subsets A and B such that M = AU B. Define f : M — D as follows,

0 ifze A,
f(x)_{l ifz e B.

The function f is clearly continuous because {0} and {1} are open sets in D, and their preimages
f71({0}) = Aand f~1({1}) = B are also open. However, f is not a constant function. O

Corollary 2.7.7 : Let (M, d) be a metric space, and A C M be a connected subset. Let S be a subset
satisfying A C S C A. Then, S is also connected.
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Proof : Let f : S — D = {0, 1} be a continuous function. Its restriction fia on A is also continuous,
thus constant, since A is connected. Assume for instance that f|4 = 0. Let € S. By the continuity
of f, there exists &€ > 0 such that

yeB(x,e)nS = 0(fy), f(z)) <

This means that f(y) = f(x) fory € B(z,e)NS. Additionally, since S C A, we have B(z,c)NA # @.
We may choose 2’ € B(x,e) N A, then f(2) = 0, giving f(y) = 0 for y € B(x,e) N S. Therefore,
f =0, so the result follows from Proposition 2.7.5. i

N[ =

Proposition 2.7.8 : Let (M, d) be a metric space and (C;);c1 be a family of connected subsets of M.
Suppose that there exists iy € I such that

CiﬂCiO#Q, Vi e 1.

Then, C = U;c1C; is connected.

Proof : Let f : C' = U;jerC; — D = {0, 1} be a continuous function. For every ¢ € I, since Cj is
connected, f|c, is constant. In particular, we may assume that fio, = 0. Letz € C'and ¢ € I such
that x € C;. Since C; N C;, # @, we may find g € C; N Cj,. Due to the fact that f|C,L. is constant, it
follows that f(z) = f(z¢) = 0. Therefore, f is constant on C, and we conclude by Corollary 2.7.6. [J

Remark 2.7.9 : In particular, if (C;);c; is a family of connected subsets such that N;c;C; # &, then C' =
UierC; is also connected.

Question 2.7.10: Let (C;);cs be a countable family of connected subsets, i.e., [ = {1,...,p} forsomep > 1
or I = N. Suppose that for every i € 1,1 # 1, we have C;_1 N C; # @. Show that C' = U,;¢;C; is connected
by rewriting the proof of Proposition 2.7.8.

Proposition 2.7.11: Given a sequence of metric spaces (M1, d1), ..., (My,d,) and consider the product
metric space (M, d) given by M = Mj X --- x M,, and the product distance defined in Eq. (2.11). Then,
(M, d) is connected if and only if (M;,d;) is connected for all1 < i < n.

Proof : First, let us assume that M is connected. Fixi € {1,...,n} andlet f : M; — D ={0,1} bea
continuous function. Since the projection Proj;, : M — M; is continuous, the composition f o Proj; :
M — D is also continuous. From the connectedness of M, we deduce that f o Proj, is constant. Since
Proj, (M) = M,, it follows that f is also constant, that is M; is connected.

Let us assume that (M, d;) is connected for 1 < i < n. Consider a continuous function f : M — D.
Letx = (z1,...,2n),y = (Y1,-..,Yn) € M. We want to show that f(x) = f(y). First, it follows from
Proposition 2.6.7 that the following map is continuous,

fll M, — D
21 — f(Zl,(L'Q,...,xn).
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The connectedness of M implies that f! is constant, that is f(x1,z2,...,2,) = f(y1,T2,...,%p).
Then, we may look at the partial function at each of the following coordinates to conclude that
f(z1,...,2n) = f(y1,...,yn). Hence, the continuous function f is constant, and M is connected
by Corollary 2.7.6. O

2.7.3 Connected components

Let (M, d) be a metric space. In this subsection, we are going to study the connected components of M,
whose precise definition will be given below. Intuitively speaking, we want to decompose M into disjoint
pieces of connected subspaces, and to achieve this, we will define an equivalence relation on M.

Definition 2.7.12 : We define the following binary relation R on (M, d),

*Ry <& there exists a connected subset C' C M such that x,y € C. (2.12)

Proposition 2.7.13 : The binary relation R defined in Eq. (2.12) is an equivalence relation.

Proof : It is straightforward to check.
« (Reflexivity) For every = € M, we have xRz since {x} is connected.
o (Symmetry) If x, y are such that Ry, then it follows from Eq. (2.12) that yRz.

o (Transitivity) Let z,y, 2 € M such that xRy and yRz. This means that there exist two con-
nected subsets C' and C’ such that x,y € C' and y,z € C’. Since C N C’ # &, it follows from

Proposition 2.7.8 that C' U C” is also connected. We have 2,2 € C U ', so R z. .

Remark 2.7.14 : Proposition 2.7.13 allows us to define equivalence classes M /R. For each € M, let us
denote by [z] its equivalence class. It is not hard to see that [z] is given by the union of all the connected
subsets containing x, which is again connected by Proposition 2.7.8. The subset [z] is called a connected
component (EBITH) of M. The connected components of M form a partition of M, that is a collection
of disjoint subsets whose union is //. And we can see that M is connected if and only if it has only one
connected component.

Corollary 2.7.15 : The connected components of a metric space (M, d) are closed subsets. Moreover, if
M only has finitely many connected components, then they are also open subsets.

Proof : Let z € M and consider its connected component [z]. Since [z] C [z], it follows from

Corollary 2.7.7 that [z] is also connected. We see that [x] also contains z, so [z] = [xz], that is [z]
is a closed subset.
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Suppose that M has only finitely many connected components, that is,

N
M=Jx], N>1la,....,axy€M.

Then, for any 1 < ¢ < IV, we have

[l =M\ U [agl.
1<G<N
j#i

which is open, being the complement of a finite union of closed sets. g

Remark 2.7.16 : We give an example below of a subspace of (R, | - |) which has one connected component
that is not an open subset. Let

C=(Ucn)ufo}, Cu=lt27

n>1

We first note that, all the C,,’s and {0} are connected components of C'. It is also not hard to see that for
each n > 1, the subset (), is open and closed (in C') at the same time, because
Cn=[27""127"nC
=(r-2727 =127 N O, forsomer € (1,1).
However, {0} is a closed subset but not an open subset. To see this, suppose that it is open, that is we may

find € > 0 such that B(0,e) N C' = {0}. But for any € > 0, the intersection B(0,<) N C contains not only 0
but also the subsets C;,’s for sufficiently large n (as long as n > 3 logy(1/¢)).

2.7.4 Open sets and connected components in R

We are going to look at the metric space (R, | - |). Let us recall that I C R is an interval if for any a, b € I,
then

z € (a,b) = zel. (2.13)
There are four types of them,
(a,b), —oo<a<b< +oo,
[a,b), —o0<a<b< oo,
(a,b], —oo<a<b<+oo,
[a,b], —oo<a<b<+4oo

We note that the last type of intervals are also called segments.

Proposition 2.7.17 : A subset I of R is connected if and only if it is an interval of R.
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Proof : Let us assume that / C R is connected. By contradiction, if I is not an interval, it means that
we may find a,b € I and x € (a,b) with z ¢ I. In this case, we have I C (—o0,z) U (z,4+00), so [ is
not connected.

For the converse, given an interval I C R, we want to show that it is connected. If ] is a singleton,
it is clear. Let I = (a,b) with —co < a < b < +00 and a continuous function f : [ — D = {0, 1}.
Suppose that f is not constant, that is there exists z,y € I such that

a<zx<y<b and f(z)# f(y),

and, without loss of generality, we may assume f(z) = 0 and f(y) = 1. Consider the set
I'={z€1l:z>uzsuchthat f(t) =0forallt € [z, 2]}

The set I' is nonempty because x € I'. Moreover, I is bounded from above by y. Let ¢ = supI' < y.
By the continuity of f, we have f(c) = 0. Additionally, the continuity of f at ¢ implies that

Je € (0,b—y),Vt € [c,e+¢], O(f(t), f(c) < 3.

This means that f(t) = 0fort € [¢,c+¢] C (a,b) = I, so c+ ¢ € I. This contradicts the fact that c is
the supremum of I". Therefore, f needs to be constant, and [/ is connected.

For a general interval I which is not a singleton, nor an open interval, we may write J = int(/) so
that J C I C cl(J). Since J is of the form (a, b) with —co < a < b < +00, which has been discussed
above, we know that J is connected. Then, it follows from Corollary 2.7.7 that I is also connected. [J

The following theorem is the first application of Proposition 2.7.17.

Theorem 2.7.18 (Intermediate value theorem) : Let I be an interval of R and f : I — R be a
continuous function. Then, f(I) is also an interval.

Proof : Proposition 2.7.17 tells us that I is connected, then by applying Proposition 2.7.5, we also
know that f(I) is connected. Then, again by Proposition 2.7.17, we deduce that f(I) is an interval. (J

Remark 2.7.19 : Another way to interprete or apply the above theorem is as follows. If f(a) < f(b) with
a < b, then for any v € [f(a), f(b)], we can find ¢ € [a, b] such that f(c) = 7.

Another application of Proposition 2.7.17 is the following description on the structure of the open sets in
R. Below, let us fix a nonempty open subset A C R.

Definition 2.7.20: Let I be an open interval. We say that I is a component interval of A if
« ] C A, and

« there is no open interval J # I with I C J C A.
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Theorem 2.7.21 (Representation theorem for open sets in R) : The subset A is the union of a countable
collection of disjoint component intervals of A.

Proof : It follows from Remark 2.7.14 that we may write down the connected components of A as
AR = {laj] s j € T}, (214)

where J is some index set, and [x;] denotes the equivalent class of R, or connected component of A,
represented by some x; € A. From Proposition 2.7.17, we know that each of [z;] is an interval of R.
We need to check that these intervals are component intervals in the sense of Definition 2.7.20.

Fix j € J, let us denote I; = [z}], a; = inf I}, and b; = sup I}, so that (a;,b;) C I;. First, we want
to show that /; is an open interval, that is I; = (a;, b;). We want to show that a; ¢ I;.

« If aj = —o0, then it is clear that a; ¢ I;.

« If a; > —oo with a; € I, then since a; € A, which is an open set, we may find ¢ > 0 such that
I} :=(a; —e,a;+¢) C A. Since I]’- and I; are both connected, and I; N I]’- # @, it follows from
Proposition 2.7.8 that I; U1 ]’ is still connected. This contradicts the fact that I is an equivalence
class for the relation k.

Therefore, a; ¢ I;. Similarly, we may also show that b; ¢ I;, thatis I; = (a;,b;).

To show that [; is maximal in the sense that, there is no open interval K such that I; C K C A, we
use again the fact that R is an equivalence relation.

To conclude, it remains to show that .J is countable. The set QQ of rationals is countable and can be
enumerated Q = {q1, ¢2, . . . }. We may define a function F' : J — N as follows,

F(j) =min{n > 1: ¢, € [z;]}, Vi e J.

The fact that F' is an injection follows directly from the partition structure given by the equivalence
relation. This allows us to conclude that (2.14) is a countable collection of component intervals. O

2.7.5 Arcwise connectedness

Let us fix a metric space (M, d).

Definition 2.7.22:Let~ : [0,1] — (M, d) be a continuous function with a = v(0) and b = ~(1).
» We say that v is a path from a to b.
« If a # b, the image ([0, 1]) is called an arc joining a and b.

« Suppose that (M, d) is a normed space, in the sense of Example 2.1.4. If v writes as y(t) =
tb+ (1 —t)a with value in M for all ¢ € [0, 1], then we say that v([0, 1]) is a line segment joining
a and b, denoted by |a, b].
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Definition 2.7.23 : We say that M is arcwise connected (5I\33&) if for any a # b € M, there is an
arc joining a and b.

Theorem 2.7.24 : If M is arcwise connected, then M is also connected.

Proof : Let f : M — D = {0, 1} be a continuous function. Let a,b € M and vy : [0,1] — M be a
continuous function such that 7(0) = a and (1) = b. Then, the composition f o~y : [0,1] — D is
continuous, so constant, because [0, 1] is connected. This means that f(a) = (fov)(0) = (fov)(1) =
f(b), so f is also constant. Thus, we can conclude that M is connected by Corollary 2.7.6. O

Example 2.7.25:

(1) In the Euclidean space R", any convex set A is arcwise connected. The reason is that, for any
x,y € A, the line segment [z, y] is also in A, which is the definition of a convex set.

(2) Let A C R? be defined as follows,
A:={(0,0)} U{(x,sin(1/z)) : x € (0,1]}.

This is a classical example of a space which is connected but not arcwise connected. We will
prove this in Exercise 2.52.

Remark 2.7.26:

(1) The above Theorem 2.7.24 is useful to show the connectedness of a metric space, because the arcwise
connectedness is easier to visualize and to manipulate.

(2) Arcwise connectedness is also a topological notion. The reason is that, to define the notion of arcwise
connectedness in Definition 2.7.23, we make use of continuous functions, which are characterized
entirely by open sets, see Proposition 2.5.11.

(3) The converse of Theorem 2.7.24 does not hold. Example 2.7.25 (2) gives an example of metric space
that is connected but not arcwise connected.

Theorem 2.7.27: Let (V, ||-||) be a normed vector space and A be an open set of V. Then, A is connected
if and only if A is arcwise connected.

Remark 2.7.28 : We note that it is important to assume that A is open. For example, the set A defined in
Example 2.7.25 (2) is a subset in R2, and it is connected without being arcwise connected. Clearly, in this
case, the subset A is not open.
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Proof : If A is arcwise connected, we have already shown in Theorem 2.7.24 that A is connected. Now,
suppose that A is connected. We fix xg € A and let

I' = {z € A : there is a path joining x¢ and = }.
Our goal is to get I' = A by showing that I is open and closed in A at the same time.

« I"isopen. Let z € T'. Since x is also in the open set A, there exists > 0 such that B(z,r) C A.
Fix y € B(x,r), y # x0, the line segment [z, y] is also in A. Therefore, if 7y is a path from z to
x, and let 7y, denote the line segment from z to y, then

o '70(2t)7 tE[
’Y(t)_{vl(%l), te|

=
— N

I
]

(2.15)

)

N[

gives a path from zg to y.

« Tisclosed. To achieve this, let us be given x € TN A and show that z is also in I'. By the definition
of open set and closure, we can find 7 > 0 such that B(x,r) C A and B(z,r) NI # @. Choose
y € B(x,r)NT, then the line segment [y, | is contained in A, the same construction as Eq. (2.15)
shows that x also needs to be in I".

O
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