Differentials in normed vector
spaces
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4.1 Differential and partial derivatives

In the first year calculus, we have seen the notion of derivative of a function f : I — R, where I C R is

an interval. In particular, Taylor’s formula allows us to develop f around x € I in the following way,
flx+h) = f(z) + hf'(z) + o(h),

where the term h — hf’(z) is a linearisation of f around z. If the function takes values in a higher dimen-
sional Euclidean space such as R", similar theories can also be developped. Below, we are going to see how
to generalize these notions to functions from an open subset of a normed vector space with values in another

normed vector space.

4.1.1 Differential

Let (V,||-|ly;) and (W, ||-|ly/) be two normed vector spaces. Let us consider an open set A C V and
f:A->W.

Definition 4.1.1:Let a € A. We say that f is differentiable'at a if there exists ¢ € L.(V, W) such
that
fla+h) = f(a) + ¢(h) +o(|h|ly;), when h — 0. (4.1)

If such a map ¢ exists, it is unique, and is called the differential (fi43") of f at a, denoted by D f(a) or
dfa.

!Also known as Fréchet differentiable. In Exercise 4.10 we will see a more general notion of differentiability, called Gateaux

differentiability.
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Chapter 4 Differentials in normed vector spaces

Remark 4.1.2: Since A is an open set and a is an interior point, for h close enough to 0, we know that a+ h
is also in A. Therefore, the condition “when h — 0 is important in Eq. (4.1), since the relation only makes

sense when h is close enough to 0.

Definition 4.1.3 :If f is differentiable at every a € A, we say that f is differentiable on A, and the

map
Df: A — LJ(V,W)
a +— df,

is called the differential map of f. If D f is continuous, we say that f is of class C'.

Remark 4.1.4:

(1) 'V = R, then the notion corresponds to the classical notion of derivative, that is the continuous linear
map D f(a) writes D f(a)(h) = df,(h) = f'(a)h. So we may also just write D f(a) = df, = f'(a).

(2) In general, the definition of d f, may depend on the norms ||-||,, and ||-||;;,. However, if V and W are
finite dimensional vector spaces, we have seen in Theorem 3.2.22 that all the norms are equivalent, so

the existence of d f, does not depend on the norms that we equip on the spaces.

(3) It is important to require the differential d f, to be a continuous map. In finite dimensional spaces,
all the linear maps are continuous (Corollary 3.2.24), so in such spaces, we only need to check the

linearity, then the continuity follows automatically.

Example 4.1.5:

(1) If f € L.(V, W), then the relation f(a+ h) = f(a)+ f(h) implies that f is differentiable on V'
with df, = f foreverya € V.

(2) Consider the product on R2,
v: R — R
(x,y) = a2y
Then,
V(& + he,y + hy) — (2, y) = xhy + hyy + hyhy.
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Chapter 4 Differentials in normed vector spaces

Since the map (hy, hy) — xhy + yh, is linear, and hyhy = o(||(hs, hy)||), we deduce that

dvp,(h) = zhy + yhy for h = (hy, hy) € R

(3) Consider the matrix product on M,,(R),

b Mu(R) X Mu(R) — M, (R)
(M, N) —~  MN

We equip the vector space M,,(R) with the norm |[|-||| defined in Remark 3.2.16. Let M, N €
M., (R) be fixed. Then, for H, K € M,,(R), we have

WM+ H N +K)—¢(M,N)= MK + HN + HK.

The map (H, K) — MK + HN is linear, and ||HK || < ||H||||K]| < ||(H, K)||*. Therefore,
we find dvyy y (H, K) = MK + HN.

FME RSEZEFFHHD

BERME

%0(56 + he,y + hy) - ¢($7y) = xhy + hyy + hxhy-

FBRIRET (hy, hy) — xhy +yh, SRR > B hohy = o(||(he, by) ) » BAPIHESR dv, y(h) =

zhy + yhy W h = (hy, hy) € R? o
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P Mp(R) x Mp(R) — M,(R)

(M,N) —  MN

BMEREZER M, (R) LEFEBREIIM 3.2.16 FHEE ||| - BEE M, N € M, (R) °
BREE - R H, K € M,(R) » &ME

WM+ H N+ K)—¢(M,N)=MK + HN + HK.

B (H,K) —» MK + HN 28489 B ||HK|| < || H|||IK]| < |(H, K)|* » B3PS

B dyyn(H,K)= MK+ HN °

Example 4.1.6 : Let V be a normed vector space, and
GL.(V)={ue L(V,V):uand u~! are continuous}.

Define the map Inv : GL.(V) — GL.(V),u — u~t. For h € GL.(V) such that |||h|| < 1, we know

that id +h is invertible with inverse

(id+h)~" =id—h + > (=1)"h".

n=2

We have
2
HIhIH

<A = T

n>2

Z nhn

n=2

Thus, when h — 0, we have
(id+h)~t =id —h + o(||A]]).
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Chapter 4 Differentials in normed vector spaces

This means that Inv is differentiable at id with differential d Inv;q : h — —h.

FEME REZTEFMD
Hit - & h— 0> HKFER
(id+h)~t =id —h + o(|R]]).

BAKRE Inv £ id 2RIRY - BRSO B dInvig : h— —h °

Proposition 4.1.7 : If f is differentiable at a € A, then f is also continuous at a.

Proof : Suppose that f is differentiable at @ € A. Then, we can find a continuous linear function

@ :V — W and r > 0 such that
vh e By(0,r), fla+h)=f(a)+ ¢(h)+ |[hllye(h),
where limj,_,oe(h) = 0. Fix 6 > 0and 0 < 7’ < 7 such that ||e(h)||;, < ¢ for h € By (0,7”). Then,

Vh e By(0,7), | f(a+h) = fa)llw < le®llw + [hlly o < (M +6)[Ally

where M = |||]||. This implies the continuity of f at a. O

RE4.1.7 P R fEac AR FRE f BETE o FERE -

Proposition 4.1.8: Let V, W be two normed vector spaces, A C V be an open subset, and f,g : A — W
be two differentiable functions at a € A. Then,

(1) f + g is differentiable at a, and d(f + g)o = df, + dga,

(2) forevery A € K, \f is differentiable at a, and d(\f), = A d f,.

S8R 1 RER [ TE a € A RIS AREFFIREIRBEERIERE - V - W MUK r > 0 17
Vh e By(0,r), fla+h)=f(a)+e(h)+I[hlye(h),

HAlimy, oe(h) =0° BE I > 0B 0 < 7' <118 |e(h)|y < 6 B h € By (0,1) ° BREE »
HME

Vh e By(0,7), |f(a+h) = f(a)llw < le®llw + hly o < (M +0)[Ally

H M = ||| » E#aFAI [ 7E o BOEREN © a

Proof : Complete the proof by yourself using directly the definition in Definition 4.1.1. ]

WE418 I BV, W AREREAETR - ACV ABRFES B f,g: A > W AWETE
a € ARITHRIRER - ARRE - FFIFE -

(1) f+gEar > Bd(f+g)a=dfs+dgas

@ HREFIB ) Nec K> REAfFE o T Bd(\f)e = Adf,

Proposition 4.1.9 (Chain rule) : Let V, W, X be normed K-vector spaces, A C V and B C W be two
open subsets. Consider two functions f : A CV — Wandg: B C W — X satisfying f(A) C B.
Suppose that f is differentiable at a € A and g is differentiable at f(a). Then,go f : ACV — X is
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Chapter 4 Differentials in normed vector spaces

differentiable at a, and we have

d(go fla= dgf(a) o dfa. (4.2)

Remark 4.1.10:If V =W = X = R, Eq. (4.2) becomes (g o f)'(a) = ¢’(f(a)) - f'(a), which is the chain

rule we have seen in the first-year calculus.

Proof : By the differentiability of f at a, we can write

fla+h) = f(a)+df.(h) +o(||h|ly/), whenh — 0.

When we compose with g and by the differentiability of g at b = f(a), we get

(gof)la+h) =g

~

(a) +dfa(h) + o(|[hlly))
P

a)) + dgy(h') + o[ W]} y)-

-

=g(f

—

Since df, € L.(V,W), by Theorem 3.2.12, we know that h' = O(]|hl|;,). Similarly, due to the fact
that dg, € L.(W, X), we have

dge (') = dgp o dfa(h) + dgs(o(lIhlly)) = dgs o dfa(h) + o(||Ally).
and the map dgy o d f, is linear and continuous being composition of such functions. In consequence,
(go f)la+h) = (go f)(a)+dgyodfae(h)+ o(||h]), whenh — 0.

implying that d(g o f), = dgp o d f,. O

Corollary 4.1.11:Let f,g : A C V — R be differentiable at a € A, then the product fg is also

differentiable at a, and
d(fg)a = g(a) ’ dfa + f(a) - dga-
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=
=

(i

BEA241.10 1 MBV =W = X = R » BER (4.2) TUEHEM (g0 £)'(a) = ¢'(f(a) - f(a) °
RIEA— SRS FEBISERNE -
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ERFIEME g SR > BER ¢ 72 b = f(o) I » HFISE)
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——

b h'

= g(f(a)) + dgs(h') + o(|W'|,)-

MR df, € L(V,W)  IRIBEIE 3212 » HMHAE W = O(|hly,) o BLM - BIR dg, €
LW, X) &MEE

dge(h') = dgy o dfa(h) + dgs(o(||hlly)) = dgy 0 dfa(h) + o(lI]ly),
B dgy o df, RIEEFRIMEMREY - RS MMIEERIEREAIE R - EI -
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Chapter 4 Differentials in normed vector spaces

Proof : It is a direct application of Proposition 4.1.9. Actually, let us consider the functions

p: A — R?2 d v: R2 = R
., an .
r = (f(zx),g(x)) (z,y) — wy

Then, the product fg is the composition x — (¢ o ¢)(z), and we have

d@z(h) = (dfac(h)adgx(h))
Aoy y (has hy) = hay + hyx.

Therefore, by composition, we find, for h — 0,

d(fg)a(h) = d”%(a) © d@a(h) = g(a) dfa(h) + f(a) dga(h)

4.1.2 Mean-value theorem

We recall from the first-year calculus that for a continuous and differentiable function f : I — R, where
I C R is an open interval, we have the mean-value theorem stated as below. For a,b € I with a < b, there

exists ¢ € (a,b) such that

f) = fla) = f'(c)(b - a). (43)

In particular, if we know that sup;c(q ) |f'(c)| < M, then [f(b) — f(a)| < M (b — a), which is known as
the mean-value inequality. Below, we are going to generalize the mean-value theorem and the mean-value
inequality to functions defined on an open subset of a normed vector space, with values in another normed

vector space.

Lemma 4.1.12: Let a < b be real numbers, and W be a normed vector space. Let f : [a,b] — W and
g : [a,b] — R be two continuous functions on [a, b] and differentiable on (a,b). If || ' (¢)|ly < ¢'(t) for
allt € (a,b), then || f(b) = f(a)lly < g(b) - g(a).
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p: A — R? v: R = R
r = (f(z),9(x)) (z,y) — xy

ARE > FehE fg EREMRE 2 — (Yo p)(z) » BEMAE

dez(h) = (dfz(h),dg=(h))

dtpyy(ha, hy) = hay + hya.
Rt - FEEHEMK - E h— 0 B - FFISE

d(fg)alh) = Aty © dpa(h) = g(a) dfa(h) + f(a) dga(h) O

B IEEE

BPERBEA—MBEAFED » HPEEAHEE f: 1 - R+ £ [ C R 2EBEE - RMAET
BRI - I a,bc T MR a < b 771E ¢ € (a,b) 548

f(b) = fla) = f'(c)(b—a). (4.3)

It} > BNRBAIAE supye (4 |/ (c)| < M 2 BBEE |f(b) - f(a)] < M(b—a) » HFIBZBIIEATFN -
ETE > RAFIESECIEEEHEARAEFN  HEIE—RNER  LHMEHR @ BAIEHERTH
sMEZEREASK - BUEREE S —EREE R 2 22 R R Bt &

534112 : [Fa<bREE - BW ZEEEBEEEM 5 f: [0, - WEBg:[a,0] = R
BB [0, 5] LEEEEE  BAE (a,b) LA - IR ¢ € (a,b) * BAVE |17/(0),y <
g'(t) » BBEE || £(b) — f(a)lly < g(b) —g(a) ©
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Chapter 4 Differentials in normed vector spaces ST MHSBEEPNHMS

Proof : First, let us assume that || f'(¢)||y;, < ¢'(¢) for all ¢ € (a,b). This means that, 59EH Bk BEMEER S Nw < d'(t) HRFAE t € (a,b) c ERRE
|| f () = f(©) g9(x) —g(t) _ _
>t
flx) = f() g(z) —g(t) _
> W )l <50 0 S e @b > Ve el 15— f0)ly < o) ol0) o
Let [a, 8] C (a,b), and we want to show that
B [a, 8] C (a,b) » FHFIBEZA
1F(B) = f(@)llw < 9(B) — g(a). (4.5)
1F(8) = f()llw < 9(B) — g(e). (4.5)
Let
I'={0€ (o, 8] : Vo € [, 0], | f(z) = f()lly < 9(z) — g(a)}. w~
It follows from Eq. (4.4) that " is nonempty. Let v = sup I, and we want to show that v = 3, which I'={0€(o,f]:Voea,b],|flx)— flo)]y <g(z)—g(a)}
will imply Eq. (4.5).
We prove by contradiction. Suppose that v < . Since f and g are continuous, we also have BIERX (14 BMAMET BIFZEN - © v =supl » NRFHMEEFEE v = 3 HMFEFR
I (4.5) ©
1f(v) = F(@)llw < 9(7) — g(e). (4.6)
v RIEARES - B < 5o MR fH g SREEN - BALEE
But from Eq. (4.4), we know that
1f(v) = f(@)lly < 9(7) — g(a). (4.6)
e (v, B, Ve € [v,4], [If(@) = f(Nllw < g(x) —9(7). (4.7)
BRE (4.4) - FFIFE
Then, it follows from Eq. (4.6) and Eq. (4.7) that there exists 6 € (v, 8] such that
€ (v, B, Ve € [v,0],  [If (@) = F(Nlw < 9(x) —9(7)- (4.7)

Ve e[y, 0], [[f(x) = f@)lly < g(z) - g(a).
BE B (1.0 8B @) BT LEA=ZAFEFN » RFIREEEE I € (1, 6] £17

This shows that § € T, which is not possible because we assumed that § > ~ = supI. Therefore,
Eq. (4.5) is true. Then, we may take & — a and 8 — b in Eq. (4.5), and by continuity of f and g, we
also have ||£(8) — /(@) < 9(6) — g(a).

To conclude, we need to deal with the case with the original hypothesis || f'(t)[|;;; < ¢/(t) for all

Vo e [y,8],  [lf(x) = Flo)lly < g(z) —g(a).

EEEMEBH e ERAYEN » AIAEMAIEMER 6 > v = supl ° FAAFKMERI (4.5)
t € (a,b). We may apply the above arguments to obtain || f(b) — f(a)||y < g-(b) — g-(a). By taking RE - EE - EI (45) T HFAIMN o - o BR - 00 B8 W g BEREE > KAIREs
£ — 0, we find the desired result. O lf(0) — fla)|ly < g(b) —g(a) °

RERBEMAEE  KAFAFEERENBERRRANERE ||/ <) BREABt e (a,b)°

€ (a,b). Fix e > 0, we may consider g.(t) = g(t) + et for t € [a,b]. Then, || f'(t)|l;, < g.(t) for
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Chapter 4 Differentials in normed vector spaces

Theorem 4.1.13 (Mean-value inequality) : Let V' and W be two normed vector spaces, and A C V
be an open subset. Let f : A C V. — W be a function. Consider a,b € A such that the line segment

[a,b] C A. Suppose that
(a) f is continuous on [a, b],
(b) f is differentiable on (a,b),
(c) there exists M > 0 such that ||df.|| < M forc € (a,b).

Then,
1£(6) = f(a)llw < M|[b—all . (4.8)

Proof : Let g : [0,1] — W be defined by g(¢) = f(a + t(b —a)) for t € [0, 1]. Then, g is continuous

on [0, 1] and differentiable on (0, 1), with derivative

g,(t) = dfa+t(b—a) (b - a‘)v vt e (CL, b)

Therefore, ||¢'(t)|ly, < M ||b—al|y fort € (0,1). By Lemma 4.1.12, we find the desired result. O

Remark 4.1.14 : We note that here in general normed vector spaces (dimension larger or equal to 2), the
best result we can get is only an inequality, even when the operator norm of the differential is always equal

to M in the condition (c) of Theorem 4.1.13. We may consider for example the map

f: R — R?

t +— (cost,sint).

It is not hard to check that for every ¢ € R, we have df; = (—sint,cost) which satisfies [|df|| = 1.
However, we have || f(0) — f(27)|| = 0 # 27 - 1.
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(@) f7E [a,b] £3EHE ;
(b) f 7E (a,b) LRI
(¢) T7E M > 01518 [|df.[| < M BR c € (a,b) °

AR - FfFIE

1F(b) = fla)lly < Mo = ally . (4.8)

B EEERE g:[0,1] - WEEBgt) = fla+tb—a) BRtc[0,1] FBE g7 [0,1] £
EMERTE (0,1) LRI D BH

g,(t) = dfa+t(b—a) (b—a), Vte(a,b).

Btk - B8 ¢ € (0,1) » BAFE |9/ (Ol < Mlb—all, o BB 4112 - RAVSDBE AR
2. 0

4104 1 BPERD) E—RMBEAEEH MHEARER2) - BMPESINSFERHR
QREAEFAME - MEREERE 4.1.13 FRUEH o F » MONEFEHEFN M FHE—1K o
a0 > IR LAE B ESE {E RS

f: R — R?

t — (cost,sint).

BMTHERE > HRBE t € R &ME df, = (—sint,cost) BEWE ||dfif| = 1 - A > &HME
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Chapter 4 Differentials in normed vector spaces

FNE MEE[MPHMD

[F(0) = f2m)[| =0 #2m -1

Theorem 4.1.15 (Mean-value theorem) : Let V' be a normed vector space and W = R be an Euclidean
space, and A C V be an open subset. Consider a function f : A C V — R” that is differentiable on A.
Leta,b € A such that [a,b] C A. Then, for any vector v € R", there exists ¢ € (a,b) such that

v-[f(b) = f(@)] = v-dfe(b - a). (4.9)

Proof: Let h = b — a. Since A is open and [a,a + h] C A, there exists 0 > 0 such that a + th € A for
t € (—=d,1+9). Fixavectorv € R"andlet g : (—d,1 + J) — R be defined by

g(t)=v- f(a+th), Vte (—0,1+)9).
Then, f is differentiable on (—d, 1 4 §) and its derivative writes
g'(t) = v dform(h).
By the classical one-dimensional mean-value theorem (Eq. (4.3)), we have

g(1) — g(0) = ¢'(t), forsomet € (0,1),

which is exactly Eq. (4.9). O

4.1.3 Directional derivative

EE 4115 HETE] : SV ARSREZTRH - W =R"ARKZEM > B ACV 2ERF
EE-EZERTEALUMMRE f: ACV SRS a,bec AMFEF [a,b] C A FE » HRER

ME& v eR" > FE c € (a,b) (EF

v-[f(b) = f(@)] = v-dfe(b - a). (4.9)

BB Sh=0b-a - AR ARHE Blo,a+h CA FEI>0FESa+the AHRN

te(=6,14+06)  BIEEEvcR" WS g: (—6,1+05) - REHEM
gt) =v- fla+th), Ve (—5,1+50).
AE > f7E (—6,1 +0) LERITHAY » BB Bl
g'(t) = v dform(h).
BE—#ASETE (X 43) - KAEE
g(1) — g(0) = ¢'(t), HREM<t < (0,1),

EBIEEFRET (4.9) © 0

BZE BREH

Definition 4.1.16 : Let a € A. We say that the directional derivative of f at a in the direction u € V'

exists, denoted by f/ (a), if the following limit exists

(4.10)
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EE41.16 | Dac AURAE ve Vo IR TEMRREFE

) — i L)~ (@)

h—0 h ’ (4.10)

BUBRIER f 1F o S o BOJT I BRTETE » 300 /1 (a) ©
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Chapter 4 Differentials in normed vector spaces

Proposition 4.1.17 : If f is differentiable at a, then its directional derivative at a in any directionu € V

is well defined, and we have f(a) = df,(u) = Df(a)(u).

Remark 4.1.18 : We note that if the directional derivative of f at a in any direction exists, it does not
necessarily imply that f is differentiable at a. Actually, even the continuity at a does not hold in general. We

may consider f : R> — R defined by

2

L ifx #£0,
fla,y) =
y, ifx=0.

Then, f is not continuous at (0, 0) because for example,

lim f(z,vx) =1#0= f(0,0).

z—0

However, for any u = (a,b) € R?, the direction derivative of f at (0, 0) in the direction u exists,

- B
f'l;(ov 0) = flllii% f(h(a’ b))h f(()’ 0) _ a’ a 7é 07

b, ifa=0.

Below, let us take V' = R" to be the n-dimensional Euclidean space, with the canonical basis given by

(é1,...,en). Let A be an open subset of V,and f : A — W.

Definition 4.1.19 : For 1 < i < n, if the directional derivative of f at @ in the direction e; exists, we

say that its partial derivative at a with rerspect to the i-th coordinate exists and define

L a) = 11, )

Remark 4.1.20:

(1) Following Remark 4.1.18, it is possible that all the partial derivatives of f at a exist without f being

differentiable or continuous at a.
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Rl 4.1.17 © SNR [ 7E o, BI5  FREME o MEBEEF R uw e V MO ERRY - BERMB
fula) = dfa(u) = Df(a)(u) °

#4118 @ BFIVEEE IR f £  HSNERFT AN S EEHEEFE  BA—ERRB fEa B
By s BERLE - WA UEETE o TEE - HFITUERE [ R? - R EHM

AREE - f 7E (0,0) FESE - RAEKME
lim f(z, Vz) =1#0= £(0,0).

SATD » BHAMER u = (a,b) € R? » f 75 (0,0) KBS u BI5TIEBIEE :

D
IS

M
o

b2
f1(0,0) = lim f(Ma, b))h— £0,0) )@

D
S
I

b,

BETE  HFERV =R* & n #HENBUKZR - tAZERESE (e1,...,en) T ABV HREF
EE UK f: A Wo

EEA4119 D BN 1<i<n WR [ 77 o BEAR e; WAREHEFE - AIFFIRME « HR
% BEENRUMOFE - BES

of
8$i

(a) = f!,(a) (4.11)

538 4120 :

(1) BEEEAE 4.1.18 FFIRBIAVARLL - FFIRESHIRE] f E1FMTE « FTBRMAEE B f o F =2
A - BEEZTEER
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Chapter 4 Differentials in normed vector spaces

(2) If A C R™ — R is differentiable at a € A, then all the partial derivatives at a exist, and

dxza

Z 627

=9
where (dz; = €])1<i<n is the dual basis in (R")* = L(R",R) of the canonical basis (e;)1<i<n of R",
that is

dxi(ej) :6?((2]') :51']', V1 <’L,j <n.

,

In particular, we have

znj grad f)-h (4.12)
— 0
Theorem 4.1.21: Let f : A C R™ — W. Suppose that
(a) all the partial derivatives of f exist on A,
(b) the partial derivatives are continuous at a.
Then, f is differentiable at a with
Z 6% a) d;. (4.13)

Remark 4.1.22 : We recall that D f(a) is a linear map from R" to W. For each 1 < ¢ < n, the partial
derivative 8% (a) is a vector in W, dz; is a linear form on R", that is a linear (continuous) function from R"
to R. If we evaluate Eq. (4.13) at u € R", the left-hand side gives us D f(a)(u) € W, and each term on the

right-hand side gives us a scalar dz;(u) = u; € R, multiplied by the vector 35 f -(a) e W.
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(2 MR f: ACR" - RTE a € AR - BEMPAETE « NWRMD EFE - BRMAE

a)dz;,

o

;E\:EF' (dxi = 6?)1@@1 = (Rn)* = ﬁ(Rn,R) EF' ’ *H%JEE?'J R" EF”EE%E (ei)lgz‘gn E’J%ﬂ%gf_ﬁ ;

dzi(ej) = ej(ej) = 0,5, V1<i,j<n.

ERRRM :
DI =Y I (ayn; = (grad, ) - (@12)
2 o,
EIE4121 D FACR 5 W o B
(a) 7E A £ f FrEHIRIATFIE ;
(b) FAETRIEADTE o 4 -
BE > f1E o AT - RIS
w

AR 4122 BMIENRE— X E& Df(e) @ER R BHFE W NEURE - HREE
1<i<n RS %<a> EETEWHANEE > dy;, EEET R ELNREZER URER ' B
B H R UG E R AVRYE (GEE) R - IRBAER 13 ETE v e R EFEFHEM
Df(a)(u) e W » GFBH » B—HBHREMME doi(u) =w cR> REAE L) eWwe

BABIB © 20244 12 H 10 H 15:55



Chapter 4 Differentials in normed vector spaces

Proof : We equip R" with the norm ||z| = >"I*; |x;|. Let
g: A — w

x — f(x i

We want to show that when x — a, we have g(z) — g(a) = o(||x — al|).

Let € > 0. The continuity in assumption (b) guarantees that there exists r > 0 such that for 1 < ¢ <

dg
7o), =]

Since A is an open set, by choosing a smaller r > 0, we may assume that B(a,r) C A.

n, we have

of of
8131 ) &rz

Ve € AN B(a,r), ‘

mw <e. (4.14)

For x € B(a,r), we consider the following points

y():(ala"'aa/n):a7

yp = (1, .., Tp, Qfs1y- -y 0n), VE=1,...,n.

We note that yg = a, y, = , and the intermediate y;’s are obtained by replacing coordinates of a by

those of = one by one. For 1 < k < n, define

gk lag,ze] — W

t = og(T1, . 1, t Ay, e, Q).
The derivative of g; writes

dg
8:6 k

g (t) =

—— (@1, o1, by A1y - -+ On),

and it follows from Eq. (4.14) that ||g;.(¢)|,;; < € on [ag, z}]. Therefore, it follows from Lemma 4.1.12
that

lgr(zr) — grlar)ly < elrg — agl.

Since gx(akx) = g(yr—1) and g (z) = g(yx), we get

n

S [o(w) — g(u-)] | i 9ol
k=1 k=1

n
<€Z\xk—ak\:£|]aﬂ—a\|.
k=1

l9(x) = g(a)lly =

Last modified: 15:55 on Tuesday 10" December, 2024
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= BPIE R EERFEE (2| = X0 x| o B

g: A — W

x = f(x leaxl

BRPBEFA Bz — o K FFIB 9(z) — g(a) = o[z —al) °
Be> 0 (b) PHRNEBUENRREFEMET » > 0 BEHRABE 1 <i <n EfE

dg
7], =]

HR A SERE - HPITLGEESE /)W r > 0 LUEWRER B(a,r) C Ao
B/ x € Bla,r)  HMERTEHIEL

of of
8:1:1 ) 89@

Vz € AN B(a,r), ‘

(wb<a (4.14)

yO:(al,...,an):a,

yk:(ml,...,xk,akﬂ,...,an), szl,,n

BFEER yo = a, yp = = » BHRREIE ¢, BHREBIN o PHIEIZ » —BH%A o« WEIZFRE
BB -HR1IK<E<n &

gk lag,Ti] — W
t =gz, 1, t Ay, e, Q).
BRIEN g, FVEEEM
dg
/
t _1,t
gk() axk(xlv y Lk—150, Qk+1, 7a’rl)7

BRER (4.14) » HAEHTE [an, 2] £ > BAE (g, (1), < e o FHik > #EIE 4112 - KT

]

gk (xr) — gr(aw) |l < elar — akl-
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Chapter 4 Differentials in normed vector spaces

Thus, we have obtained
VZL'GB(CL,T), ||g(x)_g(a)”W <’5”1'_&” .

Or equivalently, g(x) — g(a) = o(||x — a|). O

Remark 4.1.23 : Note that the converse of Theorem 4.1.21 is false. We have functions which are differ-
entiable whose partial derivatives need not to be continuous. For example, consider the classical example
f : R — R defined by

z?sin(L), ifx #0,
fz) =
0, ifz =0.

We can compute the derivative of f at 0 as below,

£(0) — 1y 1) = 10)

1. 1y
h—>0 h _}g})hsm(h) 0

However, the derivative of f at x # 0 writes
f/(z) = 2zsin(2) — cos(2).

And clearly, the f’ is not continuous at 0.

4.1.4 Jacobian matrix

Last modified: 15:55 on Tuesday 10" December, 2024
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B gr(ar) = 9(ye—1) B gr(z) = g(yx) » FFE

n

> 19k) — 9(yr—1)]

k=1

lg(x) = g(a)llw =

n
’ < Z l9(vr) — 9(ye—1)llw
%1% k=1
n
<e) |op—ap| =ellz—al.
k=1

Fit - FfISE

VZL'GB(CL,T), ||g($)_g(a)HW <€||ZL’—GH :

BB FHAUEERE o(c) - 9(a) = ol |z — a]) ° -

s 4123 1 FEIEE 4121 WFEERIERD - HFIRTLERBI AT MRS - BRMD BFEE
B9 o B0 - EE TEEESHEES f: R - R E&RM

flz) =
07 % z=0
BPIRTLGTE [ 7E 0 B9
f(0) = lim f(h)gf(o) = lim hsin(f) = 0.

SAT f 7E 2 # 0 IO B
f'(z) = 2zsin(L) — cos(1).

BEAM - DA ERER /72 0 FiEHE -

EM/NET Jacobi ¥EE
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Chapter 4 Differentials in normed vector spaces

We look at the special case where our normed vector spaces are taken to be Euclidean spaces, that is
V = R" and W = R™ for some n,m > 1. Let (vi,...,v,) be the canonical basis of V' = R”" and
(w1, ...,wm) be the canonical basis of W = R™. Let A C R” be an open subset and f : A — R™
be a differentiable function at @ € A. Since df, € L.(R",R™), it can also be represented by an m x n

real-valued matrix using the canonical bases, that is, with matrix coefficients given by

dfe(vj) - w;, 1<i<m,1<j<n.

Definition 4.1.24 : The Jacobian matrix of f at a is the matrix J¢(a) € My, ,(R), given by

Jy(a) = Ba{;( )} 1<i<m’

1<j<n

where f; = Proj,o fforl <i<mand f = >, fiw;. When m = n, the Jacobian matrix is a square

matrix, and we call its determinant det(J¢(a)) the Jacobian determinant or simply the Jacobian.

Remark 4.1.25 : We note that the i-th row of the Jacobian matrix J¢(a) is the gradient of f;, that is

— df; — Ofi
grad, fi = § f a)vj, or (grada fi) . (8mf (a )> '
Photn T agisn

We may also write the differential of f at a as follows, using Eq. (4.12), we find, for all » € R", that

—>

=Y _Dfi(a)(h)w; = [(grad, f;) - h]w;.
i=1 i=1

This is exactly the matrix multiplication between J¢(a) and h, where the vector h is represented in the
canonical basis (v1,...,v,) asann X 1 column matrix, and the resulting matrix is an m x 1 matrix, which

is Df(a)(h) represented in the canonical basis (w1, . .., wy,) of R™.

Proposition 4.1.26 (Composition and Jacobian matrices) : Let m,n,k > 1 and A C R™, B C R"”
be two open subsets. Let f : A — R™ and g : R® — R* be such that f(A) C B. Suppose that f is

differentiable at a and g is differentiable at f(a). For 1 < i < n, we also write f; = Proj, o f to be the

Last modified: 15:55 on Tuesday 10" December, 2024
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EMIERSFAINER  BERMANEERE MK ZER > B2V =R"EEW =R #
PREEN n,m=>1°% (v1,...,v,) BV =R ZEEEE » (w1,...,w,) AW =R" WFEREK -
DACR"BAFEE UK f: A - R BEac AHBRE - AR df, € L(R™,R™) - 10T
R EIZEREF > B AIUA—E m x n BEREMERRRT » RA5ER - EEERENGRESF
=

dfe(vj) - w;, 1<i<m,1<j<n

EE4.1.24 © f7E a B9 Jacobi FEFHZIERE J;(a) € My n(R) » B

. )
1<i<m
<<

) = | 5@,

SYS

H¥mR 1 <i <m > KM f; =Proj,o f * FIAEE f =X, fiwi c 8 m = n K » Jacobi B
P 2B 5 A2 HERE - BFIHEMEYITFIZ det(J1(a)) #82 Jacobi 175K » T2 Jacobian °

% 4125 ¢ EPVERER] > Jacobi FEFE J;(a) B 5 ERREH [, ME - LILER

of; ofi
g—r;iafl Z f 'U], Ez (g—r;iafl) (8’;‘ ( )) °
et I Jigjgn
AT (4.12)  HPIBATLUE f 7 o MO EFNE  HRERE R HRMEE
h) = ZDfi(a) Z grad fi) - h]w;
i=1 i=1

TS ER ST AR FERE J (o) 2 h Z ERISEE » HPRE h AILRERE (v1,...,v,) F > B n x 1HY
175EME - MRRRFPINVEREEE m x 1 BFERE - §Z Df(a)(h) BER” BIRERE (w1,...,wn)
RS EIRY

ol 4.1.26 [ERREEL Jacobi FEFE] @ S m.n. k> 1 MUK ACR™ M B C R" AMERRFE
BeRf AR URg:R* - RFER f(A) CBo B fEafI > B gTE f(a) A1 - ¥
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Chapter 4 Differentials in normed vector spaces

FNE MEE[MPHMD

i-th coordinate of the function f. Then, the function h = go f : A — RF is differentiable at a and its

Jacobian matrix writes

R1<i<n> HFHB f; = Proj; o f ECIERIER f BIZE i {EIEEAZ o BRRE » KB h =gof: A > RF

£ o BT - BBBY Jacobi ZEFEE i
Jn(a) = Jy(f(a)) - Jf(a).

Alternatively, we may also write, for1 < j < m,

Oh () =505 (99 poy), BASER - WIFTE 1</ <m > BITAESR
al‘j i1 8$]’ 8yl
oh = 0fi, \0Og
Proof : It is a direct consequence of Proposition 4.1.9 written in terms of the Jacobian matrices defined B EERETUUEEHRE4 1 BINEELR R EEINEENERRETRTSAE
in Definition 4.1.24. O % 4.1.24 ™ Jacobi FEMEENE] o O
Example 4.1.27 : Let f : R? — R be a C' function. Consider the map gl 4.1.27 1 5 f:R?2 - R A C RS - EE T ST
0: RegxR — R? ¢: RegxR — R?
(r.0) = (rcosf,rsinf). (r,0) +— (rcos6,rsiné).
Then, the composition ' = f o ¢ is a C! function, and can be seen as the function f written in the SEROERT  AREEF = fo, 2 C ERE - BELUREARY f EHREEHNER
SPLxAYIBZ =) = H ’ 7 X = NESPIN
polor coordinates. We have .
I ° B
Jp(r,0) = Jy(rcost,rsinb)J,(r,0)
Jr(r,0) = Jy(rcosf,rsinf)J,(r,0)
91 91
0 00 cos —rsinf
o (o or)— (o5 o) - (o or)( ) der O
or 00 ox Oy ox Oy sinff  rcosf or 00 0 —rsind
) o coS rsin
b O e (or or)=(or o) ~(ar o) )
or 00 or Oy or Oy sinf rcosf
dpa  Opo
In other words, or 90
of 98j_sin98j nd of inﬁa—F+COSHaF e
or SV T e M 5, T T e BesEeR -
8f_ ‘ @_sin@@i g_‘, 8£ cos@@j
ax—ms@ar r 00 H ay_51n06r+ r 00’
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Chapter 4 Differentials in normed vector spaces

4.2 Higher-order derivatives

In this subsection, we will focus on the case of finite dimensional vector spaces. However, we will still

mention a generalization of higher-order differentials to general normed vector spaces in Section 4.2.3.

4.2.1 Schwarz theorem

Let A be an open subset of R™ and f : A — W be a function. Let p > 1 be an integer, and 1 < i1,...,7, <

n. We may define the partial derivative of order p by induction, under the assumption of existence,

oPf 0 ( or—Lf )

c’*)xip e Gxil 8551',, 8xip_1 ce 83:1-1

We say that f is of class C? if all its partial derivatives up to order p exist and are continuous on A.

Theorem 4.2.1 (Schwarz theorem) : Let f : A C R? — R be a function, where A C R? is an open

subset. Suppose that the partial derivative

0% f 0% f
and
dxdy oyox

exist on A, and are continuous at a € A. Then,

0% f B 0% f
8$8y(a) N 8y8x(a)'

(4.15)

Remark 4.2.2 :1t follows from the above theorem that, under the assumption of existence and continuity,

the order of partial derivative does not count.

Example 4.2.3 : This example is due to Peano. Consider the function f : R? — R defined by

Fony) = vy if (z,y) # (0,0),
0 if (z,y) = (0,0).
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B SRS
ENER o M EEFEEREERZZREBVER o 28 » HRESE 423 /)& » HMZREE
PO E— AR EE M 2 2R P RYHERE ©
$E—I/IE Schwarz FIE

BABRMBAFES B A WHRRE - Bp> 1 BBE - H1<i,...,i, <ne EFEH
BIRERZ T » TR AERIEE S TR E S p FEEH

oPf 0 ( oP—Lf )

6xip e axil 8:L‘ip 69%_1 N 8$i1

R f NFE—EE p BEREREFEAT A 588 BIFMR F 2 Cr |rY -

I 4.2.1 [Schwarz EIE]

RiM

B fACRI S RARY P HP A C R?2 2ERTFES ° R

82 2
;g O
0xdy oyox

T ALERE BEac AERE - BBE > HME

rf . of
8x8y(a) N 8y8x(a)'

(4.15)

M 422 ¢ LREERBAVEN - EEEETEEENERZT - FHANIBF L REE -

$8f] 4.2.3 : SR M Peano RHHIGIF - EEMEE f: R* —» R EHRM

pyly & (x,y) # (0,0),
flz,y) = I

0 & (z,y) = (0,0).
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Chapter 4 Differentials in normed vector spaces

On one hand,

FME RSEZEFFHHD

—5 @ &FME
of sty if (a,y) # (0,0) ey
ey ={ o 0] of , - | T B @) # 00)
0 if (x,y) = (0,0). - &,y) =
) ) am
9 0 a (xvy) - (070)
Therefore, a—i((), y) = —y fory € R, giving us
. PRI y € R » BPHEEI 2L (0,) = —y » T A EHATRA
(0,0) = —1.
oyox
82
On the other hand, yoxr
of ) i (n,y) £ (0,0) \
(zy) =4 O ’ o B—HE  BFE
9y 0 if (2, ) = (0,0). ety
( of T @22 & (z,y) #(0,0),
Therefore, g—i(x, 0) = z for x € R, giving us (‘Ty(w’ y) = .
82
aﬁgmﬂ)zl

= (z,y) = (0,0).

PSR o € R+ BRI 9L(2,0) = o + L EBHHEHA
Actually, one can easily check that, the second partial derivatives are not continuous. In fact, for
(z,y) # (0,0), we have

0% f B
8:1:(93/(0’0) = 1.
82 f @.4) = 26 4 9aty? — 9x2yt — b
ayor Y = (22 +y2)3 ’ BIEL - HMFHRE - IR ZREEHREE - 5 (2,y) # (0,0) - &FIE
which gives
) 82f ) 82
ilg%) ayam(ac,()) =1, and ?}1_% Gyasn(o’y) = -1

0% f (z.) 25 + 9z%y? — 922yt — o/F
) = 7
Oyox i (22 +y?)3
You may also see this discontinuity using an antisymmetry argument, without doing computations. = AT
& FHa T
°f o2 f
li =1, L lim ——— =—1.
N 5o (@,0)=1, Bk lim g0 (0,y)

INRAEMER - MEATLUERREEERRR - RREERME

Proof : Without loss of generality, we may assume that a = (0,0) € A. Let h,k > 0 such that
[0,h] x [0,k] € Aand

S8R - R BAITLURER o = (0,0) € Ao B hk > 0 [0,h] x [0,k C AR
5(h7k) = f(h’ k) - f(h,O) - f(07 k) + f(070)
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Chapter 4 Differentials in normed vector spaces

Consider the function ¢ defined by

¢: [0,h] — R
x = f(x, k)= f(x,0).

Then, §(h, k) = p(h) — ¢(0). Since ¢ is continuous on [0, h] and differentiable on (0, h), it follows

from the mean-value inequality on R (Eq. (4.3)) that there exists t; € (0, 1) such that

5(h, k) = hy' (t1h) = h[%(tlh, k) — %(tlh,())].

The function y +— %(tl h,y) is continuous on [0, 1] and differentiable on (0, 1), it follows again from

the mean-value inequality that there exists t3 € (0, 1) such that

0(h,k) = hk °f (t1h, tak) (4.16)
) - 83/8% 174, L2V ). .
If we consider the function ¢ defined by
v [0,k] — R

Y = f(h,y)—f((),y)

and follow the same steps as above, we may find t3,%4 € (0, 1) such that

d(h, k) = hk O'f (tsh,tsk) (4.17)
) - away 314, U4 . .
By putting Eq. (4.16) and Eq. (4.17) together and taking h, k — 0, the continuity of the partial deriva-

tives at (0, 0) implies that they are equal at (0, 0). O

FNE MEE[MPHMD

ERRE o EEIM
¢: [0,h] — R
x = f(z,k)— f(z,0).
TBEE 3(h. k) — (k) — p(0) » B o 7 [0, h] L3848 - BLFE (0, 1) LATH - 4RIE R LROSERS
X R @3)  BEFEL € (0,1) F8

5(h, k) = hed (1rh) = h[%(tlh, k) — %(tlh,c))]

Ry — 2 (tih,y) T [0,1] LM - BEE (0,1) LA > BREAHEFRSEN - BABGMNEE

ty € (0,1) E1S
% f

y0r (t1h, t2k). (4.16)

5(h, k) = hk

IMRFFIZRRE  EHEM

v [0,k] — R
y = f(hy) = f(0,y)
WA fERSE FEMEENSER » BMEEIE t3,t, € (0,1) 15

0% f
0xdy

5(h, k) = hk (tsh, t1k). (4.17)

B 4.16) BAI @17) BIE—H#E » LHE b,k — 0 RIBIRMSE (0,0) BOEEM - FHFIEN
EMITE (0,0) BHEF © O

Corollary 4.2.4: Let f : A CR"™ — R™ be a function, where A C R™ is an open subset. Suppose that
f is of class CP, then the partial derivatives up to order p do not depend on the order in which we take the
derivative. Therefore, we may simply write these derivatives in the following form,

o f

m where Zl++2n:]{7<p
1 - n

RiIB424 I [ ACR' S R"BRE > HP A CR" EERATFES ° &R f =& CP EHY
BEFFE—EE p BRESERBURANRHMANIER Bt - HFAFTLGEELRM S B T
7 :

F BV
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Chapter 4 Differentials in normed vector spaces

4.2.2 Hessian matrix

Definition 4.2.5:Let f : A C R” — R be a function, where A C R" is an open subset. Suppose
that all the second order partial derivatives of f exist at a € A. Then, the Hessian matrix of f at a is

defined by
0’ f
Hy(a) = {8@-8@3 (a)] Km‘gn. (4.18)

If the second derivatives are continuous at a, then Schwarz theorem (Theorem 4.2.1) implies that the

Hessian matrix is symmetric at a.

Below, we will always consider a function f whose second order derivatives are continuous, so that its

Hessian matrix is symmetric.

Proposition 4.2.6 : Under the same assumption as in Definition 4.2.5, we have

Hy(a) = Jy(grad f(a)”

Proof : It is a direct consequence by applying the definition of the Jacobian matrix to the gradient

vector. O

When we study the local behavior of a function f : A C R™ — R with some good assumptions (continuity
of all the second derivatives), the Hessian matrix is symmetric and defines a quadratic form (ZZXH!). The
property of this quadratic form at a critical point can tell us whether this critical point is a local maximum,

a local minimum, or a saddle point (¥4%4). See Section 4.3.2 and Section 4.3.3 for more details.

4.2.3 Higher-order differentials

Given a function f : A C V — W betweeen an open subset A of a normed vector space V' and another
normed vector space W, we defined its differential at a point @ € A in Definition 4.1.1, and its differential
map D f in Definition 4.1.3, under the condition that these notions exist. We may define its higher-order

differentials by differentiating the differential map Df : A — L.(V,W).
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$E /Bl Hessian JEPE

EFE425 I D ACR" S RARE  HP ACR" ZEMFES - B f T ac AFAEW
" FEEEEETETE o HBEE ¢ f 1E a BY Hessian FR] LUE &

o
Hy(a) = { Gode (a)} o (4.18)

INR —PEESTE o #2EMERY » B8 Schwarz FIE (I 4.2.1) - FHIXE Hessian FEFETE o
= HTE o

BTR  ZMIZEERIRE [ E#EmE —FEEEEBRVREK + FrLAfERY Hessian FEfE S 2 ¥IHERT

foRA 4.2.6 : EER 425 HEIMNEBRERZT » &KME

Hy(a) = Jy(grad f(a))”.

2EA 1 ER A UEEEBIE Jacobi FEENER » AERERE LRSI - O

EEFNEBRT (CRESEEY) »r ERMEHRE f: A CRY - ROBEEITAR - AJUfE
F8 Hessian B[RV T84 » SYEmAAMETE & RKBI R E! (quadratic form) BY4'E - EREVIZRER » —
REFHEAMUE - IUSGHFEMERRAMEERTRAE  BE&/IVE  BEEERE (saddle

point) © FMEREAIE 432 /NERREE 433 NENEEELFR ©

Bz SEMe

MRER—EMMEEZERE Vv RBF%E A REES—ERREEZERE W BIRE f - ACV - W - EFEN
MRS T » BFIEEZ 411 ERTMER o € AR EEEER 4.1.3 PER T AR BRET
Df o tNRFEFHBWMAIRE Df : A - L(V, W) 5 » BIRFIRTLUE R =SS
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Chapter 4 Differentials in normed vector spaces

From Definition 4.1.1, we know that the differential of D f should take its values in L.(V, L.(V, W)),
which may be identified as the space L2(V x V, W), the space of continuous bilinear maps from V' x V to
W, via the following map

L(V,L(V,WV)) — L2V XV, W)
{va 5w
§_>
(z,y) = @(z)(y)

o

Similarly, the differential of order p > 1 takes values in the space L2(VP, W), which is the space of continuous

p-linear maps.

Definition 4.2.7 : We define the higher-order differentials of f recursively.
« For p > 1, we say that f is differentiable p + 1 times at a € A if its p-th differential DPf : A —

L2(VP W) is well defined, and writes

DPf(a+ hyir) (b, ) = DPf(@)(ha, - hp) + @paa (B i) + o |y)

when h,y1 — 0, uniformly for (hq,...,hp) in a bounded set of VP, for some ¢pi1 €
LA (VP W), If such a map 41 exists, it is unique, and is called the (p + 1)-th differential
of f at a, denoted by DP*! f(a).

« For p > 1, we say that f is of class C? if DP f is well defined on A and is continuous on A.

Remark 4.2.8 :Letustake V = R”, W = R, and A C V be an open subset. Consider a C! function
f + A — W and suppose that its second partial derivatives exist. Fix a € A, and take € > 0 such that
B(a,e) C A. Then, for hy € B(0,¢), we have

Df(a+ hy)(hy) = Z gij (a+ ho) dz;(hy)

o O0f no92f
=3 D (a) +; S0 (a)hs, +o(Hh2HV)} dai(h1)

= Df(a)(h1) + Z > h2,jm(a)hu +o(llhzlly) Ol[hally)-
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WER 411 » HMIFE Df B D FEEZEUETE L(V,L(V,W)) > TEEZERE B USRS
V x VB W BERERIERS FTAERRYZER £2(V x V, W) » FAFIET LA THIBRGSE S EEFE -

LV, L(V,W)) — LAV x V. W)

VxV — w

(z,y) — @(z)(y)

o —

BEst - p > 1| BEESGEEEZRE LL(VP, W) > TIHETAEEEER p MRIEIRSFIBRBIZER] -

EE 427 @ HATLGEREESRES f WSMREEMD

- B p > 1 NRMEY p BEWMSD DPf A - L2(VPW) EERIF BE hyy —» 0B 17
E op € oY (VL W) > EIRERME

DPf(a+ hpia)(ha, .o hyp) = DPf(a)(hy, - hp) + pra(ha, - by, hpgn) + o([hpsally)

HARHATHEN Ve hERE (b, ..., hy) KRR - BFRFR /7 0 c A AL
M5 p+ 1 7R o WIBIEAEMGT o, 7275 BB EIE—BO > FBIE £ 72 0 B0 (p + 1) A
2+ 54 DM f(a) °

cHRp> 1 MR DrfE A LERRIFEERE - BIFFIRR f 2 CP |RY -

EiE 428 P NRBFWMV =R" " W=R>'URACV BHAFEG -ZERC' B f: AW U
RERMB —PEEEEFTE - B o € A MiB e > 0 15 B(a,e) C A ° BREE » X ho € B(0,¢) » FffIE

U]
Df(a+ ho)(hy) = Zaf(aJrhg)dx,»(hl)
i=1 Li
:; oL +;ax hz,J+o<uhz||V>] dai(h)
= )(h1) +Zzhz,]a a (@)h1,i + o([[hzlly) O(l|a]ly,)-
i=17=1
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Chapter 4 Differentials in normed vector spaces

This implies that D? f(a) is the (continuous) bilinear form given by the Hessian H(a), written by

mﬂgszﬁwaa a)h1; = hi Hy(a)hs.

i=1j=1

Similar relations between higher-order differentials and higher-order derivatives exist as well. We do not

discuss more here since this is not the main goal of this class.

In the following section, we will keep the same setting, thatis V' = R" and W = R, and look at the Taylor
formulas of a function f : A — W, where A C V is an open subset. In this case, we will only need the

higher-order differentials D? f evaluated at (h, ..., h).
——

p times

4.3 Local behavior of real-valued functions

In this section, we are interested in real-valued functions and their local behaviors.

4.3.1 Taylor formulas

Let p > 1 be an integer. We recall that for a C? function f : I — R, where I C R is an open interval, we

have the following Taylor formulas. Let z € I and h € R be such that z + h € I.

hP

Taylor-Lagrange f(xz + h) )+ Z ) (2 + F®)(c ¢)— for some c € (z,z + h).
p!
Taylor integral  f(z + h) )+ Z 7 (2 / f(p (x +th)dt.
Taylor-Young f(z + h) )+ Z Fm) (z)— + o(|h|P) when h — 0.

Below, we are going to generalize these formulas to real-valued functions defined on a subset of a higher

dimensional Euclidean space R".

Let A be an open subset of R”, f : A — R be a function of class C” with p > 1,and a € A. We have already
defined the differential d f,, of f at a in Definition 4.1.1, and we gave the relation between the differential and

the directional derivative f; (a) in Proposition 4.1.17. Moreover, it follows from Theorem 4.1.21 that this can
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'11

(i

& D?f(a) BH Hessian H(a) faHAY GEHE) SHFMZER - B

(a)h1,; = h3 Hy(a)hy.

hl,hg — ZZh2J 895
J

i=1j=1
NREREMIRSEEHHE  BfIEERLHEAGRN - BEERFARS MR - BRAEFZER
ARHEYERY

ETENNE  BMEEEERNERE RV =R URW =R IZRBERERTE
BACVEREf: A WHRHERAR -TZEEBRP  BMARFESEMS DPf BER
(h,...,h) BYIER ©

———
p &

B BRHHELMEE

SEEHF - ZFAITHRERBEHTS -

rIII|I

FE—IEi Taylor BRI

Bp> 1 BB - RAEEHR P ENRH 7. I >R HP I C R SEARER > RASETEN

Taylor B c Baoc IMRheRESG e +hele

p—1 m
Taylor-Lagrange f(xz + h) = f(z) + Z Fm (m)% + @) (c)};: HWREM@ c e (v,2 +h).
= ! !
Taylor integral  f(x + h) = f(z) + I‘S Fm (:c)ﬁ + hP 1 wf(p) (x + th)dt.
— m! o (p—1!
Taylor-Young f(z+h) = f(z) + p f(m)(:c)?n—m + o(|h|P) B h — 0.
m=1 :

ETHR - ZfIgEEERATHEDERESHERKER R” EHNERE -

DTABR PHEAFES [ A-RBECERE Hbp> 1 EHaoc A EAEHE411H
BAERERB f 7 o IS df, > MBEME 4.1.17 B> HABWEHETHARAEMS [ (o) ZHE

BRIBIER : 20244 12 H 10 H 15:55



Chapter 4 Differentials in normed vector spaces

also be expressed using partial derivatives of f at a. Below, we are going to define higher-order directional

derivatives of f.

We will see that the Taylor formulas in higher dimensions are not too much different from their one-
dimensional counterparts, due to the fact that when we restrict the function f on a segment [z, z + h], we

are actually studying a function defined on a one-dimensional subspace.

Definition 4.3.1: For 1 < m < p, we may define the mth derivative of f at a in the direction u € R"

as follows,

Z Z 8.7; (91' ( )uil e Ugy, s (4.19)
im= i1=1 tm 3!
amf

_ Z .m!

| i Ji Jn
P TR M I L

(a)ul' ... uln, (4.20)

where the equality is a direct consequence of Theorem 4.2.1.

Theorem 4.3.2 (Taylor-Lagrange formula) : Let € A and h € R" such that [x,x + h] C A. Then,

there exists t € (0, 1) such that

p=l elm) (®)
f(x+h):f(x)_|_th (2) , S (@ +th)

‘ ' (4.21)
m)! p!

Proof: Since Aisopenand [x,z+h] C A, there exists § > 0 suchthatx+th € Aforallt € (-4, 1+9).
Letg: (—9,14 d) — R be defined by

g(t) = f(x +th), Vte (=4,1+09). (4.22)

We note that ¢ is still a function of class C? being composition of such functions. We also have f(x +

h) — f(z) = g(1) — g(0). Let us apply the classical Taylor formula to g, that is

g(p) (t)
p!

for some ¢t € (0,1).

p=1l (m)(
&y

We may explicit the derivatives of g as below using the chain rule (Proposition 4.1.9). Fort € (=4, 149),
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BURAERTC o LESY - ETEIE 4.1.21 IS - EHEERER f 7E o BRMOKEAE - TR - HFIEES
fBEARMS

HFIEED  SHENZYREAAEMA—MIRAREEEZERIK  IAERFERE 5 REE

WRER [z, + h] EERF - HMAIEFE—ETE—HFERE LR -

EEA431 I BR1I<m<p BB fE o BESBE v e R* B m BEMDERM

o"f
zmz_: 11221 axlm . (91'11 ( ) " tm? ( )
m! omf .
- Z i 1. —(a ayuf ... ul, (4.20)
Sitedgmm L Jne Oyt Oy

HohWWEXZ AU HTEE 4.2.1 HEESIIR o

EI 4.3.2 [Taylor-Lagrange BFAR] : S 2 c AUR h e R* 815 [z,2 + h] C A o BREETE
e (0.1) 18
p=l ¢(m) (p)

m=1

(4.21)

m)! p!

SR R ARHER 1,2+ W CA FEI>O0FEF 2 +thec ARRFABt € (—6,14+6)°

Bg:(=0,1+6) - REEM
g(t) = f(x +th), Vte (=d,1+09). (4.22)

EERE > g BB Cr R HAMEERRIBNEGHK - BMEEE f(r+h) - fz) =
g(1) — g(0) o FFIRTIAIB—HERY Taylor BRTLAE ¢ £ > thEIER

p=1 (m) ()
=3 g mfo) + g HREE ¢ < (0,1).
m=1 :

p!
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Chapter 4 Differentials in normed vector spaces

we have
/ _ o - af R !
g@)—dﬂﬁmw)—E:ax(x+chr—ﬁxx+tm,
i=1 """
!
g'(t) = (x +th)hih; = f;”(x + th)
;; O0x;0x;

And by induction, we easily find that
(m) 4y — ¢(m) (m)(o) — £(m)
g"(t)=f, (x+th), and ¢g"™(0)=f, (z), Vm>1.

This allows us to conclude. O

Using the same technique by setting the function g as in Eq. (4.22) and the other one-dimensional Taylor

formulas, we easily deduce the following results.

Theorem 4.3.3 (Taylor formula with integral remainder) : Letx € A and h € R" such that [x,x+h] C
A. Then,

Ay
fx+h) = flz)+ Z fh ( ) /01 (z)_t)l)!f}(bp)(x—i—th) dt. (4.23)

Proof : See Exercise 4.19. O

Theorem 4.3.4 (Taylor-Young formula) : Let x € A. Then, for h — 0, we have

f(z+h) )+ Z fh o(|hP). (4.24)

Proof : See Exercise 4.19. O
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ZEBHEHEE (A 41.9) - BFIATLUE ¢ DB TR - Bt € (—6,1+6) » FfIB

n

g'(t) = dforen(h Z p(z + th),
" o g a2f o (2)
q"(t) _;; Dui0m; (z + th)h;h; (z +th).

BEMEED - RIRHEE
g™ @) = M@ th), MR g™©0) = £ (), ¥m>1.

BRI EERRR O

BEEERE g MWAERRI (4.22) FAHERNKT - B LEMH—HREERI » IFATUES

53 THEMERR
EIE 433 [Taylor BRINEBEDERIE] | S 2 c AUKhc R 13 [x,z + h] C A BBERK
{iiE=]
ﬁ () LA-tP !
flxz+h) Z /0 TR Y (z+ th)dt. (4.23)
R RBE 419 © O

EH 434 [Taylor-Young BRER] : Sac A-BE > Eh— 08 &ME

p
flz+h)= }: o(|h[P). (4.24)

Bl REE 419 o 0
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Chapter 4 Differentials in normed vector spaces

4.3.2 Quadratic form

Definition 4.3.5 : Given a symmetric matrix A € M,,(R), we can define a quadratic form (ZZREY)
on R" by
ga(x) = qa(z1, ..., xn) = Z Qi xj = 2T Az, VxeR", (4.25)

1<i,j<n

where a vector in R™ can be seen as a column vector.

Definition 4.3.6 : Given a quadratic form (), we say that it is

positive if Q(x) > 0 for all z € R™,

positive-definite if Q(x) > 0 for all x € R™\{0},

negative if Q(z) < 0 for all z € R",

negative-definite if Q(x) < 0 for all z € R™\{0}.

Remark 4.3.7 : Under the condition that all the second partial derivatives are continuous at a € A, we may
rewrite f£2)(a) as follows,
) - 0P T
a) = —uu; =u He(a)u
i=1j=1 J
where H(a) is a symmetric matrix, the vector u can be seen as a column vector, and u”' is its transposition.

This defines a quadratic form in the sense of Definition 4.3.5.

Remark 4.3.8 : From the class of linear algebra, we know that a symmetric matrix A is diagonalizable, that
is, we may find a diagonal matrix D = Diag(\1,...,A,) with \; > ... > ), and an orthogonal matrix P
(that is, PPT = PT P = I,,) such that A = PT D P. This means that, after a proper change of basis given by

P, the quadratic form is diagonal. More precisely, let v = Pu, then

u’ Au = (Pu)' D(Pu) = vT Do,
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FINE kB

EFE 435 @ REHEER A e M, (R)  HMAIUESR R LB XA (quadratic form)

ga(x) = qa(z, ..., xn) = Z aijTixj = tT Az, VzeR™, (4.25)

1<i,5<n

FLEHF R PHEEIURKIRSZETEE °

EFE443.6 I MEZXRE QR
- HHRFTE 2 e R > HFIE Q(z) > 0 @ BIEMIRMZIERT ;
- HINFA 2 € R"\{0} » BB Q(z) > 0> BIRFIRME EE ;

- BIRATE 2 e R" > HFIE Q(z) <00 BIFEFIRMZ AR ;

. IR 2 € R\ {0} » BB Q(x) < 0 > BIRFIRMEEEH -

S 437 ¢ TETRERMDERTE o € ASEENBRZT » RIATLUE 17 (a) B

Hr Hy(a) SEHBERE - BME o IUHRAITRAE B« EHNEERE - EREERK 435 F
BRI KA -

Ff% 4.3.8 1 ERMREAREPR - RAIXEBTBER A SeTHALH ; URER » RMEKRIIEHA
¥BPE D = Diag(A1, ..., \p) ME N = ... =\, » URIERIEE P (ERtER™ME PPT = PTP=1,)
18 A=PT'DP - ERRE  RBEEH P HENEESRZE  ZREGZHAN - BREYIR
Mo Bv=Pu BIEME

ul Au = (Pu)! D(Pu) = vT Do,
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Chapter 4 Differentials in normed vector spaces

meaning that

qa(u) = qp(v) = Y_ Ailvl.
i=1

Therefore, we may conclude that if A,, > 0, then the quadratic form is positive-definite; if A\; < 0, then the

quadratic form is negative-definite.

4.3.3 Local extrema

Below, let A be a subset of R” and f : A — R be a function. We want to study the local extrema of f. To

do so, we are going to use the Taylor formula that we got in Section 4.3.1.

Definition 4.3.9 :If f is differentiable at an interior point a € A with df, = 0, then we call a a

critical point of f.

Proposition 4.3.10 : Suppose that f attains a local extremum at an interior point a € A and fis

differentiable at a. Then, a is a critical point of f.

Proof : Without loss of generality, we may assume that f attains its local maximum at a. Let h € R",
and we want to show that df,(h) = 0. Since a € A, there exists 77 > 0 such that [a — nh, a+nh] C A.
We define the map ¢ : [-7,1] — R,t — f(a + th), which has a local maximum at ¢ = 0. Since f is
differentiable at a, we know that ¢ is differentiable at 0, and we have ¢’ (0) = df,(h). Additionally, we

have
1oy — 1i P = 9(0) 1oy — 1i P = 9(0)
#'(0) = lim —————— <0, and '(0)=lim ; >0,
>0 t<0
which gives us ¢'(0) = 0. O

Remark 4.3.11: Proposition 4.3.10 tells us that, to look for local extrema of a function f : A — R, we need

to look at the following types of points,
(i) a € A which s a critical point of f;

(i) a € A where f is not differentiable;
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ga(u) = qp(v) =Y Ailvil*.
=1

KL » FFIRTLARERS - a0R A, > 0 BEZRBEZIEER ; AR N\, < 0 BEZXEZEER -

S=/E REREE

ETR DAARARNFES BHf: A—- RABXY - RAOBESH [ WETEBE - HPISER
7EE 4.3.1 /NEPRTIREIM Taylor BRI o

[ E&439 : R fERBac A BRI > Bdf, =0 BIERFIE o % f HORRE - ]

[ R 4.3.10 : R f ERZ o € A RIEBIEE - B f 1F o T - ABE o 218 f ERRES - ]

EH AR RAATURR fEoRERMBEARE - Fhec R RMABEFH
dfu(h) = 0°c AR a c A MBEGEE 7 > 0E8 [a — nh,a +nh] C Ao BT H M4
¢ :[—nn =Rt fla+th) EL=0BRERERAE - BHR fE o A - RFRE 0 EO
At - BEAFIE ¢'(0) = df.(h) S - BPSEE

H0) = 1im 2D =20 o wm 0) = 1im LW =0 o

t—0 t t—0 t
t>0 t<0
EEEEMER S0)=0- O

FEAR 4.3.11 ¢ RE 4310 HEREM  MREBHRE f: A - R WEEIEE X BRMPFEEEEETEE

sEEh
() ac AR fHIEERE;
(i) a € AEE f7E o AW
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(iii) a € A\A.

FNE MEE[MPHMD

(iii) a € A\A o

Theorem 4.3.12 : Suppose that f is of class C* and there exists a € A such thatdf, = 0. Taylor-Young
formula (Eq. (4.24)) gives us

Flath) = (@) + 3Q(A) + o[k,  whenh 0.

(1) If f attains a local minimum (resp. maximum) at a, then Q) is a positive (resp. negative) quadratic

form.

(2) If Q is a positive-definite (resp. negative-definite) quadratic form, then f attains a local minimum

(resp. maximum) at a.

FI43.12 : BRERfFEBCPEN  BEFEE ac AWMRE df, = 0 ° Taylor-Young BT (X (4.24))
HEFFEM

flath) = f(a) + 5Q(R) +oIhI?), B h 0.

(1) R f £ o RERESR/ME (BEH&ERARE) @ BEQ REE—RE (BZRE) -

2 IR QBREE—RE (BE-RE) - BE f £« SERH=IME (BERAE)

Example 4.3.13 : In Theorem 4.3.12 (2), it is not enough for the quadratic form to be only positive to
have a local minimum. Indeed, we may consider the function f : R — R,z + 23 at a = 0, then the

quadratic form is ) = 0 but f does not attain a local extremum.

&% 43.13 @ EEE 4312 QF  NREZXBRAZRIER » TREURREHE/IVE - HMA
UEBRE f RoRar— 2 Ea=081ER  ZXE Q=018 f WREHPMEE -

Proof :

(1) Suppose that f attains a local minimum at a. Let h € R™ and ¢ € R. When ¢ is sufficiently close

to 0, we have
fla+th) = f(a) + %Q(th) +o(||th]|?) = f(a).

This implies that
0 < Q(th) + o(||th]|*) = t*(Q(h) + o(1)),

that is Q(h) > 0 when we take ¢ — 0.

(2) Suppose that Q) is a positive-definite quadratic form, then for A € R", h # 0, we have Q(h) > 0.
Since the unit sphere S(0,1) of R™ is compact, we deduce that m = inf,cg(o1)Q(h) > 0.

Therefore, for h — 0, we have

2 2
Flact ) = 1) = 5100 + o) = - [ ) + o] = 1 m o+ o)

For h close enough to 0, we have m + o(1) > 0, leading to f(a + h) > f(a). O
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s5HR -
1) BREfEoBERBRNME-ShecR"UKtcR Bt #FER0E » HMBE
Flat th) = f(a) + SQth) + of[th]) > f(a).
EmHYEE)
0 < Q(th) + o [[th][*) = (Q(R) + o(1)),
HAEER » BRI 085 BILUEE Q) > 0 -

(2 BERQBREEZXE  BBEHN hcR"EEBh#£0 BMEE QL) > 0° AR R WEE
fUEKER S(0,1) REEM - MBS m = infres0y Q) >0 Bt - B h— 0B - B
(SE=]

Flact b) = £(0) = 51Qe0) + ol = 5[ ) + o] = 1 om 4ot
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Chapter 4 Differentials in normed vector spaces

Example 4.3.14 : Let us consider the case n = 2 as an example. A quadratic form on R? may be

A:(T j)EMg(R).

Following Remark 4.3.8, we know that A = PTDP, where P is an orthogonal matrix and D =

represented by a symmetric a matrix

Diag(A1, A2) is a diagonal matrix with A; > Ay. We obtain the following relations for the eigenvalues

A1 = Az,
M+ X =tr(D)=tr(A) =r+t,
M2 = det(D) = det(A) = rt — s2.
Therefore, we have the following cases,
(i) When rt — s2>0,andr +t > 0, the quadratic form associated with A is positive-definite.
(ii) When rt — s > 0, and r + ¢ < 0, the quadratic form associated with A is negative-definite.
When we apply this to a C2 function f : A C R2 — R, and a € A is a critical point of f. Write

% f 0% f 0% f
r= w(a), s = 920y a), t= a—yQ(a).

Then, from the discussion above, we know that
(i) When rt — s?> > 0, and r +t > 0, f attains a local minimum at a.
(i) Whenrt —s?> > 0,andr +¢ < 0, f attains a local maximum at a.

(iii) When rt — 52 < 0, f does not have an extremum at a, and we call it a saddle point (¥Z%f).

(iv) When rt — s = 0, we cannot say anything.
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U
B h#5EE 0 B - BHFIE m+o(1) > 0> ELLEILUIER f(a+h) > f(a) °

g 4.3.14 1 EEKME n =2 NERENF - R? LRI REA LUK T EEEHBEREAR

s .
A= GMQ(R).

RIEEEAR 438 » FFIRE A = PTDP » Hih P 2EERIERE - H D = Diag(\, \) 2EHA
5BME  TRE A\ > A\ © i MIRESRI TEESSE N > )\, HEENEERI

A+ X = tr(D) = tr(A) = r + ¢,
A2 = det(D) = det(A) = rt — s2.
Eit - FHAAIPTAG R FEIER
Q) Brit—s>>0F8Br+t>0K HATEHKRN - XBEEIEERN °
() Brt-s2>08Br+t< 0K  HAERERNZ-XBEZETEN -
ERFIEEERERE CCENRE f ACR? 5 R £ - 2 f EERZ o c 4 - B

_O*f _O*f _O*f
T_W(a)v s = Bway(a)’ t_aiyg(a)‘

ABEE - (€ LEBYETER - FfFISA -

() Brt-s2>02Br+t>0K [« HERBRIVE -

I3

() Brt—s>>088r+t<0: (£ BERPRAE -
(iii) B rt —s®> < 0K > f 7E o R B EERE - BFHMBAAERRL (saddle point) ©

(iv) & rt — s = 0 B » BePIEEAMRAS -
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Chapter 4 Differentials in normed vector spaces

4.4 Implicit function theorem

4.4.1 Inversion theorems

For a C! function f : R — R, we know that if f’(z) # 0 for all z € R, then f is a bijection and its inverse
f~tisalso aC! function satisfying (f~1)'[f(z)] = [f/(x)] ! forallz € R.

Let V and W be two Banach spaces, and A C V be an open subset of V.

Theorem 4.4.1 (Local inversion theorem) : Let f : A — W be a function of class C*. Suppose that
there exists a € A such that (df,) " exists and that df, and (df,)~! are continuous (we say that df, is

a bicontinuous isomorphism). Then, there exists an open set X containing a and an open setY containing

f(a) such that
(i) the function f|x is a bijection between X andY’;
(ii) the inverse function g := (fix)~' : Y — X is continuous;

(iii) g is of class C* and dgf(z) = (dfy)~! forallz € X.

In this case, we also say that fix : X =Y isa C!-diffeomorphism between X and Y, or f : A — W is

a local C*-diffeomorphism around a.

Remark 4.4.2:

(1) This theorem is called local inversion because it only describes the local behavior around @ € X and
f(a) € Y. Later in Corollary 4.4.5, we will see how to upgrade this local inversion theorem into a

global inversion theorem.

(2) If we consider V.= W = R" for some n > 1, since L(V, W) = L.(V, W), the condition for the local
inversion at a € A C V reduces to the condition d f, is invertible, that is det J¢(a) # 0.

Example 4.4.3:

(1) If we consider f : R — R, x — 22, which is a C' function on R. For a € R\{0}, the derivative
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HNE  REZERIT AR
BE FRREEER
F—E REHBER

HRC ERHE f:R— R BRANENRERFAE v c R BB f(z) £ 0 BBE f SELSE
8 BtheRRE 1 2@ C | BmE (f Y [f(@)] = [f'(2)] ' BBz cRe

SV B W AME Banach ZEfE - B A C V 2@ V NRAFES °

T 441 [EEBRREBEE]
£H df, M (df,) ' FEE (FFIER df, 2EE
X UKRBE flo) WRAES Y 15

S A WAC ERE - BREREFEEwc AFHF (df,) ' F
EEREER) - AESEETES NEES

() R fix RENK X B Y ZBNESRE
(i) REB g:= (fix) ' : Y — X ZEHEBY;
(i) g 2 C! EMEHRAE v € X > BB dgy) = (dfa) Lo

EEEBRT  HAIER v X oY BEXRY ZEANC MOFRRER -2 f- AW
£ o MBARERBER C 157 FIL & -

R 442 :
(1) ERBHEBREBERE > AAMRBRTE o € X KEUK f(a) € Y HEERFEEBITH o
BERE 145 B EEEEMHFARADIER KB EE -
Q WMRBEBMEE» > 1URV =W =R HR LV, W) = L(V,WV) BEIRRKBEEEE

a € ACV FRERMNEGEREHILS df, PIE - WEER det Jr(a) #0 ©

gl 4.43 :

1) BMEER ENCERE f:R - R — 22 HRa e R\{0} VM2 =M
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Chapter 4 Differentials in normed vector spaces

f'(a) = 2a # 0, and it follows from the local inversion theorem that when f is restricted
to an open set X containing a, its inverse is well defined. Actually, when a > 0, we may
take X = Y = (0,00), and define g(y) = /y for y € Y; and when a < 0, we may take
X = (—00,0),Y = (0,00), and define g(y) = —/y fory € Y.

(2) If we define the transformation between the polar coordinates and the Cartesian coordinates,

¢: (0,00) x RCR? — R?

(r,t) — (rcost,rsint),

then its differential at (r,¢) € (0,00) x R writes

cost —rsint r’
depi(r', ') = (' cost — t'rsint, ' sint + t'r cost) = ( ) ( ) .
sint  rcost t’

This gives us

cost —rsint
det J,(r,t) =r #0, where J,(r,t) = < )

sint rcost

From the local inversion theorem, at all (r,t) € (0,00) x R, we may find an open set X con-
taining (r,t) such that f is invertible on X. However, f does not have a global inverse, because

it is clearly not injective.

Proof : Without loss of generality, we may consider z — (df,) ![f(a + x) — f(a)] instead of f, so
that we can assume a = 0, f(a) = 0, and dfy = df, = idy, so V = W. Using the assumption that f

is of class C!, there exists r > 0 such that
B(0,7) C A and ||df, —dfo|| = ||df: —idy|| < %, Va € B(0,r).

Then, for z € B(0,r), we have df, = idy —u, where u = idy —df, with [|u[| < 3, and it follows
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f'(a) = 2a # 0 > RIFFMBRREEE - EHMIE f REE—EES o BOFEE X LB
R KB EERFN - BEL - Ha> 0 HAAMRX =V = (0,00) » LESH
gly) = vy Ry eY i Ba< 0K HMARTUE X = (—00,0),Y = (0,00) » LEHE
gly) = -y EHRyeY

(2) MNRFEMEER MBS F L EEAE 2 E RV
0: (0,00) x RCR? — R2
(ryt) —  (rcost,rsint),
BREEMOTE (r,t) € (0,00) x R BB -

cost —rsint r’
depi(r', ') = (' cost — t'rsint, ' sint + t'r cost) = .
sint rcost

EHaFA

cost —rsint
det J,(r,t) =r #0, HMF Jw(r,t):< >

sint rcost

RBEBE R KB EE - 7E8ME (r,¢) € (0,00) x R » HFATUKREIES (r,t) WK X &
B /7E X ERAHN - AT > [ WRBEEHMIRRE - ASMEARSEN -

2R RE—MME > RPIETUERRE 2 — (df.) f(a+ ) — fla)] » WIBMEDIE £ - EE—
R BARIUMBRER a =0~ f(a) =0 BHdfo=df, =idy > FIAV =W - £ f Z C! ERR

o FEr > 01EF
B,r)cA B |ldfe —dfoll=lldfs —idv]l < 3, Vo€ B(0,r).

EE > B/t 2 € BO,r) » BB df, =idy —u EF u=1idy —df, WE [|ul| < 5 > BiRiRH
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Chapter 4 Differentials in normed vector spaces

from Proposition 3.2.20 that

(dfy)” =idv + Z u”

n>1

‘H(dfz)_lw < ™ < 2. (4.26)
n>0

(i) First, let us show that f has a local inverse. More precisely, we want to prove that for every
y € B(0, ), there exists a unique = € B(0, 7) satisfying f(z) = y. We are going to construct a
function and apply the fixed point theorem (Theorem 3.2.7) to show this.

Let y € B(0, 5) and consider the function

h: B(0,r) — Vv
x = y+x— f(z).

The function £ is of class C!, and for every z € B(0,7), we have ||dh,|| = [[idy —df.|| < 3.
Thus, by the mean-value inequality (Theorem 4.1.13), we find

va,o' € BO,r), [hx) b < 3 |}z — '] (4.27)
Therefore, for x € B(0,r), we have

@) < [yl + [l = f@)]| = llyll + 1h(z) = RO < [lyll + % ]| <.

It means that h is a contraction from B(0,7) to B(0,7) C B(0,r), so the fixed point theorem
(Theorem 3.2.7) implies the existence and uniqueness of x € B(0,r) such that h(z) = x. But

since h takes values in B(0, r), it follows that the fixed point = belongs to B(0, ), and we have
f(@) =y.

To conclude, let Y = B(0,%) and X = f~*(Y) N B(0,r). Due to the continuity of f and
f(0) = 0, the open set X also contains 0. Then from what we have shown above, the restriction

fix + X — Y is a bijection.

(i) Let g : Y — X be the inverse fix, ie. g = (f‘X)*l. Consider the function h : X — V,z
x — f(x), so we have x = f(x) + h(x) for x € X. Then, for 2,2’ € B(0,r), we have

lz = 'l < [[A(2) = @] + [ /(@) = f(N)]] < % lz = 'l + [ (@) = £(=)]

& o= <2 f@) - fE)]-
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#3220  HMEE
(dfy) " =idy + Z u”
n=1
Iz < 3 i < 2 (4.26)
n=0

) B BRMAREHEREBHIRRH - EEYVIRR AMPAEERZRERESE

(i)

y € B(0,}) BEME—Mz e BOr) mE flz) =y RMEERETHEE (E
H327) KEEERNRE -

4y € B(0, )fﬂf%lﬁ )

h: B(0,r) — Vv

x =y 4z — f(x).

R hECEN > BEREME € BO,r) » HME ||dh.|| = [lidy —dfe]l < 3 < ELtk
BIEEERER (FE4113) » &MHE

Va,2' € B(0,r), |[[h(z) —h(2)|| < ||z —2||. (4.27)

1
2
Hit - ¥R 2 € B(0,r) » HME
1
Ih@)II < llyll + llz = f@) | = llyll + [7(z) = RO < llyll + 5 Nl <7

ERRE - h 2E# B(0,7) B B(0,7) C B(0,r) BUHERE - F LB FIATLUERE T 2
T (E327) » EMEBREEE—M 2 c B(0,r) 8 h(r) = 2 - BHRK h BUETE
B(0,r) F » BFIEEEEETEE « 7 B0,r) B » BEME f(2) =

REBADY = B0,5) UK X = 1Y) N B(0,r) RERHE - IBRIR f FEBE AR
f(0)=0 B X HEE 0 - BIRBRMLEATEEN - REIRE fx - X — Y BEESH

BRI o

Tg:Y = XBfix ORRE MR 9= (fix) ' *BEREL: X - Vo = z— f(x) -
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Therefore, for 7,7’ € Y, we have FRUERFIE v € X » BB v = f(2) + h(z) o BEE » R 2,2’ € B(0,r) » F&ME
lg(y) =9Il < 2[1f(9)) = Fla@W N =2y —v/'l| - (4.28) |z — 2'|| < [|h(x) — h2")|| + || f(z) - F(2')] < % |z =2/ + || f(z) = F(=')]
This implies that g is a Lipschitz function, so continuous. & o =2 <2[|f(2) - @)

(iii) Letz € X and y = f(z) € Y. Let us first check that dg, = (df;)~!. Let w € W such that I R gy € v o BTE
y+w € Y,and v = g(y +w) — g(y), which is equivalent to w = f(z +v) — f(x). By Eq. (4.28),

we have ||v|| < 2 ||w]|. Let

l9(y) — 9@l <21 £(9(v) = FlaW DIl =2]ly = /] - (4.28)
Aw) = gy +w) — g(y) — (dfz) " (w)
= (dfy) " o dfe(v) = (dfa) " [f(x +v) — f(2)]
= —(df) Hf(z +v) — flz) — dfs(v)]. (i) Tz e X URy = fz) e Ve BRMAXEREdg, = (dfe) > Bw e W ER
y+tweY [ov=gly+w)—gly)  BEHw=f(z+v)— f(z) FE - BEX (4.28)» &

I8 o] <2|w| > %

B HEFFAM g 218 Lipschitz BB - FTLABEERERY ©

It follows from Eq. (4.26) that
A < 2|f(z+v) = f(z) = dfe(v)] =20 (v),
A(w) = gy +w) = g(y) — (dfs) " (w)
= (dfe) " o dfulv) = (dfe) " [f(z +0) = f(2)]
= —(dfe) " [f (@ +v) = f(z) = dfu(v)].

for some function ¢ satisfying lim,_,o&(v) = 0. Let &(w) = e(g(y + w) — g(y)). Since g is
continuous, we also have lim,,_,o &(w) = 0. Thus,

8@ _ 2l

[[o]] w—0

| .
#ETN (4.26) - LIS
This means that g is differentiable at y with dg, = (df,) .

1

To conclude, since wv + wu~ ' on the space of invertible endomorphisms is continuous A < 2|f(z+v) = f(z) —dfe(v)] = 2]v] (v),

(Example 4.1.6 and Proposition 4.1.7), and g is continuous, we deduce that the map y — dg, =

(dfg(y))_l is also continuous, that is g is of class C'. HAPRE ¢ WJE limy_oe(v) =0° T e(w) = e(g(y + w) — g(y)) ° AR g ZEHERY - T
HWEEA lim, 0 &(w) = 0 ° Fitk
IA@) 2l

[[]] w—0

[[0]]
BAKRE g Ey A B EMdg, = (dfe) e

REBERMABE AR~ o AU HEARERZEEERE (EH 410 UK
8 4.17) - B g ZEER - BPHES y — dgy = (dfy)) " BEEER - BHRER ¢ 26
Ct SRR -
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Chapter 4 Differentials in normed vector spaces

Corollary 4.4.4: Let f : A — W be a function of class C'. Suppose that d f, is invertible and bicontin-
uous for allz € A. Then, f is an open map, that is for any open subset X C A, the image f(X) is open
inW.

Proof : It is enough to prove for the case that X = A. For each a € A, the local inversion theorem
(Theorem 4.4.1) gives an open subset X, containing a and an open subset Y, containing f(a) such

that f|x, is a bijection between X, and Yy, i.e, f(X,) = Y,. Therefore,

= (U Xa) = U rxa) = U Ya,

acA a€A a€A

which is still an open subset of W. U

Corollary 4.4.5 (Global inversion theorem) : Let f : A — W be an injective function of class C'. Then,

the following properties are equivalent.
(a) The differential df, is invertible and bicontinuous for all a € A.
(b) B = f(A)isopeninW and f~': B — Ais of classC'.

If one of the above properties is satisfied, we say that f : A — B is a C! -diffeomorphism between A and
B.

Proof :

« (a) = (b). It follows from Corollary 4.4.4 that B = f(A) is open. Since f is injective, we deduce
that f is bijective from the open set A to the open set B. Now, we need to check that f~! is of
classC'. Letz € Aandy = f(x) € B. The local inversion theorem (Theorem 4.4.1), we can find
an open set A, containing = and an open set B, containing f(z) such that f|4, : Az — By is
bijective and (f4,) " is of class C*. Since (f )5 = (fj4)~". (f 1), = (fja,) ", and being
C! is a local property, we know that f~! is of class C* around f(z). This holds for all z € A4, so
f~1is of class C' on B.
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RiBa44a : DA WAC RE - BREMRFIE x c A df, @B EEER - ABEE -
f 2ERRZ LR HNEERFEES X C A &R f(X) B W P2ERE -

sHEA I HPIRFETR X = ANBER - Wl c A BRRRBEE (FE441) $HBFHMA
BE o« FRFES X, URET f(o) BRFES Y, BT fix, RENK X, 8 Y, ZENE5E
8 BRMER f(X,) =Y, ° Bk -

:f(UXa): U f(Xa) = UYaa

acA a€A a€A

FRU 2@ W FREFES - O

R as5 [EEHRRHBEE] : S/ AW HRC ENEHNRHY - BPE > THMEESHE
By o

@) BRFAB o c A W5 df, BrIHEEEIER -
(b) B=f(AEWHZEME B f!:B—~ AZEC ERE -

R EEEHP—EMEMRL - HMER f: A - B 2ENR A H B ZE8 C! 1457 RIRE -

sHBA

. (a) = (b). WRIE 144 - BFIFE B = f(A) SEFE - BHR f SEHH » BFHEBIRN
figE A B B MRS f REHW - BE > BEMITERT (1 BC'EN - R[recd
UKy=f(z)c B BERRBEE (FE441) BHRMEXDEE » UBHE A, U
REE f(z) NEE B, 87 fla, : A — B, BEHK > B (fia,) ' BC HRE - AR
(f DB =fla) (e, = (fla,) "' BC' BRERMEE - HAXNE /' & f(2)
Mot C Rl - EHMRMBE 2 c ABMIL - FRA f 1 E B LR CL W -
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Chapter 4 Differentials in normed vector spaces

« (b) = (a). Write g = f~!. Since both f and g are of class C', the relation g o f = Id4 and the
chain rule gives us dgy(,) o df; = Idy for all z € A. Similarly, the relation f o g = Idp gives
dfz odgy(y) = ldw for all 2 € A. Therefore, for all x € A, the differential d f; is invertible with

inverse dg F(a)s which is continuous. 0

Remark 4.4.6 : We make a similar remark as in Remark 4.4.2 (2). If we consider an Euclidean space V =

W = R" for some n > 1, since L(V, W) = L.(V, W), we may replace the property (a) by
(@’) df, is invertible, or det Jf(a) # 0,

without requiring the bicontinuity.

4.4.2 Diffeomorphisms

Definition 4.4.7 : Let V, W be two normed vector spaces, and A C V and B C W be open subsets.
For k > 1, a function f : A — B is said to be a Ck-diffeomorphism if f is bijective, of class Ck and

f~1is also of class C*.

The following two corollaries give the conditions under which a map is a local diffeomorphism and a global
diffeomorphism in the setting of Euclidean spaces. Their proofs are based on the local inversion theorem and
the global inversion theorem. We note that they can also be generalized to Banach spaces by adding the
bicontinuity in the condition. Since we did not really discussed C* functions in general Banach spaces or
2 (see Section 4.2.3), we keep our statements to Euclidean spaces for which

normed vector spaces when k >

we had a thorough discussion about regularity in Section 4.2.1.

Corollary 4.4.8 : Let A C R" be an open subset. Let f : A — R™ be a C* function. Suppose that there
exists a € A such that d f, is invertible (or equivalently, det J;(a) # 0), then there exists an open set X,

containing a and an open set Y, containing f(a) such that f|x, is a Ck-diffeomorphism from X, to Y.
We also have d(f&la)f(m) = (dfy)~! forallz € X,.

Last modified: 15:55 on Tuesday 10" December, 2024

FNE MEE[MPHMD

cb)=@).58g=/ "t HR fH g EEC > FBER go f = 1ds UAREEHE - TMA
BB o € A+ BFE gy 0 df, — Iy AU fog — 10y BERBMHRAE
e A BIFVE df o gy = ldw © Bl  SIRFTE « € A+ 805 df, BT60 - Bith
REBEH dg ) » TS REERE - -

R 446 @ HMOTUMMEETRE 442 Q PHEUNEBZR - IRHEMEE » > 1 UREIKZER™E
V=W=R" R LV,W) = L(V,W) » BFIATLUIEMEE (a) K :

@) df, BEEH - HE det Jp(a) #0
jtjraagg—kzk_lﬂlﬁ

SBIE Mo FERE

EFE447 I SV, W ARERERAETH BACVEBCW ABRFES - BN L>110
BB f: A— BRESNN - B 8 1 &2 CcFERE - BIFMR f 218 cF B|HMOERE -

TEMEREBEGHERRZENE RS  AERERFANRBEZF/E MO BRNZE M
fE - tFINERARELAERSRRNHMEEEA 2R RNBEE - HfIERD) RN LEEE
MERIERER  AREIRAT AT LAHEIE L 55 B H#E BE B — A% AY Banach ZEfEH - FAME—A%AY Banach ZZEELE
FEMBZET - £k > 2 NER » WIVLEY CF RBSHER (RE 423 /08) - ALEMIET
ENRGLERERKZERF - BAES 4.2.1 /0 8H  RPIEFREEBETZHFRRENY

RIE448 I SACR'ABATFES URF AR BCFERH - REBBFETac AFE
1§ df, BAIHH (HdetJy(a) #0) » BEFEEE c WHBHES X, UREE f(a) K
EEY, ER7 flx, BRER X, B Y, W MARE - 15 BRFAE 2 € X, 0 HFBLE
d(fix) f) = (dfe) ™"
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Chapter 4 Differentials in normed vector spaces

Proof : Since d f, is invertible, and we work with finite dimensional vector spaces, d f, is automatically
bicontinuous. Then, we may apply the local inversion theorem (Theorem 4.4.1) to find X, and Y, as
stated, such that f|x, isaC L_diffeomorphism. It remains to show that g = f|;(1a is a C* function.

We recall the notation J(a) for the Jacobian matrix of f at a, and Jy(f(a)) for the Jacobian matrix
of g at f(a). Forall z € X,, since (dg)s) = (dfz)""!, we deduce that Jy(f(x)) = Jy(x)™' =
(det J f(ac))*lj (), where J(z) is the transpose of the comatrix of J #(x) (also called the adjugate
matrix), whose coeflicients are linear combinations of products of coefficients of J f(:c) Therefore, the
first-order partial derivatives of g are rational fractions of first-order partial derivatives of f, which
are of class C*~!, implying that the first-order partial derivatives of g are also of class C*~'. We can

conclude that g is of class C*. (]

Corollary 4.4.9: Let A C R" be an open subset and f : A C R™ — R" be an injective function of class

C* with k > 1. Then, the following properties are equivalent.

(a) The differential d f, is invertible for alla € A.

(b) B = f(A) is open in W and f is a C*-diffeomorphism from A to B.

Proof : The proof is similar to Corollary 4.4.5 and Corollary 4.4.8. O

4.4.3 Implicit function theorem

We describe some motivation behind the implicit function theorem. We are given a function f : A C
R™ x R™ — R" and want to look at its level lines, that is we look for x € R™ and y € R" such that
f(z,y) = c for some given ¢ € R™. The implicit function theorem provides local sufficient conditions such
that y can be written as a function ¢ of z, that is f(x, ¢(z)) = c. In other words, in a neighborhood of such
x, the solutions of f(x,y) = c can be represented by a graph. More generally speaking, we may take c to be

a variable, and we obtain a function ¢ in x and c. See the theorem below for a more precise statement.

Let

F=f1seesfn): ACR™x R" - R (4.29)

(xay):(l‘la"wxm;yl?"'?yn) = f(l',y)
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A 1 B df, BAER - BRMATEEREEREZ[T - df, BRFTERLEEAN - FE > &K
Pl lfERARRR B EE (EE 441) KB X, AR Y, > £ fix, B8 C' MOFRE - B
REFIRFERSE g = /[, =8 CF REEA -

HAICIRBECEE J;(a) IR @ tMAKRMIRZ f 7 o BY Jacobi FEME » B Jy(f(a)) B g & fa) B
Jacobi FBE o HHFAE = € X, » B (dg)po) = (dfe) " » RFIRTLER Jy(f(2)) = Jp(2) ™! =
(det Jy(z)) "I () » B J(2) B Jp(o) BFEEHNEERR (LBEEHER) - BENRE
& Jp(v) PREGERVRIEMES - Bt - g W—REHMD SR [ —BERMIFIERINEER
#0 ffIR c BR B g —RERIMAthE ¢ Bl - PR g B CV > O

RIE449 - SACR' ZHRFEE BHf: ACR" - R 2B CF EMESRE » Hob
k>1°#BEE  FHHEEHFEN -

(@) HIRFAB a c A M5 df, BHHR] -

(b) B=f(A)EW PER%E - B f 2E#% A E B8 c* BEMAERE -

55PH : HEREARIE 445 FIRIE 4.4.8 FELL o O

BZE RRBEE

HAGRRBRBEETRN—EHHE - HFHEERH f: A CR” xR" - R ARBER HthAY
EaiR URMERMEE cc R BEHH 2 e R™ My € R" 1% f(z,y) = c ° RREEEGH
JRFREIFE DGR - 1S y FILAR AR « BIRRE ¢ » WRLER f(x, o(x)) = c ° MAJFER * 1E = BIMHE
flx,y) = c B9 > AILUBEIRERT » E—ARRER - FFIATLGE ¢ B - RFIFFIHNZBORN «
M c BIRE ¢ » TEE G HERYIRIRGE o
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Chapter 4 Differentials in normed vector spaces

We may define the partial Jacobian matrices and their determinants (called partial Jacobian determinants)

with respect to the variables = (z1,...,2y) andy = (y1,...,yn) at (a,b) € A as below,

ofi
Jy;

meuub)::[axgﬁhbﬂ and ny@hb)::[ (a,@]

1<i,j<n

Theorem 4.4.10 (Implicit function theorem) : Let m,n > 1 be integers and A C R x R" be an open
subset. Suppose that we are given a C* function f withk > 1 as in Eq. (4.29). Let us fix (a,b) € A. Ifthe

partial Jacobian determinant det Jy ,(a,b) is nonzero, then there exist

« an open subset X containing a, an open subset W containing f(a,b) and an open subset Z con-

taining (a,b),
« aC* functionp: X x W — R"

such that forallx € X andw € W,y = ¢(x,w) is the unique solution to f(x,y) = w with condition
(z,y) € Z. In particular, we have f(z, p(z,w)) = w forallz € X andw € W.
Moreover, for (a,c) € X x W, writeb = ¢(a, c), then we also have the following relations between

the partial Jacobian matrices,

Joz(a,c) = _[nyy(avb)]_ljf,x(% b) and Joyla,c) = [Jf,y(av b)]_l‘

Remark 4.4.11 : The inversion theorems were stated and proven for general Banach spaces, where we
require the differential to be invertible and bicontinuous. We also noted in Remark 4.4.2 and Remark 4.4.6
that when we take Euclidean spaces (or finite dimensional normed vector spaces), the bicontinuity property
automatically holds, so need not be checked. Here, for simplicity, we state the implicit function theorem for
Euclidean spaces, but you need to bear in mind that when we work with general Banach spaces, the only

additional condition you need to add to the assumption is the bicontinuity.
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2

f=0f o f): ACR™xR" - R»

(4.29)
(:an):(xlv"'vmm;ylw"ayn) = f(xay)

KT UERER 2 = (v1,...,20) Uy = (y1,...,yn) * L TFIBRERTE (a,b) € A BIERS Jacobi
EREERMPINTTSI (FBIEERR Jacobi 17513)

Ofi
a,b
dz; ( )] 1<i<n

<Jsm

afi

Jro(a,b) =
fu(a,b) 9y;

1953 Jry(a,b) = [ (a, b)]

I<i,j<n

EIE 4410 [BEREEE] : Sm,n> 1 AEHE A CR" xR BZEAFES - WIEE (4.29)
Bk >1 BERMGTE CF BRE f - BE (a,b) € A ° FIREBA Jacobi 1TFIR det J,(a,b)
=IEEW - PBEFE

- BE o IRFES X B2 f(o.b) NEAFEES W URESE (0,0) WRFES 7
- —ECFERH o X x W - R"

ERERFE e X BB we W y=9p(x,w) BR f(z,y) = wTE (v,y) € Z E&HZTH—H
fRoFT WIRFMBE 2 c X BB we W BB f(=, p(z,w)) =we

B > 3 (a,0) € X x W+ BAFIFR b = o(a, c) * BRI EIEEI THILR Jacobi M2
AR :

Jgo,m(aa C) == [‘]f,y(av b)]_l‘]f,x(aa b) V4 J‘P,y(a’ C) = [Jf,y(av b)] _1'

EfF 4411 @ EEIE/NETR - EKFHGH (BEMEE) REEBEIEZEE—M Banach ZEREFFAIARA -
ERHMABRMDBER AP HEERD - RFILTER) > E5EME 442 BEIRR 440 B - ERFINEK
TH (HEEREERERNEZEMH) K SEEHEEFEMIL - Rt FRARE - 58 B THL
ROLANZZE - HFIGHNRRBEERERRZER T - EEZXENE @ EFHRFIERE—AKD Banach
ZEfERy - ME—REENARH 2 EERMERE -
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Chapter 4 Differentials in normed vector spaces

Proof : Let F = (Fy,...,Fy; Fonst, ..., Finin) be a function defined on A with values in R "
whose components are defined by Fj(z,y) = z; if 1 < i < mand Fp,4; = fi(z,y) if 1 <i < n. The

Jacobian matrix of F' is a block matrix, given by

* (afl (a,b))
9y, 1<i,j<n

Its determinant is the same as the partial Jacobian determinant given by det J ¢, (a, b), which is nonzero

by assumption. Then, it follows from Corollary 4.4.8 that there exists an open set Z containing (a, b)
and an open set Y’ containing F(a, b) = (a, f(a, b)) such that F| is a C*-diffeomorphism from Z to Y .
We may restrict Y to X x W C Y, where X is an open set containing a and W an open set containing
f(a,b). Then, we may write F~! : X x W C Y — Zas F1(z,w) = (v, p(x,w)), where ¢ is a
C* function. Therefore, we deduce that for any (z,w) € X x W, there exists a unique  such that
(x,y) € Z with f(z,y) = w; and additionally, y = ¢(z, 2).

To get the identities between the partial Jacobian matrices, we just need to apply the rela-
tion between the composition of functions and multiplication of Jacobian matrices as mentioned in

Proposition 4.1.26. O

In the above theorem, we may take w to be a constant, leading to the following corollary.

Corollary 4.4.12 : Under the same assumption as Theorem 4.4.10, we may find
« an open subset X containing a and an open subset Y containing b,
« aCF function p : X — R"

such that for allz € X,y = @(x) is the unique solution to f(x,y) = c with conditiony € Y. This
allows us to write f(x, p(z)) = c forallx € X.
Moreover, for a € X, writeb = (x), then we also have the following relation between the partial

Jacobian matrices,

Jra(@,b) + Jpy(a,b)Jpn(@) =0  or  Jou(a) = —[Jry(a,0)]  Jse(a,b). (4.30)
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HBEA: S F=(F,....Fn;Fngt, e Frgn) RERT A LHRE > BEEE R B> 1Ry
NETERNT HI1<i<m BFRF(r,y) =28 1<

—3R » F Y Jacobi FEfE 2B YRR - B

i<n’ R Fngi = filz,y) ° B

I, 0

* Of;i
0y,

(a,b)

1<i,j<n
YT 5 ZLEL BR 7 Jacobi 17T det J5y(a, b) #HE » MIRIRRE > ERIEERI - HIt - R
B 43 ZPIRNEEES (o,b) NRAE Z BES Fa,b) = (a, f(a,b)) NRAE Y £17 F; B
Bt ZzB Y B CF AR - RMATUBY REK X x W C v Hif X Z2EES o B9
£-BWREES f(ob) WRAE - EHF—HK > AU F 1 X xWCY - ZEM
FYz,w) = (z,p(z,w)) » B o B8 CF MR - Eit - HPHESHRER (2, w) e X x W -
BEEE—Ny FF (v.y) € Z B f(z,y) =w; AN > BPIEE y = p(z,2) °

SR EBFBIERD Jacobi FEFE FHIRAFR - PIRFEEAWRE 4.1.20 F - SRERENE Jacobi
FEfEFRARRIRAGRENAT - O

T LmEER - FFIRTLUE w VAR - EHERIRR TERS5IE -

RIP 4412 @ FHEFEIE 4410 HEMRERZT @ BHFIEEHRE
- B8 HHEFES X UREBS I HRFESY S
. —BCFERH p: X - R”

FEEERABE e X ' y=p() R f(z,y) = cTEEH y € Y Z THIME—RE - EERFIRTLUE
BE CHRB 2 e X BB f(o,px) =ce
LA > R 0 € X 0 TR b = p(z) @ EXRIKFIEE TFIERA Jacobi FEfE FEIRIRAMRL

Jra(@,b) + Jpy(a,0)Jpe(a) =0 B Jpau(a) = —[J5yla,b)] " Jala,b). (4.30)
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Chapter 4 Differentials in normed vector spaces

Corollary 4.4.13 : Let A C R? be an open set and f : R?2 — R be a C* function with k > 1. Let RIE4413 : SACR’ZBREE k>1' B f:R2 - REECFERE - B (a,b) € A MBRE
(a,b) € A and suppose that
_ of _ of
f(a,b) =0 and 8—y(a,b)7é0. fla,b)=0 H 8y(a,b);zéo.
Then, there exists e, § > 0 such that for all x € (a — a, a + «), the equation f(x,y) = 0 has a unique e .
J ( ) 1 (=:9) E BEEEE o, 8> 0 FFEHRFAE <€ (a—a,a+0a) » HER f(z,y) =08TE (b— 8,0+ B) F
solution y = @(x) in (b — B,b + [). Moreover, the function ¢ is of class C* on (a — o, a + ) and we
have By = o) lEHN BB 7E (a —a,a + o) LERE CF N » BEERME
0 0
¢ (@) =~ (0, 00) [ (0 0(@), Vo (- avata). o o
¢ ==L @pl@) [ (@pla)), Vo€ (- aa+a)
Proof : The existence of a, 3 > 0 and regularity of ¢ follows from Corollary 4.4.12. To compute ¢/, SR ¢ ERIE 4412 > BPIBEEE o, 8 > 0 FETEMUR o BUAREM - B5+8 ¢ - MR
we differentiate the relation f(x, p(x)) = 0, giving us R f(z, o(x)) = 0 M5 » ETEEH
of 12O
—(x, () + ¢ (x)=—(z,0(x)) = 0. 0 0
u (7 PN g, el B (@) + (@) 3z pla) = 0.
This can also be obtained directly from Eq. (4.30). O _
ERESIEIRAT (4.30) #ETS © 0
The following corollary can be shown in a similar way. THEE(ES | Bt el AR EMAY A 2REERA -
Corollary 4.4.14 : Let A C R? be an open set and f : R?> x R — R be a C* function with k > 1. Let ZRif4414 : DACR}BHE k21 B f R2PxR > REZECFERE B (a,b,c) € A
(a,b,c) € A and suppose that e
d
f(a,b,¢) =0 and g(a, b,c) #0. fla,b,0)=0 H —f(a, b,c) # 0.
0z 0z
Then, there exists o, 5, > 0 such that for all (z,y) € (a — a,a + «) X (b — B,b+ ), the equation BEEEE o, 3,7 > 0 ERFHERAE (2,9) € (a—a,a+a) x (b—B,b+8) » ARER f(x,y,2) =0
f(z,y,z) = 0 has a unique solution z = p(z,y) in (c — v,c + ). Moreover, the function p is of class BE (c—v,c+v) PEEE—NE 2 = p(z,y) o LA > BB o 7E (¢ — a,a+a) x (b— B,b+ )
C¥on(a—a,a+a)x (b— B,b+ ), and we have . .
rEaRchrEN - BRME
d of of
’ ’ ’ @) = ~ 5 @ el@ ) 5 @0l ),
4 f f
3y DY) = 5, @ v:¢@.y) [ 50 @y ¢(@,y)). o0 of of
3y @Y =5, @y w(w,y))/az(aﬁ,y, (z,y)).
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Chapter 4 Differentials in normed vector spaces

Example 4.4.15 : Let us consider a C* function f : R? — R, (z,y) + sin(y) + xy* + 2%. We want

to look at the graph of f(z,y) = 0 and its asymptotic behavior around (z, y) = (0, 0).

« Itis not hard to check that f(0,0) = 0. The partial derivatives of f write

Of 10 ) = 4t OF (y ) = 3
5, (&Y) =y +2z and ay(ﬂ:,y)—COS(y)+4wy-

We have %(O, 0) = 0 and 2—5(0, 0) = 1. Therefore, it follows from Corollary 4.4.13 that there
exist a, f > 0 and a C* function ¢ : (—a, a) — R such that for every z € (—a, a), y = ¢(z)

is the unique solution to f(z,y) = 0in (=2, ).

+ Let us find the Taylor expansion of ¢ around 0. First, from the above computations, we have
©(0) = 0 and ¢'(0) = 0, so we may write p(x) = O(z?) when z — 0. To get a higher-order
expansion, we will substitute this expression into f(x, ¢(x)) = 0and expandsin(y) = y+O(y?)
when y = ¢(x) — 0. We find

= O(p(2)*) — 2”
— 22+ 0(z%) = —22(1 + O(zY)).

If we want to get a even higher-order expansion of ¢, we expand the sin function to a higher

order, that is sin(y) = y — % + O(y®) when y = ¢p(x) — 0. We find

p(x) = () = sin(p()) — zp(2)* -2

T 3
=22 = P 0(p(a)?) — mpla)’
= =+ L (14 06") + 06™) — (1 + Oh)
= 2% + :26 — 274+ 0(z').

One may also proceed further by expanding the sin function to higher orders of .
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gl 4.4.15 ¢ BMEE—EC™® RKE f: R?2 - R, (x,y) = sin(y) + xy* + 22 - BPIEEFHE
(z,y) = (0,0) MBE » f(x,y) = 0 WEIZREHEBNEETS °

- BPIRERE £(0,0) =0 ° f BRI B
0 0
afi(l'a y)=y'+22 UR 85(36, y) = cos(y) + 43,

HFE 3L(0,0) = 0 AR §L(0,0) = 1= Eitt - PERIR 4413 HPIATLUEBEFE 0,8 > 0
FMCREB p: (—a,a) > REFBEHNREME » € (—a,a) 'y = p(z) BR f(z,y) =0 7E
(—B, ) FRME—RIAR

- BERETE ¢ £ 0 MHER Taylor BRI - Bt W LEFR - IR 0(0) = 03FEH
¢'(0) =0 FRE = — 0B » FFIE o(z) = O(2?) - MRBRFEER AR - FHfid
LIBRRBR sin(y) =y + O(°) By = ¢(z) — 0 BAR f(z, o(2)) = 0 22E ° HFHSH

= —2? + O(2%) = —2*(1 + O(a*)).

MRBZMABVESI o ESRNER AAFTELnMESHEIER B2

sin(y) =y — £ + O(°) By = p(z) — 0 > HFFE

= 2 - 2 1 0(p(2)°) — zp(x)*
— 2 ‘””66(1 + O(zh) + 0(@1%) — 2°(1 + O(z))

26
= 2% + 5 2 + O(219).

HFIRTLEREEIR T 2 » 2 sin ESMEIER » 53 » ESMEHER -
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Chapter 4 Differentials in normed vector spaces

4.4.4 Conditional extrema

Let A C R" be an open set and f : A — R be a function. Let g1, ..., g, : A — R be functions and

F'={zeA:gi(z)=--=gr(x) =0}.

We want to look for the extrema of f on I'. Such a problem is called conditional extrema.

Theorem 4.4.16 : Suppose that f, g1, .. ., g» areC' functions. Suppose that Jir attains a local extremum
ata € I" and that dgi 4, . .., dgrq are linearly independent, then there exist A1, ..., A\, € R such that
dfy =2dgig -+ A dgpg. (4.31)

Remark 4.4.17 : The coefficients \;’s are called Lagrange multipliers. They are unique because the linear

forms dgi 4, - . ., dgr are linearly independent.

Proof : Let s = n — r and write R” = R® x R". An element of R" can be written in the form
(,y) = (x1,...,2s;Y1, .-, Yr). Let a = (24,y,) € R" with z, € R® and y, € R".

First, we note that we necessarily have r < n because (dg; . )1<i<r are linear independent, and the
dimension of £L(R™, R), the space of lineaer forms, is equal to n. If n = r, then the theorem is trivial
because (dgiq)1<i<r forms a basis. Thus, let us assume that 7 < n — 1 in what follows, thatis s > 1.

Due to the linear independence of (dg; q)1<i<r, the Jacobian matrix of g = (g1,...,gr) at a has
rank 7. Without loss of generality, we may assume that the following r x r submatrix has nonzero

determinant,

Therefore, it follows from Corollary 4.4.12 that there exists an open set X of R® containing x, and an

open set W of R” containing a = (x4, ¥,) and a C! function ¢ = (1,...,¢;) : X — R such that
g(z,y) =0withz € X and (z,y) e W < y=p(x).

In other words, for z € X, the elements of I' = {z : ¢g(z) = 0} can be written as (z, ¢(x)). Let
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SBIER 1EFRE

TACR'"BRER f A-RBRHE T g1,....9-: A > RBREUK

I={eed:gile) == g(z) = 0}.

HPIBERE f £ D ERYERME o ESHRRYREME R -

B 4416 1 R f.91,...,9- W CHHERH R fir Ea c T BEREEE » Hdgre, ..., dgra
EMRMRIIAY  BBEFE A, ..\ € RTER

dfe =Mdgie+ -+ Ardgre. (4.31)

sEfE 4.4.17 @ BFHERE )\ BIFAIBBAAER - SEFREEHE—4 - HARIEZR dgig, ..., dgra
EARMERILAY o

A Ds=n—rWER" =R xR" o R" FWNTERAIMUER (2,y) = (21, .., Ts; Y15+, Yr) °
Ba= (T4,90) ER"HA 2z, e REHy, eR" 0

Bk HPYERBIER (dgio)i<icr SRERIIN > BFMZER LR, R) WEREESER
no> BPIBAB r <necWIRn=r PBEEETEREARIL  BA (dgiq)i<i< BRERE ° it
BRR BRI r<n—- 1 BRRs>1°

RIF (dgi)i<icr BIRMERIIME » g = (91,...,9,) TE a BY Jacobi FBERNKER r - FR—K
M BFIRTUBRER TEEME r x r FIERMNITIIXZIEEH

det (ggl (a)) # 0.
Yi 1<, j<r

Hit » ERE 442 HFABA > FER FEE 2, WAE X "R FEE 0 = (24, v.) IFEE

W MR C EERB o = (¢1,...,0,) : X — R E1F

gz, y)=0mBzrzec X B (z,y) eW & y=op@).
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h(z) = f(z,p(z)), which has a local extremum at x = a by assumption. This leads to BAER BNz e X' T ={z:9(z) =0 FNTETUER (z,0) ° & hz) =
_On, . of " dp;, .\ Of o fz, p(z))  BIBRE  M1E 2 = « BRBRAE - EHREM
0= o1, (a) = oz, (a) —i—; oz, (:ca)ayj (a), Vi=1,...,s. (4.32) r
0= gh (a) = gf (a) + Z g% (a:a)gf(a), Vi=1,...,s. (4.32)
Additionally, by differentiating the relation g(z, p(x)) = 0, we find Ti Li j=1 9Ti Yj

r , S _ 2k S\ , N /EKIJ
Agi D, A, _ A s SIRIBEF g(z, o(2)) = 0 5 - FHFIEFE
= (@), Vek=1,...,rYi=1,...,s. 433
0 oz, (a) +j§:1 oz, (z )8yj (a), V¥ r, Vi s (4.33)
0 "\ Op; 0
0=+ S D 2) @), Vk=1,....r¥i=1,...,s (4.33)
Putting Eq. (4.32) and Eq. (4.33) in the matrix form, we find the matrix D j=1 Iz Iy,
L (4.32) M0 (4.33) B 23 TS
%(a) 86';: (a) (%fl(a) gy{ (a) *F_].Et( )* :_Et( )%ﬁifﬁﬁﬁ/ﬁ FIFEIREME
IO TON IO A0
o e e 3 o P
M= : " M ) ... P L) ... §(a)
991 991 991 991
90:(a) ... 9(a) Y(a) ... %Z(a) v | am@ G e G(a)
whose first s columns are linear combination of its last 7 columns, which implies that rank M < r. )
. . . . . . 9ar(a) ... Yr(a) Yr(q) ... Yor(q)
Since rank M* = rank M, it means that the r + 1 rows of M are linearly dependent, that is, there exist 1 Ts Y1 Yr
Ho - fir that are not identically zero such that RAIE s (TREBE r (THORIES > RILBAWFE rank M < 7 o BIH rank M! = rank M > 5B
= \ = ’ S T EY s arEEn , & S IE HERK ’
wodfu 4 i dgia bt ordgns = 0. w0 RE M PN+ IRRETELN - UHER  BEEFERDABEEN 1.0,
5
From the assumption that (dg; ,)i<i<r is linearly independent, it follows that ;g # 0, therefore, by
dividing Eq. (4.34) by po, we prove the theorem. O podfa+ p1dgie + -+ prdgra = 0. (4.34)
RAR (dgia)1<icr BARMERBIIAVRER » FAFUFHD 1o # 0 0 FTATRFIRTLUER (4.34) BIBR 1o » LERE
1§ - O
Example 4.4.18 : Find the minimum and the maximum values of the function f(z,y) = 2% — 22 + gl 4418 ¢ KRB f(r,y) = 22 — 20+ 4> + Sy EE—REBH > UARE (v,y) € A =
4y? + 8y in the first quadrant, that is (z,y) € A := Rsg X R0, under the condition g(z,y) = 0 Rog x Rog * MUBAEHE g(z,y) = 0 B g(z,y) = 2+ 2y — 7= 0 * 2 FHIR/IMEERSAE - B

with g(z,y) = z + 2y — 7. Since the domain A is not closed in R?, we need to distinguish between

REHEE AE R A%  RAUFEERSAMUKREME - f NREEERER (4.31) B

a€A=RsgxRsg HEETHE 44.16 FRETHRIINE A\A = ({0} x Roo) U (R x {0})

interior points and other points. The extrema of f are attained either at a € A = Rog x Rog sat-
sifying Eq. (4.31), or at some point in A\A = ({0} x Rso) U (Rso x {0}), that are not covered by
Theorem 4.4.16. LEREE -

« Let us look for an interior point (x,y) € A satistying g(z,y) = 0 and such that df(,,) = . BFIEIRNE (r,y) € A BERIRE g(z,y) = 0 URHER Af 5y = Ng(s,) BEIFE
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Chapter 4 Differentials in normed vector spaces

Adg(z,y) has a nonzero solution A € R. First, we want to solve

(1Y) = Agh(x.y), - 2 —2 =\,
SLey) = AG (), Sy+8 =2\

Thus, we find x = 2y + 3. We put this back to the condition g(x,y) = 0 and find (z,y) = (5,1).
We compute the value f(5,1) = 27.

« The points (z, y) in A\ A satisfying g(z, y) = 0 are exactly (,y) = (7,0) or (0, 7). We compute
the values f(7,0) = 35 and f(0, 1) = 77.

From above, we conclude that in the first quadrant with condition g(x,y) = 0, the maximum value of

f is attained at (0, ) with value 77, and the minimum value of f is attained at (5, 1) with value 27.
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HURE N e R~ Bt - B

Ly =rE(xy), 2w —2 =,
=
Sy =Agi(x,y), Sy+8 =2\

Eitt > BffIEE « = 2y + 3 » RPUBSEBENEL g(e,y) = 0+ B8 (2,y) = (5,1) ° T
ISt BTEEIEREHIME (5, 1) = 27 -

- FEA\APRR g(z,y) = 0 BB (2,y) BR (2,y) = (7,0) H (0, §) ° RFHBRYIEEW
BERYME ¢ £(7,0) =35 BAR £(0,2) =TT °

W EREHE - BRABNE | F—RBRH - UREH g(z,y) =02 F > f7£ (0,1) BRAME »
B4 77 M1E (5,1) B&/IME - BUEA 27 ©

BRIBIB : 20244 12 H 10 H 15:55



	4 Differentials in normed vector spaces
	4 賦範空間中的微分
	4.1 Differential and partial derivatives
	4.1.1 Differential

	4.1 微分與偏微分
	4.1.1 微分
	4.1.2 Mean-value theorem
	4.1.2 均值定理
	4.1.3 Directional derivative
	4.1.3 方向導數
	4.1.4 Jacobian matrix
	4.1.4 Jacobi 矩陣

	4.2 Higher-order derivatives
	4.2.1 Schwarz theorem

	4.2 高階導數
	4.2.1 Schwarz 定理
	4.2.2 Hessian matrix
	4.2.3 Higher-order differentials
	4.2.2 Hessian 矩陣
	4.2.3 高階微分

	4.3 Local behavior of real-valued functions
	4.3.1 Taylor formulas

	4.3 實函數的局部性質
	4.3.1 Taylor 展開式
	4.3.2 Quadratic form
	4.3.2 二次型
	4.3.3 Local extrema
	4.3.3 局部極值

	4.4 Implicit function theorem
	4.4.1 Inversion theorems

	4.4 隱函數定理
	4.4.1 反函數定理
	4.4.2 Diffeomorphisms
	4.4.2 微分同胚
	4.4.3 Implicit function theorem
	4.4.3 隱函數定理
	4.4.4 Conditional extrema
	4.4.4 條件極值



