Compact spaces and complete spaces

RREZRETRER

In this chapter, we will focus on two important notions, compact spaces and complete spaces.

3.1 Compact set

We present the notion of compact metric spaces in this section. First, we define such spaces using open
coverings, known as the Borel-Lebesgue property (Definition 3.1.3), and later on, we will see that this prop-
erty is actually equivalent to the sequential characterization, known as the Bolzano-Weierstrafl property
(Definition 3.1.19). We will also see the properties of compact sets under continuous functions in Section
3.1.2. In particular, this generalizes the notion of a segment in R, and we will establish a generalization of

the intermediate value theorem in Proposition 3.1.12.

3.1.1 Borel-Lebesgue property

Borel-Lebesgue property is a property defined using the notion of open coverings.

Definition 3.1.1: Given a subset A C M and a collection C = (C});es of subsets. We say that C is a
covering (BZ) of A, or C covers A, if
AcC |G
el
Additionally, if all the C;’s are open subsets and satisfy the above condition, we say that C is an open

covering (FATZ) of A.
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Chapter 3 Compact spaces and complete spaces

Example 3.1.2: In the metric space (M, d) = (R, |-

), the collections

7y ={(a,b): 0<a<b< 1},

IQ:{(%v%):n>2}

are both coverings of (0, 1), where Z; is uncountable, but Z; is countable.
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Below, we define the notion of a compact metric space and a compact set in a metric space.

g%l 3.1.2 : R (M, d) = (R,|-|) F » £EEK

i ={(a,b): 0<a<b< 1},

12:{(%7%):7122}

B (0,1) NEZE  HR 7, BFAHM - B 1, 2AH -

Definition 3.1.3 (Borel-Lebesgue property) : Let (M, d) be a metric space.

(1) The metric space (M, d) is said to satisfy the Borel-Lebesgue property if from any open covering

of M, we can extract a finite subcovering.

(2) We say that (M, d) is compact (2348 if it satisfies the Borel-Lebesgue property. In other words,
M is compact if for any collection (U;);cr of open sets of M such that M C J;c; U; (& M =
Uier Ui), we can find a finite subfamily J C I such that M C (J;c; U;.

(3) A subset K C M is said to be a compact set if the induced metric space (K,d) is compact.
In other words, K is a compact set if for any collection (U;);es of open sets of M such that

K C ;e Ui, we can find a finite subfamily J C I such that K C (J;c; U;.
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Example 3.1.4:
(1) Any finite metric space is compact.

(2) (R,|-|) is not compact because from the open covering R = U,,>1(—n, n), we cannot extract a

finite subcovering.

(3) In (Ra ’ ’

), the subset (0, 1) is not compact because from the covering U,>1(+,1— 1), we cannot

extract a finite subcovering.
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Chapter 3 Compact spaces and complete spaces

Remark 3.1.5 : There is a dual version of the Borel-Lebesgue property by taking complementary sets. A
metric space (M, d) is compact if and only if for any family (F;);cr of closed sets such that NF; = &, there
exists a finite subfamily J C I such that N;c;F; = @. In particular, in a metric space (M, d), we may look

at the two following properties.

(i) (M,d) is compact.

(ii) Forany non-increasing sequence (F},),>1 of nonempty closed sets, the intersection N,,>1 F}, is nonempty.

Note that (ii) can be compared to the Cantor’s intersection theorem (Theorem 2.2.7), which involves non-

increasing sequences of bounded, closed, and nonempty subsets in R".

We clearly have (i) = (ii). If additionally, the metric space has the property that from any open subcovering,
we may extract a countable subcovering (known as the Lindel6f covering property, see Theorem 3.1.28), then

(ii) = (i). In particular, if M is a subspace of the Euclidean space R", we have (ii) = (i).

Proposition 3.1.6 : Let K C M be a compact set. Then, K is closed and bounded.

Proof : We first show that K is bounded. Take z € K, then (B(z,n)),>1 is an open covering of K.
By compactness, we can find a finite subcovering, so K is bounded.

Next, we prove that K is closed. By contradiction, assume that K is not closed. We can find an
accumulation point y of K such thaty ¢ K. Foreachx € K, definer, = %d(x, y). Then, the collection
(B(z,72))zek is an open covering of K, and the compactness of K gives us a finite subcovering, that
is

n
U (Tk, T:ck

for some z1,...,z, € K. Take r = min(ry,,...,7;,) and x € B(y, r), then we can see that
d(z,z) > d(y, ) — d(x,y) > 21y, — 17 = 74y,

for all 1 < k < n. This means that x is not in any of the open balls B(xj,rs, ). Thus, we obtain
that K N B(y,r) = @. This contradicts the fact that y is an accumulation point of /. Then, we may
conclude that K is closed. g
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Chapter 3 Compact spaces and complete spaces

Remark 3.1.7 : Later in Remark 3.1.34, we will see that a closed and bounded set is not necessarily compact

in general.

Proposition 3.1.8 : Let (M, d) be a compact metric space, and K C M be a closed set. Then, K is a

compact subset.

Proof : If K is empty, then K is clearly compact. Suppose that K is not empty, and given an open
covering C = {C; : i € I} of K. Since K is closed, M\ K is open. Therefore, C U {M\ K} is an open

covering of M. Since M is compact, we can find a finite subset I’ C I such that

Mc(JG)uM\K).

iel’
Therefore,
iel’
which is a finite subcovering from C. This shows that K is compact. U

Proposition 3.1.9 : Compact subsets of a metric space (M, d) satisfy the following properties.

(1) Any finite union of compact subsets is compact.

(2) Any intersection of compact subsets is compact.

Proof : The proofs are straightforward by the Borel-Lebesgue property.

(1) Letn > 1 and K3, ..., K, be compact subsets of (M,d) and K := K; U---UK,. LetC =
{C; : i € I} be an open covering of K. Then, C is also an open covering of K, for 1 < m < n.
For each m = 1,...,n, let us extract a finite subcovering of K, from C, that we denote by
{C; : i € I}, where I, is a finite subset of I. Then, the set I’ := U], _, I, is finite as well, and
{C; :i € I'} is a finite subcovering of K. This shows that K is a compact subset of (M, d).

(2) Let (K;)cr be a family of compact sets and K := N;crK;. Since K is an intersection of closed

sets, K is also closed. We may regard K as a subset of any compact set K;, and it follows from
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Chapter 3 Compact spaces and complete spaces

Proposition 3.1.8 that K is also compact. O

3.1.2 Application to continuous functions

Proposition 3.1.10 : Let (M, d) and (M',d’) be two metric spaces and f : M — M’ be a function. If
[ is continuous and M is compact, then the image f(M) is a compact subset of M'; in particular, f (M)

is closed and bounded.

Remark 3.1.11:

(1) We note that in Section 2.5.3, continuous functions are characterized by their preimage, or inverse
image, of open and closed sets. This proposition establishes the property that, the image of any closed
subset of M (so compact by Proposition 3.1.8) is also closed in M’. We note that this property does

not hold in general, see Remark 2.5.15.

(2) We also note that if f : M — M’ is continuous and M’ is compact, the preimage f~!(M’) is not

necessarily compact. A constant function f : R — R gives us a counterexample.

Proof : Let C = {C; : i € I} be an open covering of f(M). It follows from Proposition 2.5.11 that
f7X(C;) is an open set in M for i € I. Therefore, {f~1(C;) : i € I} forms an open covering of M,
and the compactness of M allows us to extract a finite subcovering, denoted by {f~(C;) : i € J} for
some finite subset J C I. Therefore,

foncf(Urten)=Usrstencya

ieJ icJ icJ

gives a finite subcovering from C of f(M). O

Proposition 3.1.12: Let (M, d) be a compact metric space and f : M — R be a continuous function.
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Chapter 3 Compact spaces and complete spaces

Then, f is bounded and attains its maximum and minimum, that is, there exists a,b € M such that

f(a) = inf f(x) and f(b) = sup f(a).

reM xEM

Proof : It follows from Proposition 3.1.10 that f(M) is compact, thus also bounded and closed, in R.
Let m = inf,cps f(x). Then, m is an adherent point to f(M). Since f(M) is closed, we also have

m € f(M), thatis m = f(a) for some a € M. The proof is similar for the supremum / maximum. [J

Remark 3.1.13 : We note that it is important to assume that M is compact. For a counterexample, if (M, d) =
(R,[-]) and take f : R — R with f(x) = arctan(z), then f(R) = (—7, §), and it is clear that the supremum

and the infimum are not attained.

We may apply Proposition 3.1.12 to compact sets of R, giving us an improved version of the intermediate

value theorem (Theorem 2.7.18).

Corollary 3.1.14 : Let I C R be a segment and f : I — R be a continuous function. Then, f(I) is also

a segment.

Proof : We note that a segment in R is compact, which is a direct consequence of Remark 3.1.5 and the
fact that it satisfies the Cantor’s intersection theorem. Therefore, f(I) is compact in R, and it follows
from Proposition 3.1.6 that f(I) is bounded and closed. Additionally, we see from Theorem 2.7.18 that

f(I) is an interval. We conclude by saying that a bounded and closed interval in R is a segment. [

Corollary 3.1.15: Let (M,d) — (M’,d’) be a continuous and bijective function. If (M, d) is compact,

then f~' is continuous, and f is a homeomorphism.
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Chapter 3 Compact spaces and complete spaces

Proof : Suppose that M is compact. To show that g := f~! : M’ — M is continuous, we may
use the characterization from Proposition 2.5.11. Let A be a closed subset of M. It follows from
Proposition 3.1.8 that A is compact. Then, Proposition 3.1.10 tells us that g~ '(A4) = f(A) is also
compact, thus closed in M. O

Remark 3.1.16 : It is important to assume that (M, d) is compact. For a counterexample (Exercise 2.47),
consider f : [0,1) — U defined by
flz)=e*™  2¢cl0,1).

The function f is clearly continuous and bijective. However, f~! is not continuous at f(0) = 1, because we
may take the sequence z,, = 1 — 2 and y,, = f(2,,). Then, y,, — 1= f(0),but f~(y,) = z,, does not
n—oo

converge in [0, 1).

Theorem 3.1.17 (Heine—-Cantor theorem) : Let f : (M,d) — (M’',d") be a continuous function.

Suppose that M is compact. Then, f is uniformly continuous.

Proof : Let ¢ > 0. For every x € M, since f is continuous at z, we may find §,, > 0 such that

y€B(x,0.) = [f(y) € B(f(2),3) (3.1)

Clearly, the set of open balls { B(z, %) : & € M} forms an open covering of M. (Note that here, we

divide the radii by 2.) The compactness of M allows us to extract a finite subcovering, that is

n
[
M C | B(z, 5t)

i=1

land x1,...,2, € M Let § = 3 minj<i<p 0. For y,y’ € M with d(y,y’) < 6, we can
. ). Then,

for some n

>
find1 <7< nsuchthaty € B(wz,

2

d(y', @) < d(y',y) + d(y, z;)

it
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Chapter 3 Compact spaces and complete spaces

That is, y, 4y’ € B(x;,dy,). Therefore, by (3.1), we find

d(f (), f(y) < d(f(y), (@) + d(f (o), f() <5+ 5 =¢. 0

Remark 3.1.18 : In the first-year calculus, you should have seen Heine—Cantor theorem in R, which states

that a continuous function f : I — R on a segment / C R is uniformly continuous.

3.1.3 Sequential characterization

Definition 3.1.19 (Bolzano—Weierstraly property) : A metric space (M,d) is said to satisfy the
Bolzano-Weierstraf3 property (Bolzano-Weierstrafy 1 5) if from any sequence (z,,),>1 of points of

M, we can extract a convergent subsequence (¥ () )n>1 With limit in M.

Theorem 3.1.20 : In a metric space (M, d), the Borel-Lebesgue property and the Bolzano—Weierstraf3
property are equivalent. In other words, the metric space (M, d) is compact if and only if every sequence

in (M, d) has a convergent subsequence.

Proof : Borel-Lebesgue = Bolzano—Weierstrafy. Let us assume that K is compact, and given a se-
quence (zy,)n>1 with values in K. Let A = {z,, : n > 1} be the range of the sequence. If A is finite,
then we can easily find a convergent subsequence of (z,,),>1. Suppose that A is infinite, and that
(an)n>1 does not have any convergent subsequence. This means that for every x € K, there exists a
g, > 0such that AN B(x,e,) = & or {x}. Additionally, these open balls { B(z,e;) : z € K} form an
open covering of K. Due to the compactness of K, we may find a finite subcovering, thatis z1,...,z,
such that

K C U B(xi,eq;).
i=1

Therefore,
A=ANKC UAﬂBml,sx))

However, the set A on the Lh.s. is infinite, but on the r.h.s., each term in the finite union is either empty
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K C U B(xi,eq;).
i=1

Fit - FAISE

A=ANKC U (AN B(zi,ez,)).
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Chapter 3 Compact spaces and complete spaces

or a singleton, so is still a finite set. This leads to a contradiction

For the converse, we will first prove the following two lemmas

Definition 3.1.21 : A metric space (M, d) is said to be precompact (FEZ##), or relatively compact
(P2, if for all £ > 0, there exists a finite covering of M by open balls of radius &

Lemma 3.1.22 : Let (M, d) be a metric space satisfying the Bolzano—Weierstraf3 property. Then, it is
also precompact.

Proof : By contradiction, suppose that there exists ¢ > 0 such that we cannot find a finite covering by

open balls of radius ¢. Let us construct a sequence (x,,),>1 in M by induction such that

« foreveryn #m > 1,d(zp, xm) = €,
« foreveryn > 1, M # U | B(z;,€).

Letx; € M, thenby the assumption, M # B(x1,¢). Letk > 1 and suppose that we have constructed
x1,...,x such that d(x,, x,,) = € for 1

<n#m< kand M # U " 1B(z;,¢). Then, we can find
Try1 € M\(UE_,B(x;,¢€)). This allows us to see that d(zj1,7;) = € for 1 <

¢ < k, and again by
assumption, we know that M # USt! B(x;,¢).

The sequence (x,)n,>1 constructed above is not Cauchy, and none of its subsequence is Cauchy

either. Thus, by Proposition 2.4.6, it does not have a convergent subsequence. This contradicts the
Bolzano-Weierstraf} property.

]

Lemma 3.1.23 : Let (M, d) be a metric space satisfying the Bolzano—Weierstraf3 property. Consider an
open covering (C;)icr of M. Then, there exists € > 0 such that

Ve e M,3iel, B(xz,e)CC;.
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Chapter 3 Compact spaces and complete spaces

Proof : By contradiction, suppose that for all € > 0, we can find x € M such that
B(z,e) L C;, Viel.
In particular, for every n > 1, let us choose z,, € M such that
B, = B(z,, ) ¢ C;, Viel. (3.2)

Using the Bolzano-Weierstra3 property, we may find a subsequence (7 ,(,))n>1 that converges to some
limit ¢ € M. By the assumption, we may find i € I suchthat? € C;,andr > 0suchthat B(¢,2r) C C;.

The convergence of the subsequence (Z,(,))n>1 further implies that there exists N > 1 such that
d(Tpm),¢) <7, VYn>=N.
Therefore, for n > N with p(n) > 1/r, we have
Yy € Byy,  d(l,y) < d(lzpmy) + d(@pmy, y) <7+ 1/p(n) < 2r.

It follows from the above line that B,y € B(/,2r) C C;, which contradicts Eq. (3.2). |

Now;, let us finish the proof of Theorem 3.1.20.

Proof of Theorem 3.1.20: Suppose that the metric space (M, d) satisfies the Bolzano-Weierstrafl
property. Let (C;);cr be an open covering of M. By Lemma 3.1.23, we may fix £ > 0 such that

Vee M,3iel, B(x,e)CC. (3.3)

By Lemma 3.1.22, we can find finitely many open balls of radius € > 0 that cover M. Let n > 1 and
Z1,...,Tyn € M such that

n

M:Um%@

By Eq. (3.3), for 1 < i < n, we may find j; € I such that B(z;,e) C Cj,. This allows us to conclude
that
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Chapter 3 Compact spaces and complete spaces

To conclude this subsection, we sum up what we have shown in the following corollary, which gives us
useful criterions to check whether a metric space is compact. Additionally, we will also see a few applica-

tions.

Corollary 3.1.24 : The metric space (M, d) is compact if and only if one of the following properties is
satisfied.

(1) Every sequence of M has a subsequential limit in M.

(2) Every infinite subset of M has an accumulation point in M.

Proposition 3.1.25: Let (M, d) be a compact metric space and (xy,)n>1 be a sequence in M with only

one subsequential limit x. Then, (z,,)n>1 converges to x.

Proof : By contradiction, assume that the sequence does not converge to x. We can find € > 0 such
that for all N' > 1, there exists n > N with d(z,,,z) > €. This gives us a subsequence (7,(y,))n>1 such
that d(x,(,), ) > € foralln > 1. Since M is compact, we may extract a convergent subsequence from
(Ty(n))n>1, that is

lim Tpop(n) = Y € M.

n—oo

We have d(z,y) > €, so x # y, and y is also a subsequential limit of (z,),>1, which is a contradiction.

O

Below, we are going to consider a product of metric spaces indexed by I. We distinguish two settings: (i)

I is finite, or [ = [N] = {1,..., N} for some integer N > 1; (ii) ] is countably infinite, or I = N. We recall

the notations and definitions we saw in Section 2.6 and Exercise 2.46.
(i) Let N > 1 and (My,dy),...,
[Lier Mi = My x -

(Mp,dy) be metric spaces. We consider the product space M =
x My and the product distance as in Definition 2.6.1, defined by

d($7y) = max dz(%vyz)7 €T = (xlv"me)ay: (y17'-'7yN) S M.

1IN
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Chapter 3 Compact spaces and complete spaces

(i) Let ((My,d,))n>1 be a sequence of uniformly bounded metric spaces. We consider the product space

M = [l;ef M; = I1,,>1 My, and the product distance as in Exercise 2.46, defined by

d(‘r7y) = Z 2indn('rn7yn)7 T = (iUn)n>17?/ - (yn)TLZl E M

n=1

We note that in both settings, the convergence in the product space is equivalent to the convergence of each

coordinate in the corresponding metric space. In other words, for any sequence (z(*)) k>1 in M, we have

lim W=z o lim W =g Viel
— 00 — 00

Proposition 3.1.26 : Given metric spaces and define the corresponding product metric space as in (i) or

(ii). Then, (M, d) is compact if and only if (M,,, d,) is compact for alln € I.

Proof : We are going to show that M; is compact for all ¢ € I using the continuity of projection maps.
More precisely, for a fixed i € I, M; can be seen as the image of M under the projection map Proj,,
which is continuous by Proposition 2.6.5. Then, it follows from Proposition 3.1.10 that M; is also
compact.

For the converse, we are going to use the characterization from Corollary 3.1.24. Given a sequence
of points (¥~ from (M, d), we are going to find a convergent subsequence of it. We just saw that,
in both (i) and (ii) cases, the convergence of a sequence in M is equivalent to the convergence of all
the coordinates, which simplifies the construction we are going to present below. We will construct
extractions (¢, )ner by induction, where I = [N] for some N > 1or [ = N.

First, note that since M is compact, we may find a subsequence (z(*1(¥))),., such that (x(fal(k)))
converges in M;. Then, we apply the compactness of M, to the sequence (:c(‘f’l(k)))@l, which allows

(p10p2(k))

us to find a subsequence (z(#1°¥2(K)); -, such that (x4 )k>1 converges in M. By doing this,

Last modified: 11:20 on Friday 22"¢ November, 2024

12

B=E BEHTMRTHEZEM
X My BETEE 261 PIEIERE - THRM

d(may) = max dz<x’tayl)7 r = (xlv"'axN)ay: (y17"‘7yN) S M.

1<iKN

(i) B (Mn,dn))n>1 AT ERNMEZBFY) - HAZBRZE[ M = [[ic; M; = [, M, EE
E A 2.46 PRYTEEERE - EHRIM

d(:v,y) = Z 2_ndn($n>yn)a T = (fl:n)n>17y = (yn)n>1 e M.

n=1

HEPERDR > EMESRTEP > BEEORHEESEEZES BRMEZT R BEEE - RaER -
HREE M BFES (W), » HFIEHE

lim z¥ =z <  lim xz(-k) =ux;,Vi € I.
k—o0 k—oco

iRl 3.1.26 : WIETE (i) 3% (i) P - HPHEEREEZRE Y B EHRAH ENFEIREEZER - FBEER
WESRFE n e I > BEZTR (M, d,) SBEH0 - B) (M, d) L2BEH -

S8R : RER (M, d) BREEW - HNFAE 1 <i < n ' BFIYUERIXRTREHEEN - KEH
M; REEHY - BREYBMER > HPEE 1 <i <n- Bl M, TUBEER M EIRERE Proj;, Z
THIR - BIRIBGE 205 - IR REEEEN - BE > RFIBEHE 3.1.10 KE3 M, 2R
EGE

Wan B ERD - MM EERARIE 3124 PR AN 167 (M, d) PRIBEATERCRY F 51
(20))>1 > BPBERE—ERBFFEY - B LERE > 77 () B (i) WER > M PEFIN
WK R PR FEAZ AR BN B - B AT R PIHE TR EHEITAARIE o FFILUEE S AE R
KB (on)ner " P T = [N/ RN >1HEI=N-

B R M, 2REN - BOEERBIFRET (o0 0), B8 (o7 W)) 7 M,y IR - B
E - I8 M, WEBMAERY ()., £ FRUARMEESRIRBFFEY (a(hroe2()), o,

BB © 2024 4F 11 A 22 H 11:20



Chapter 3 Compact spaces and complete spaces

we can find extractions (¢, )ner such that

lim z(f1eoen®) — ¢ e M,, Vnel. (3.49)

n
k—o00

(i) In the case that [ = [N] for some N > 1, we may define the extraction ¢ := ¢ o...py. For
each 1 < n < N, since the sequence (wﬁ(k)) k>1 is a subsequence of the convergent sequence

(m%plo"'w"(k)))@l, it follows from Eq. (3.4) that it also converges to the same limit /,,.

(ii) In the case that I = N, we cannot copy the same prove as above, since it does not make sense
to consider the composition of infinitely many functions. To get around of this, we are going to

construct an extraction using the diagonal argument, that is

(@W),r, (n) =100 pu(n).

For each n € N, we see that (x%w(k)))k>n is a subsequence of the convergent sequence

(:c%”””"’“”"(’“)))k%, ) (x%w(k)))k% also converges to the same limit /,,.

Therefore, we have established that

lim %) = ¢ .= (bp)ner € M.

n—00 O

3.1.4 Heine-Borel property in finite dimensional Euclidean spaces

We know from Proposition 3.1.6 that a compact set is closed and bounded. In this subsection, we will see
that in the Euclidean space R", closed and bounded sets are also compact, which is known as the Heine—Borel
theorem. In particular, this allows us to have a simpler criterion to check whether a subset of R” is compact,
without using the Borel-Lebesgue property, which is the very first definition of compactness in Definition
3.1.3. However, keep in mind that this equivalence does not hold in a more general metric space, as we will

see in Remark 3.1.34.

Let us consider the following countable collection of open balls in R",

G={B(z,r) :z = (x1,...,2,) € Q",r € Q}.
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Lemma 3.1.27 : Let x € R"™ and A C R" be an open set containing x. Then, there exists G € G such
thatx € G C A.

Proof : To find such an open ball G € G satisfying x € G C A, we need to find a point y with rational
coordinates that is close enough to z, and take G = B(y, ¢) for some small enough rational € > 0.
Since A is an open set, we may find € > 0 such that z € B(x,e) C A. Then, we take y € Q™ such
that d(x,y) < §. This is possible because Q" is dense in R". Let r € Q N [, 5], which guarantees
that x € B(y,r). We are going to check that B(y,r) C A. Given z € B(y,r). It follows from the

triangular inequality that

Therefore, B(y,r) C B(z,e) C A O

Theorem 3.1.28 (Lindel6f covering theorem) : Let A C R"™ and C be an open covering of A. Then, there

is a countable subfamily of C that also covers A.

Remark 3.1.29: This theorem is interesting only when the open covering C is uncountable, since otherwise,

the statement is trivial. Additionally, here we do not require any additional condition for the subset A.

Proof : We write the elements of the open covering C as C := {C; : i € I} for some index set I. The
collection G contains countably many open balls, we may enumerate its elementsas G = {G1, Go, ... }.

For each x € A, we may fix i = i(z) € I such that x € C};, and by Lemma 3.1.27, there exists at
least one G € G such that x € G C C}, so the map f : A — N given by

Vo e A, f(z) =min{j >1:2 € G; C C;}

is well defined. Then, let
J={f(z):z e A},
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which is countable, and it follows from the above construction that

A= U Gj.
jedJ
To conclude, for each j € .J, we may choose an arbitrary z; € f~!({;}), and the corresponding
element Cj(, ) in the open covering C. Therefore, we have obtained a countable subfamily of C that
covers A, that is

AC U Ci(ay)- O
j€J

Theorem 3.1.30 (Heine—Borel theorem) : Let K C R". If K is closed and bounded, then K is compact.

Remark 3.1.31: We note that by Lindelof covering theorem (Theorem 3.1.28), we may extract a countable
subcovering from any open covering of K. This theorem gives us sufficient conditions so that a finite (open)

subcovering exists. We note that these conditions are also necessary, as mentioned in Proposition 3.1.6.

Proof : Given an open covering C of K. Lindel6f covering theorem gives us a countable subcovering

of C, denote by

that also covers K. Forn > 1, let

Sn=J G
=1

which is an open set. We want to show that there exists n > 1 such that K C S,,.

Let us consider another sequence of subsets defined by
A, =K\S,=KnS,, vVn>1.

We can easily see that for all n > 1, the set A, is closed, the inclusion A, 11 C A, holds, and 41 C K
is bounded. By contradiction, suppose that there does not exist n > 1 with K C S,,, which means that
all the sets A,, are nonempty. We may apply Cantor intersection theorem (Theorem 2.2.7), telling us
that the intersection A = Ny,>14,, is nonempty. This gives € A, thatisz € K and = ¢ S,, for all
n > 1, which is impossible because K C Uy,>1Ch,. O
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Chapter 3 Compact spaces and complete spaces

Remark 3.1.32 :In the beginning of this subsection, we assumed that R™ is equipped with the Euclidean
norm ||-||,. However, for any other given equivalent norm ||-||, the normed spaces (R", ||-||;) and (R", [|-||)
are also topologically equivalent (Remark 2.5.26). This means that the notion of open sets, closed sets, and
bounded sets stays the same, the notion of compactness also stays unchanged, since it only depends on the
notion of open sets (Definition 3.1.3). Therefore, the Heine—Borel theorem is still valid if we equip R™ with

other equivalent norms, such as ||-||; or ||-||, (Example 2.5.25).

Remark 3.1.33 : More generally speaking, the proof of Lindel6f covering theorem, Cantor intersection
theorem, and Heine-Borel theorem can be generalized without many modifications to any finite dimensional
normed vector space. In fact, we will see in Theorem 3.2.22 that all the norms in a finite dimensional normed
vector space are equivalent. Since the results hold in R" equipped with the Euclidean norm, it follows from
Remark 3.1.32 that they also hold for any other equivalent norm. Then, a finite dimensional normed vector
space is isomorphic to R™ with a properly chosen norm. In conclusion, in finite dimensional normed vector

spaces, closed and bounded sets are compact.

Remark 3.1.34 : In a general metric space, the Heine-Borel theorem fails to hold. Take the normed space
¢>°(R) for example, and consider the unit closed ball B = B(0, 1), which is clearly closed and bounded.
However, it is not compact, because it does not satisfy the Bolzano—Weierstrafy property. To see this, let us

look at the sequence (a));>; of points in B, defined by
a(i) = (a,(f))n>1, agf) = (Sn,z' = ﬂn:i, Vn 2 1.
This sequence does not have any subsequential limit. This can be seen by the fact that

Ha(i) — a(j)H =1, Vi#j>1

To sum up this subsection, in a finite dimensional normed vector space, such as R", the above Heine-Borel

theorem gives us a useful criterion to check whether a subset is compact.
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Chapter 3 Compact spaces and complete spaces

Corollary 3.1.35: Let K C R™. Then, K is compact if and only if K is closed and bounded.

3.2 Complete spaces

In Section 2.4.2, we saw that any convergent sequence is Cauchy, but some Cauchy sequences need not
converge. Intuitively, a Cauchy sequence is a sequence whose terms are uniformly close one to each other
for large enough indices, so if such a sequence cannot converge, it means that there are some “holes” in the
space. Our goal is to study some general properties of complete metric spaces (Section 3.2.1), discuss an
important application (Section 3.2.2), and to conclude this section, we will discuss some important results

about complete normed vector spaces, also known as Banach spaces (Section 3.2.3).

3.2.1 Definition and properties

We recall the definition of copmlete spaces and Banach spaces from Definition 2.4.10. It says that a metric
space is complete if every Cauchy sequence converges, and a Banach space is simply a complete normed

vector space.

Proposition 3.2.1: Let (M, d) be a metric space, and S C M be a subset.
(1) If (S, d) is complete, then S is closed.

(2) If (M, d) is complete and S is closed, then S is also complete.

Proof : The proofs follow directly by the definition of complete spaces, and the sequential characteri-

zation of closed sets given in Corollary 2.4.15.

(1) Suppose that (S, d) is complete. To show that S is closed, by the sequential characterization from
Corollary 2.4.15, we need to check that given any convergent sequence (zy,),>1 of points in S,
its limit should also be in S. If the sequence (zy,),>1 is convergent in M, then it is a Cauchy
sequence in M, so also a Cauchy sequence in S. The completeness of S allows us to conclude

that the limit is in S.

(2) Suppose that (M, d) is complete and S is closed. Given a Cauchy sequence (z,,)n>1 in S. Since
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Chapter 3 Compact spaces and complete spaces

it is also a Cauchy sequence in the complete space M, it converges to a limit { € M. Then, it

follows from Corollary 2.4.14 that ¢ € S =S, sothe convergence also occurs in S. 0

Proposition 3.2.2: Let (K, d) be a compact metric space. Then, K is also complete.

F=E BERERRTHERE

(2) B&& (M,d) B@=HEWN - B S BEMAE - AE S FHAERS (2,).>1 ° BRI E
B M PRMAERES  MERRBIER ¢ c Mo BR  IBBRE 2414 - TMHE
(eSS =25 RS EE S HUKER -

O o di

Proof : Let (x,),>1 be a Cauchy sequence in K. The sequential characterization of compact sets

Corollary 3.1.24 allows us to find an extraction ¢ such that z ) — ¢ for some ¢ € K. We shall
n—oo

show that the original sequence (z,,),>1 also converges to /.

Let £ > 0. Since (x,,)n>1 is Cauchy, we may find Ny > 1 such that
d(Tn, tm) < 5, Vn,m = Ni.

Since the subsequence ((,))n>1 converges, we may find Nz > 1 such that

Then, for n > max (N1, Na), we have

fARd 3.2.2 ¢ 9 (K, d) »EBAEZM  IE K LETE -

d(n, £) < d(Tn, Tp(ny) + d(Tpm), £) < 5+ 5=¢
This shows that z,, —— /. ([
n—oo
Proposition 3.2.3 : Given a sequence of metric spaces (M, d1), ..., (My,d,) and consider the product

metric space (M, d) given by M = M x - -- x M, and the product distance defined in Definition 2.6.1.
Then, (M, d) is complete if and only if (M;,d;) is complete for all 1 < i < n.

SO 1 4 (2,01 B K PEOTEERFS) - R 3124 0 » EEIFFIRMRRBESH AR - S5
BABESIR B EIREM ¢+ 518 0, —— 0 HF (€ K - RIBERBHRRAHFS
(0 )1 TOBURRIE) £ o

£e>00 B (n)nsr SHTFFS > BAHERE N, > 1 1513

d(Tn, Tm) < 5, Yn,m = Ni.

BRFF (2om))n=1 R - FFIBEFRE N, > 1 77

EE—R B n > max(Ny, No) > &ME

SEREMHEE 2, — > L0 O

Proof : See Exercise 3.22. O
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Chapter 3 Compact spaces and complete spaces

Proposition 3.2.4: Let (M, d) be a complete space. Consider a sequence of closed sets (A, )n>1 satisfying
« Apt1 C A, foralln > 1,

« the diameter goes to zero: 6(A,) —— 0.

n—oo

Then, there exists © € M such that A :== Np>1 A, = {z}.

Proof : For every n > 1, choose a,, € A,,. Since 6(A,,) — 0, the sequence (ay,)n>1 is Cauchy. For
any p > 1, the subset A, is closed, it follows from Proposition 3.2.1 that A, is complete. Therefore,
(@n)n>p converges in A, to £,. The limit ¢, is actually the same for all p > 1 by the uniqueness
of the limit, so let us denote the common limit by ¢. Since ¢ € A, for any p > 1, we also have
e A:=Np>145.

To conclude, the fact that 6(A,,) — 0 implies that A can contain at most one element. O

Remark 3.2.5 :1It is important to assume that §(A4,,) —= 0. For example, the sequence of closed sets
n—oo

(Ay, = [n,00))n>1 satisfies all the other assumptions, but N,,>14,, = @.

3.2.2 Fixed point theorem

Definition 3.2.6 : Let (M, d) be a complete metric space. A function f : M — M is said to be a
contraction map (BRERREY) if there exists k& € [0, 1) such that

d(f(z), f(y)) < kd(z,y),  Va,y € M. (3.5)

F=E BERERRTHERE

324 | D (M, d) AREZME - EEREAEFY (A,)n>1 > BRE -
c HRFE R > 1 BB A C A
- BESEARE 1 5(4,) —— 0

n—oo

AETE v € M (518 A 1= N A, = {a} °

Theorem 3.2.7 (Fixed point theorem) : Let (M, d) be a complete metric space and f : M — M be a

contraction. Then, f has a unique fixed point, that is there exists a unique x € M such that f(x) = .
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Chapter 3 Compact spaces and complete spaces

Proof: Let k € [0, 1) be a constant such that Eq. (3.5) is satisfied. Fix o € M and define z,,+1 = f(xy,)
for n > 1. By induction, we find d(zp+1, zy,) < k™d(x1, x¢) for n > 1. Therefore, for any m >n > 1,
we have

kn
1—

d(xmaxn) < d(xm + xm—l) + -+ d($n+17 xn) < (kmil +---+ kn)d(xth) < kd(xla l‘()).

This implies that the sequence (zy,),>0 is Cauchy. The completeness of (M, d) implies that (z,)n>0
converges to some limit that we denote by .
Since f is Lipschitz continuous, it is also continuous (Corollary 2.5.31), and by the sequential char-

acterization of continuity, we find
fla) = (i a) = Jim f(an) = Jim wner =

Therefore, x is a fixed point of f.
To show the uniqueness, we proceed as follows. Suppose z,y € M such that f(z) = xand f(y) = y.
Then,

0 <d(z,y) = d(f(2), f(y)) < kd(z,y).

Since k < 1, this is possible only if d(z,y) = 0, that is z = y. O

Remark 3.2.8 : As a byproduct of the proof, any iterative sequence defined by x,,11 = f(z,) forn > 1,

where x¢ € M is fixed, converges to the unique fixed point of f.

Remark 3.2.9 : Note that the theorem does not hold if the assumption in Eq. (3.5) is replaced by

d(f(x), f(y)) <d(z,y), Ve#yeM.

For example, in the metric space (M, d) = ([0,00),|-|), the function f(z) = x+ e~ does not have any fixed
point. However, if we assume that (M, d) is compact, then the assumption in Eq. (3.5) is enough to obtain

the fixed-point theorem, see Exercise 3.16.
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Chapter 3 Compact spaces and complete spaces
3.2.3 Normed vector spaces

Let (V. [|-|ly/) and (W, ||||;3-) be two normed vector spaces on K = R or C.

Definition 3.2.10:
« We write £(V, W) for the set of linear maps from V' to W.

« We write L£.(V, W) for the set of continuous linear maps from V' to W. We may equip L.(V, W)
with the following norm, called operator norm (B-FEE2X),

Ve L(V,W), |Ifll= S 1/ ()]l € [0, o0]. (3.6)
||y, <
By default, Eq. (3.6) is the norm we consider on £(V, W). We note that if dim V' > 1, that is
V # {0}, we also have

WGQMW%MN=2Nﬂ@W:stﬂMM- (37)

w20 lzlly ("

« The elements in the set V* := £(V,K) are called linear forms (##£7Z ), and the elements in
the set £.(V,K) are called continuous linear forms GEAEIR 4 Z EK).

F=E BERERRTHERE

Sz MEmEZER

EE3.2.10 :
o TPBHELE V B W ARSI B INESEE L(V, W) ©
- BB V B W A EBIR MRS ERNEGEEE L.V, W) o PIRILERT L.(V, W)
THEHEEES - BIEEFEH (operator norm) :

Ve L(V,W), Ifll= sup [[f(2)ly € [0,00]. (3.6)

lllly <1

ERERMNRANBERT > R 3.0) BRME L(V,W) LFAERIVTEREH - HFPEE
B MR dimV > 1 HERV # {0} - ZFILESR

vie Lovw), Al =sup MW g @ (37)
a#0  lzly  jafy=1

« HES V= L(V,K) FRITTRBIERMIZER (linear forms) » EES L.(V,K) FHITTREY
TBIEEBIRMEIZ K (continuous linear forms) °

Example 3.2.11:
(1) For any normed vector space V', we have ||Idy || = 1.

(2) We may equip M,,(R) with the norm ||-|| _, given by

VA = (aij)icij<n, Al = sup |aijl.
1<i,j<n

Let us consider the linear form tr : M, (R) — R.

« For A € M, (R), we have |tr(A)| < >3_; |ar k| < n||A] . This shows the continuity
of tr and |||tr|| < n.

« We have |tr(/,)| = nand ||1,]|,, = 1, this shows that |||tr|| = n.
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Chapter 3 Compact spaces and complete spaces

Theorem 3.2.12: Let f € L(V, W) be a linear map from V to W. The following properties are equiv-

alent.
(a) f is continuous onV.
(b) f is continuous at 0.
(c) f is bounded on the closed unit ball B(0,1) of V.
(d) f is bounded on the unit sphere S(0, 1) of V.
(e) There exists M > 0 such that || f(z)||y, < M ||z||,, forallz € V.
(f) f is Lipschitz continuous on V.

(g) f is uniformly continuous on V.

Remark 3.2.13 : In practice, to show that a linear map f € L(V, W) is continuous, we prove (e), that is we

look for a constant M > 0 such that
Ve eV, |[f(@)lly <Mz .

If we look at the definition of the operator norm in Eq. (3.7), we see that the best (smallest) constant M we

can take is M = ||| f||. To show that a linear map f € L£(V, W) is not continuous, we may show that f is not

continuous at 0. We achieve this by establishing a sequence x, —= 0 such that f(x,) does not converge
n—oo

to 0. See Exercise 3.29 for an example.

Proof :

« (a) < (b). Forx € V and y € B(0,¢), we have

flxz+y) = f(z) = f(y) — f(0).

Therefore, the continuity at z is equivalent to the continuity at 0.

« (c) = (d) = (e) = (c). There is nothing to show for (c) = (d) and (e) = (c). Let us show (d) =

(e). Let M = sup,cg(0q1) I/ (2)[y, < oo. Fix x € V, by linearity and the property of the norm,
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Chapter 3 Compact spaces and complete spaces

we have

1@l = el | (7o)

1y

‘ < M ||zl
W

because W € S(0,1).

+ (f) & (g). We have already seen (f) = (g) in Corollary 2.5.31. Suppose that (g) holds. Let e > 0
and choose § > 0 such that

Ve,ye Vo lz—ylly <d = f@=ylw =)= FWly <e

Then, for any =,y € V with x # y, we have

€
<5'H$*y”v~

1£()  F@)ly = 22 W v

Iz = ylly

,
+ (g) = (a) is clear.

« (b) = (e). Given € > 0, by the continuity of f at 0, we may find § > 0 such that

VeV, lyly<d = [fWlw<e

Therefore, for any given x € V, we have

15 @)l = 12

ox €
f H < szl
()], <5 ety
o () = (f). For any z,y € V, we have

1) = FW)llw = I1f (@ = y)llw < Mz =yl .

E=E TEEHREETM
£ M = sup,esion (@) |y < 0o B o € V » RIS RBHEINEE » BISH

()

1y

LF @)l = lllly < M|y

‘ w

ESp] € S(0,1) °

Tl

.« () & () ° RFICKAERE 2531 PEEEBE (f) = () ° R (g) IL > e > 0 WEE 6 > 0
&5

VeyeV, le—ylly<d = [fl@-ylw=I/=)-FWlw <e

BEE - HNMERI 2,y c ViR £y BFEHE

3
==yl

Hﬂ@—f@mw='xamvw%(“xw)

Iz = ylly

,

- (@) = (2) REESAMY -

o (b) = (o) ° #ATE = > 0 » 4RI f 1F 0 HONERENE - FPIAEHE 6 > 0 48
eV, lully<d = f®lw <<

Eit - WRESREN 2 e V - TfIB

lelly || o e
1@l = = meV”W<5WMM-
c @)=  HRER 2,y c vV HME
1£(2) = F@)llw = 1@ =9l < Mz —ylly - 0

Proposition 3.2.14 : Let U, V, W be three normed vector spaces. For f € L.(U,V) andg € L.(V,W),
we have g o f € Lo (U, W) and |g o fIll < llglll - I £1-
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Proof : For x € U, we have

lg o f@)llw < llgll ILF @)y < gl - WAzl -

In other words,

lg o f(x)

I
llg o flll = sup < gl M- O

z#0 quU

Remark 3.2.15 : In particular, for U = V' = W, the proposition reduces to a submultiplicative inequality

on the space of continuous endomorphisms (B[E]R) on U, that is

Mg A< lgllf- WA, VS, g € Le(U) == Le(U,U),

where the composition law o is the multiplication on the algebra £.(U). This is an example of a normed

algebra (AHEELE).

Remark 3.2.16: Let m,n > 1 be integers. From a matrix A € M,, ,,(R), one can define a linear continuous
operator R” — R, X +— AX, where we identify the vectors in R” and R™ as column vectors. This defines

a norm on the space of matrices, that is

AX
VA € Mpa®), JJAl = sup XL — gip ax) = sup 14X € [0,00]
x#0 [IXI x) =t | x|I<1

This norm on matrices is an operator norm. Additionally, when m = n, this operator norm satisfies

IIABI| < [IAl[IB]l, VA, B € Mn(R).

Definition 3.2.17 : A complete normed vector space is called a Banach space (Banach ZE[&).
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BalEER - fiB
lg o f ()l

HCUHU

llg o flll = sup < lgllF- M-
x#0

23215 I EHNBERU =V =W ZTF > kBRI LLEAE U LEEBERRE (endomorphism)
BRESZEE PRI RAISRIEAREFT - HELER
g f Il < llgll - AN, V£ g€ Le(U) = Le(U,U),

Hep £.(U) BREEEHRITRE - BRIEESHESR o FTEER - E2ME SN (normed algebra) FI—1&
fF o

ZEfE 3216 1 Tmon > 1 REBH - HRNEMREA c M, (R) KRR RPTUEREBREREF
R" = R™, X — AX » HRFEFHE R EZE R" PHEERBITAE < SEERFATLUEEREZER LE
REH - UUER

AX
VA€ Mpa®), JIAll = sup XL — s ax) = sup 14X € [0,00]
xz0 [IXI xy=1 X<t

EEEERE LHNEHEEEFERH - A - Em =n K KEFRIEGHE

IABI| < [IA[[IB]l, VA, B € Mn(R).

EFE 3.2.17 © THENEERZZEMEFBIE Banach ZZ[H (Banach space) °
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Chapter 3 Compact spaces and complete spaces

Theorem 3.2.18 : If W is a Banach space, then the normed vector space (L.(V,W),||-||) is also a

Banach space.

Proof : Let (f,,)n>1 be a Cauchy sequence in £.(V, W). We are going to construct a potential limit f

and check that it is indeed the limit in three steps.

+ Fix x € V. By observing that

1fp(2) = fo@)I| < Ifo = Soll - Izl Vpg =1,

we know (f,(x))n>1 is a Cauchy sequence in W. W being a Banach space, the sequence

(fn(z))n>1 converges, and we denote its limit by f(x). This definesamap f: V — W.

« Let us check that the map f defined above is linear and continuous. For z,y € V, we have
f+y) = lim fo(z+y) = lim [fo(z) + fa(y)] = f(2) + ().
For x € V and X\ € K, we have
fa) = lim () = lim Afa(x) = Mf(2).

For the continuity, since ( f,,)n>1 is Cauchy, it is also bounded (Proposition 2.4.8), say ||| fn ||| < M

for all m > 1 for some M > 0. For any z € V, we have

1 @)y = || fim ful@)| = lim (fa@) e < M ally -

« To finish the proof, we need to show that (f,,),>1 converges to f with respect to the norm |||-|||.

Let € > 0. There exists N > 1 such that ||| f, — fo[| < eforallp,¢ > N. Fixp > N, we have

Vg= N, |fp(x) = fo(@)lw < fp = fall - Izlly < e llzlly -

By taking the limit ¢ — oo, due the the convergence of f,(x), we find

1fp(2) = f(@)lly < ellzlly -

Since this inequality holds for all z € V, we deduce that ||f, — f|| < eforallp > N. O
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EIE3.2.18  fNR W Z{E Banach ZEfH » FEREBEEZEM (L.(V, W), ||-]|) 2 & Z1E Banach
ZEf o

BB N (fo)nz1 A Lo(V, W) RRMAEAERFS - IS0 =@ HKRBE [ BIJEEER - AR
B R FIEAER -

« BIE z € V o BfFIFTUBREE|
1fp(2) = fa()| < fp = Solll - llzlly» - Vpg =1,

B (fo(2))o1 BRFE W BEIHIFERS) o W 218 Banach 2R » EULFES (fu(0))ns: B
8K - FPHRIBIRBREEME [ (2) o SEEBPIRIUEBEE f:V W -

- BPIERE LEERHRNRE f SREEEEN - BN 2,y eV HMAE
flx+y) = lim fu(z+y) = lm [fu(2) + fu(y)] = f(2) + [(y).
HR e cVIUR e K HfIB
fQz) = T fo(Az) = lim Afa(z) = Af(2).

BRETREENY » R (f),o) BAFEFT FIXRERN (BH248) > BHRREE
M > 0 ERHREAE n > 10 BB ||fof| < M - HRER 2 € V> BfIE
1@y = || fim fal@)| = Jim [Lfa(@) e < M lally -

n—oo n—oo

- BEAIER  HPIEFRERE (fr)n NEEEDH ||| 2 TREB) foRBe>07F
TN 1ESHRFABE pq > N BB |f, - fill <e - BEp> N HFIFE

Vg= N, |fp(x) = fo(@)lly < fp = fall - Izlly < ellzlly -
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Chapter 3 Compact spaces and complete spaces

Remark 3.2.19 : The proof we just see above is a standard procedure to show that a normed space is Banach.

More precisely, the three steps are as follow.
(1) We construct a potential candidate for the limit (a function in this example).
(2) We check the properties of this candidate, in order to show that it belongs to the correct space.
(3) Check the potential candidate is indeed the limit.

In Exercise 3.31, you may also follow the same steps to complete the proof.

Proposition 3.2.20: Let U be a complete normed vector space (Banach space) andu € L.(U) satisfying

llull < 1. Then, Id — w is invertible, and its inverse writes

k._ 13 k
d_ub = lim Yt € Lo(U). (3.8)
k=0 k=0

Proof : We are going to check that the limit in Eq. (3.8) is well defined, then check that it is the inverse

of Id — w.

« Foreveryn > 0,let S, = 3_7_,u*. Forany m > n > 0, we have

m
>
k=n+1
1
IHUIH"Jr

HI I < :
= [l

1Sm = Sull <

Thus, the sequence (S),)n>0 is Cauchy in L.(U), which is a complete space by Theorem 3.2.18,
implying that S := lim,,_,~ S), exists and belongs to L.(U).
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BUBIR q — oo » 1R f,(v) BIGRIE - BFIBH
1fp(x) = F(@)llyy < ellzlly -
MR EEEEAFAHENRAAE « e V &I HPIMER ||/, - fll << HRFABEp=> N
sEfE 3.2.19  EEFERD - RFIEFINSEAMEZ R Z(E Banach ZEFERVREERSER - EHETIRY

o RFIREIFR =
(1) BE—EEETHR (EHIPRRE)

ERIFIVENER -

(2) HZfiREEEEETR (R BEE  ERMEFEERNER”T -

(3) BEEEERETRIEEZMER
EERE 331 B - (RFIRTLAERERIBYS BR2REERR -

ME3.220 : DU ATHEMETAEZR (Banach ZZfE) B u e L.(U) WE ||ul| < 1° ABEE
Id — u 2Rl - B RTTREE

k._ 1 k
Z u” = nh_)rgo Z u® € L(U). (3.8)
k=0 k=0

2 HAIERER 3.8) FRIMEREERRGN  ARBREMNRTHER d—u-

CHREEN 0 DS, =Y g o HREEm >0 >0 B

m
> o
k=n+1
1
IHUIH"Jr

HI I < -
= [l

1Sm = Sall <

Etk » FF (Sn)ns0 BTE L(U) PHINIFERS - IBIFEIE 3.2.18 - HMIREILZTEETME
B9 s BRI S :=limy, 00 S, FEBE L (U) H
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Chapter 3 Compact spaces and complete spaces

« It is a simple computation to check that the limit S is the inverse of Id — u. We write
(Id — v)S = lim (Id — u)S, = lim (Id — v"*!) = Id.
n— 00 n—o0o

And similarly, we also have S(Id — u) = Id. O

Remark 3.2.21 : Following a similar approach, we may also define the exponential of a continuous linear

endomorphism u € L.(U) as below,

exp(u) = Z % € L(U).

n=0

We may also apply the same idea to construct other convergent series.

Theorem 3.2.22: In a finite dimensional normed vector space, all the norms are equivalent.

Proof: Let V be a finite dimensional vector space over a field K = R or C. We write n for its dimension,

and consider a basis of V, denoted by (e, ..., ey,). Let Ny, be a norm on V' defined as follows,

n
Noo(z) = sup |zi|, =7 wie; V.

1<i<n i=1
Let N be a norm on V. We want to show that N, and N are equivalent.
For z € V, we may write it as x = 1" ; x;e;, and its norm satisfies
n n n
x) < ZN(%Q') = Z |xi|N(e;) < aNso(x), a= ZN(ei).
i=1

i=1 i=1

Let S = {z € V : Noo(x) = 1}. In the normed space (V, Nu), S is clearly bounded, it is also closed,
being the preimage of the closed set {1} under the continuous map = — Ny (x). It follows from
Remark 3.1.32 that S is a compact subset of (V, N ). Additionally, the map N : (V, Ny) — Ris

continuous because it is Lipschitz continuous (Corollary 2.5.31),
IN(z) = N(y)| < N(z —y) < aNoo(z — y).

Therefore, the infimum of IV on S is attained (Proposition 3.1.12), so needs to be strictly larger than 0.
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BZE BETHEARSEHEZTRE
- M LGERBENG EREEER S 2 1d — u WRTEH - HfE -
(Id - u)S = lim (Id - u)S, = lim (Id - u" ) =1d.

ERBLNA - HFIEEEE S(d—u) =1d -

sEfE 3.2.21 ¢ EAAMEISE > RIEEHEREEEERE u e L.(U) ISR ERWNT :

exp(u) =3 L €

M
n=0 n:

TPt mT LUEAR R RYARE A RABIE HL A B AR B -

EIE 3222 @ TAERKENREZEF - FIASHETESEN -

A BV BEEK =RHC ENERBEDEZER - RFIHEMIMEREn AREEV
B—BEE » 5CIE (e1,....en) ° B Noo BTE V LRIEEE - EHRWTF -

Noo(z) = sup |z, x:Z:L’ieieV.

1<i<n i=1

TNV ERIEE - HFIBEERE N, B N 2FERY -
HRz eV BARTLUBHEIE 2 = Y7 zie; » FIAMBRIEERERE

ZN (x5€5) = Z |xi|N(e;) < aNso(x), a= ZN(eZ-).
1=1 i=1 i

DS ={r €V :Ny(x)=1} EHEZTM (V,No) F° S EARERN > MEBRMZE

£ {1} IEEBERE 2 — No(z) QTHERE - i B 2K - KR 3132 RABHM - SR

(V,Noo) FHIBRBFES o LA REILN : (V,Ny) — R 2EEN - AAME Lipschitz E &
(RIE2531)

IN(z) = N(y)| < N(z —y) < aN(z — y).
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Chapter 3 Compact spaces and complete spaces

We write b = inf,cg N(z) > 0, and we have

vz € V\{0}, N(z) = Noo(w) - N(

Remark 3.2.23 : Theorem 3.2.22 basically tells us that on a finite dimension vector space, we may choose

whichever norm we want, since many topological notions do not depend on the chosen norm anymore.

« Different norms give rise to normed spaces which are topologically equivalent (Remark 2.5.33). This
means that the notions, such as open sets, closed sets, interior, closure, boundary, compact sets, con-

nected sets, limit, and continuity of a function, etc. are the same for all the norms.

« Some stronger notions which depend on the distance (norm), and not only on the topology, are also

the same, such as the boundedness of a set, and the uniform continuity of a function.

Corollary 3.2.24 : Following are consequences of Theorem 3.2.22.

(1) Any linear map from a finite dimensional normed vector space to any normed vector space is con-

tinuous. In other words, L(V,W) = L.(V,W) ifdim V < oco.
(2) Every finite dimensional normed vector space is complete.
(3) Every finite dimensional subvector space of a normed vector space is closed.

(4) In a finite dimensional normed vector space, compact subsets are exactly closed and bounded subsets.

Remark 3.2.25:In an infinite dimensional normed space, these properties do not hold anymore.

(1) We may equip the vector space R[X] of polynomials with the norm

VP = Z a, X",

I1P|] = sup [ax|.
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b=inf,cq N(z) > 0 SAEEKME

vz € V\{0}, N(z)= No(z)- N(N:(x)) > bNo (). O

53f# 3.2.23 1 EHE 3222 HHFHF - AREENEEZREL  HAFTLGEEERHFABEMEE -
KA RZIHESSE BRI I FIFmEZR D -

- FEESHEHRNVHEZEFERHEFEN M 2533) - EAXRE > KSBEXGIMFHSE -
& - f - B 27« BRES Z8ES5 R - REVERNEES  EFREEHCT
EZEE o

- RELEERNES - SFERDERE (88 - MARBURIRIEEN  ERESB THEE
@ - FNEEEREERRBBVGTEGN

RiE3224 ! TEAREE 3222 FER -

(1) FEARIE T PR FE el 0 e 22 2 ] B 4 {7 Bl 80 () 2 2 R RO AR 14 PR S 0 2 R A Y 0 5EER -
R dim V < oo FEMB L(V,W) = L(V, W) °

(2) FrEBR#ERLREEHEZTHAY
(3) MEBREZEMT - FAERREFREZ[HMELHE -

4 EEREHEENHERNEZMT - BRESHITmER FHE -

sif# 3.2.25 | TEERESMEERVAREEZEME o BEMERMALIL o
(1) FFITUEZRIERNEEZERE R(X] LT

VP => a, X",

| P[] = sup |an|.
n>0 n=0
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Chapter 3 Compact spaces and complete spaces

Then, the following map
f: RX] — R[X]
P — P

is linear but not continuous. Actually, for every n > 1, we have || f(X™)|| = n and || X"|| = 1.

(2) In the space of continuous functions C([0, 1], R), we may consider the following sequence of affine

functions,

Vn>1,Yz €[0,1], f(z)=

Then, we see that

¢« || falloo = v/nforalln > 1, so f,, does not converge under the norm ||-||

* W fally 5= 0. 50 f
o | fulls = \1[ for all n > 1, so the sequence (fy,)n>1 is bounded under the norm |-||,. However, it
does not converge to the constant function 0, and cannot converge to any other function either
by uniqueness of limit (and Cauchy-Schwarz inequality).
In the second semester, we will discuss more about different notions of convergence of sequences of
functions.
(3) In Remark 3.1.34, we saw that in £°°(RR), the unit closed ball B(0, 1) is bounded and closed, but not

compact.

3.3 Completion of a metric space

3.3.1 Using Cauchy sequences

A metric space (M, d) is not necessarily complete, it is possible to make it complete by adding those missing
limiting points (of Cauchy sequences). To this end, we are going to consider the space consisting of all the
Cauchy sequences in M. This space is much larger (up to an isometry) than the original space M itself, and
some of its elements are actually represented by multiple Cauchy sequences. Therefore, we need to identify

some of its elements, and show that the resulting space is complete. Such as a space is unique, and is the
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f: RX] — R[X]
P = P
AR > BAREE - MM LGEREBER  HRFAE» > 1 BAE | f(X7)| =n > HA
[ X" =1-°

(2) TEEMEREZER C([0,1],R) 1 » HFIFTUZ B TS RBEBRRIFY :

Vn > 1,Vz € 0,1], f(z)=

ARE - fIE

o fally === 0 PR f, BTEERE |||, 2 THERIEERE 0
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smallest (up to an isometry) complete space containing the original space M, and we call it the completion

of (M,d).

Theorem 3.3.1 (Completion of a metric space) : Let (M, d) be a metric space. There exists a metric

space (M, 5) and an isometric injection i : M — M such that the following properties are satisfied.
(1) i(M) is dense in M.
(2) The metric space (M, 6) is complete.

Moreover, such a metric space (M, ) is unique in the following sense. Let (M, 1) and (M, 82) be two
complete metric spaces, and i1 : M — M andia : M — Ms be two isometric injections such that
i1(M) is dense in My and ia(M) is dense in M. Then, there exists a bijective isometry ¢ : My — My
such that ¢(i1(x)) = ia(x) forallz € M.

Figure 3.1: This diagram illustrates the uniqueness of the completion of (M, d)
up to a bijective isometry (.

Example 3.3.2 : Below are a few examples of completion of metric spaces.

(1) If we equip M = (0, 1] with the usual distance | - |, then its completion writes M = [0, 1].

(2) If we equip M = (0, 1] with the distance d as in Exercise 2.23, then M = M because (M, d) is

complete.

(3) If we equip Q with the same distance |- |, then Q=R corresponding to Cantor’s construction of

the real numbers. In this construction, each real number can be identified to a Cauchy sequence.
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FERpSE o

gl 3.3.2 : TEHEMEBEZTHE=HELHNEF -
(1) MREMEF M = (0,1) EBH# | - | - FBEMHTELCEEEE M =[0,1] °
2) MNRFEMEF M = (0,1] BRE 2.23 YIS > FE M = M BB (M, d) S5HEH -
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If we equip Q with the discrete distance dgjscrete, then @ =Q.

F=E BERERRTHERE

4) NRIHEFIET Q BN EE B dgiscrete ’ AREE @ =Q-

We decompose the proof of Theorem 3.3.1 into several lemmas as below. To start with, we fix a metric

space (M, d). Let us denote by C the set of all the Cauchy sequences U = (uy,),>1 with values in M.

BFHEEIE 3.3.1 BURERIRARA TEARES 1B - Bk » ERMILEEREZM (M, d) - FHFHE M

FREMERS U = (un)n>1 HBRBIESECEC °

Lemma 3.3.3 : Let us define the function 0 : C x C — R as follows. ForU = (un)n>1, V = (Un)n>1 €
C, let
(U, V) = Jim d(Up, vp).

Then, § is well defined, symmetric, and satisfies the triangle inequality.

Proof : See Exercise 2.26 (1). O

513333 : RHAI:CxC Ry ERUNT 1 HRU = (un)ns1 ARV = (Up)n1 €C* B

(U, V) = Jim d(Up, vp).

Al 0 EERYF - EAYEN - BmE=A1FEN -

S8EA : R&RE 226 (1) ° O

Lemma 3.3.4: On C, we may define the following equivalence relation,
U~V & 44U V)=0.

Then, we define the quotient space M = C/ ~, and for an element U € C, we write UeM for
its equivalence class. On M, we may define a distance 6 induced by 6, which does not depend on the

representant chosen from the equivalence classes, in the sense that for U ~ V and S ~ W, we have

5(U,S) = 86(V,W), and thus we can set 5(U, S) = 6(U, S) for U, S € C. Then, (M, d) is a metric space.

Proof : To show that ~ is an equivalence relation, we need to check that it is reflexive, symmetric, and
transitive. The reflexivity is trivial, the symmetry can be obtained by its definition in Lemma 3.3.3, and
the transitivity is checked in Exercise 2.26 (2).

To check that (M ) 3) is a metric space, we need to start by checking that the definition of 5 does
not depend on the element chosen from the equivalence class. This is checked in Exercise 2.26 (3).
Then, the distance § is positive definite due to the equivalence relation, it is symmetric and satisfies the

triangle inequality due to Lemma 3.3.3. O
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CxC s R

_-~~ compatible ¢§

C/RxC/R

Figure 3.2: This diagram illustrates how to make ¢ defined on C x C, which is
not a distance, into a distance 6 on C/R so that it does not depend
on the representant from each equivalence class.

Proposition 3.3.5: Wedefinei : M — M as below. Foranyx € M, leti(x) = X, where X = (2)n>1

be given by the constant sequence. Then, i is an isometric injection, and i(M) is dense in M.

Proof : Given u,v € M, we have

Therefore, 7 is an isometry, so it is also an injection.

Then, let us show that 4(M) is dense in M. Let U € M with U = (uy)n>1. We want to conclude
by showing that U is the limit of (i(uy))n>1. Let & > 0. Since U = (uy,)n>1 is a Cauchy sequence, we
may find N > 1 such that

d(um,up) <e, V¥Ym,n>= N.

For a fixed m > N, we have

Therefore,

lim i(uy,)="U.

m— 00

This shows that any point in M can be obtained as the sequential limit of points in the image i(M),

that is i(M) is dense in M. O
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F=E BERERRTHERE

ERRE  F M PHEEETUEAGR (M) ERZERFEFIRE - Bl (M) £ M hE2RE
B e O

Proposition 3.3.6 : The metric space (M, 6) is complete.

foRE 3.3.6 : BREBZERY (M, 6) BB -

Proof : Let (ayy)n>1 be a Cauchy sequence in M. Using the fact that i(M) is dense in M, for every
n > 1, we may find &, € M such that §(cv,, i(2)) < . Then, for any m,n > 1, we have

ATy 20) = 8(i(2m), 5(20)) < 0(i(2m), Am) + 0 (Qmy ) 4 8 (i, i(20)) < O(m, ) + % T %7

which means that (z,),>1 is also a Cauchy sequence (in M).
Let (xn)n>1 € C, and « be its equivalence class with respect to the relation ~. We want to prove

that (v, )n>1 converges to a. Let ¢ > 0. We may find N > 1 such that
d(xp, xm) <&, Vn,m>= N.

Then, for n > N, we find

A A A 1
B0, @) < Blamsi(wa) + 8(ifan). @) < — 42,

because by definition, we have

~

0(i(xn),a) = lim d(zp,zm) < €.

m—r0o0

Therefore, by taking lim sup, we find

lim sup 6 (a, ) < e.
n—o0

Since € > 0 can be taken to be arbitrarily small, we find lim sup,, 6 (an, ) = 0, in other words,

lim,,—s 00 S(Qn, a) = 0. O
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e >0 HMEELEI N > 1 15

ABE - WIRFAE n > N » 2ffIE

T LRAF - ZFIRE

o8

(i(x), ) = %gnoo d(xpn, Tm) < €.

Ftt > aNRFLAFIE lim sup > E1FF)

lim sup 6 (aun, ) < e.
n—oo

BMRe > 0T UEE/N> HFMEI limsup, . d(an,a) = 07 BRAER HRMAAE

limy, oo 5(an, a)=0¢° O
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Chapter 3 Compact spaces and complete spaces

Proposition 3.3.7 : The completion (M, 3) is unique in the sense of Theorem 3.3.1.

Proof : Let (M, 6,) and (Ms, d2) be two completions of (M, d), and i; and i3 be the corresponding
isometric injections as in Theorem 3.3.1.
Let p(i1(x)) = i2(z) for all x € M, which defines ¢ on the image i;(M). It is easy to check that

®|i; (M) 18 an isometry,

Yo,y € M, d2(p(in(2)), (iz(y))) = d2(iz(z), i2(y)) = d(z,y) = 01(i1(z),i1(y)).

Therefore, ¢ is uniformly continuous on i1(M). Since i;(M) C M; is a dense subset and M, is
copmlete, it follows from Exercise 3.23 that there exists a unique uniform continuation of ¢ on M,
that we still call ¢ by abuse of notation. Moreover, due to the fact that ¢ is isometric on i1 (M) and
i1(M) is dense in M, the continuity of ¢ shows that ¢ is isometric on M. In particular, this also
shows that ¢ is injective.

To show that ¢ is surjective, we are given y € M, and we need to construct its preimage under (.
We use the fact that i5(M) is dense in Ms to find a sequence (Y, = i2(xy))n>1, where x,, € M for all

n > 1, and such that y, m y. For any p, ¢ > 1, we have

A

01(i1(xp),i1(xq)) = d(xp, vg) = 82(2'2(3719)7 ig(7q)) = 32(%77 Ya),

we see that the sequence (i1(2y))n>1 is Cauchy in M. Since M, is complete, it converges to a limit

o := limy, o i1 (). Then, by the continuity of ¢, we find

pla) = lim @(ir(zn)) = lim dg(zn) = lim y, =y.

This concludes that ¢ is surjective. O

3.3.2 Completion of a normed space
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Chapter 3 Compact spaces and complete spaces

Now, we discuss another construction in the special case of a normed space. We note that a finite dimen-
sional normed vector space is always complete, so the interesting cases concern infinite dimensional normed
vector spaces, such as spaces of sequences /*(K) for p = 1, 2, 0o, or functional spaces such as C([0, 1], K) or
B([0, 1], K). The construction is quite simple, but involves a theorem from functional analysis, whose proof

will be omitted here.

Let (V,]|-]|) be a normed vector space over K = R or C. Write V* = L.(V,K) for the dual space of V,

which is the space of the continuous linear forms on V, that we equip with the operator norm
VEeVE  flly- =sup{lf(2)]: z € V,[lz]| <1}.
We also consider the double dual space V** := (V*)* = L.(V* K), that we equip with the operator norm
VO e V¥, [ @llyr = sup{|®(f)] : f € V([ fllly- < 1}

It follows from Theorem 3.2.18 that both (V*, ||-||;/«) and (V**,|||||l/«~) are Banach spaces.

Then, we consider the map J : V' — V**, defined by
J(z)(f) = f(z), VxeVVfeV"

We first check that J is well defined, that is, for every x € V, we need to verify that J(z) € V**. Let
f,g9 € V¥and A € K. Indeed, we have

J(@)(f +A9) = (f + Ag)(x) = f(z) + Ag(x) = J (2)(f) + AJ (2)(9)-

Then, we check that J is a linear map. Let A € Kand z,y € V. For any f € V*, we have

J(@+ ) (f) = flz+ X y) = fz) + Af(y) = J(2)(f) + AT (W) (f),

that is,
J(x+ Ay) = J(x) + N (y).
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Chapter 3 Compact spaces and complete spaces

For every x € V, we have

WIT(@)llly+e = sup{|J(2)(£)] : £ €V IFlly- <1}
= sup{[f(z)|: f € VI ([ fllly. <1} <zl - (3.9)

By a theorem from functional analysis, called Hahn-Banach theorem, for any given x € V, we can actually

find a linear form f, € V* such that f,(z) = ||z|| and ||| f2|

v+ < 1. This gives us

T @)y = sup{[J(2) ()] = f € VNSl <13
= J(@)(fe) = fo(z) = ]| (3.10)

The above Eq. (3.9) and Eq. (3.10) give us |||J(z)||

v+ = ||z||, that is .J is an isometry.

To conclude, we may take V := J(V) C V**, which is a linear subspace of V**. It is obvious that .J (V')

is dense in J(V'). Moreover, since V** is a complete normed vector space, the closed subset J(V') is also

complete by Proposition 3.2.1. This allows us to conclude that (V, |||y ) is a completion of the normed

vector space (V, ||-||).

Last modified: 11:20 on Friday 22"* November, 2024

36

F=E BERERRTHERE

HRFE z eV BB

T @)y = sup{|J (2)(F)] = f € V7, IF]
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= sup{|f(z)[ : f € VI fllly- <1} < ]l (3.9)
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