Differentials in normed vector
spaces
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4.1 Differential and partial derivatives

In the first year calculus, we have seen the notion of derivative of a function f : I — R, where I C R is
an interval. In particular, Taylor’s formula allows us to develop f around x € I in the following way,

f(x+h) = f(z) +hf(x)+o(h),

where the term h — hf’(z) is a linearisation of f around z. If the function takes values in a higher dimen-
sional Euclidean space such as R", similar theories can also be developped. Below, we are going to see how
to generalize these notions to functions from an open subset of a normed vector space with values in another
normed vector space.

4.1.1 Differential

Let (V,|[ly;) and (W, ]-|l;;) be two normed vector spaces. Let us consider an open set A C V and
f:A->W.

Definition 4.1.1:Let a € A. We say that f is differentiable'at a if there exists ¢ € L.(V, W) such
that
fla+h) = f(a)+¢(h) +o(||hlly), when h—0. (4.1)

If such a map ¢ exists, it is unique, and is called the differential (fi43") of f at a, denoted by D f(a) or
dfe.

Remark 4.1.2: Since A is an open set and « is an interior point, for h close enough to 0, we know that a + h
is also in A. Therefore, the condition “when h — 0 is important in Eq. (4.1), since the relation only makes
sense when h is close enough to 0.

Definition 4.1.3 :If f is differentiable at every a € A, we say that f is differentiable on A, and the
map

Df: A — LV, V)
a df,

is called the differential map of f. If D f is continuous, we say that f is of class C.

'Also known as Fréchet differentiable. In Exercise 4.10 we will see a more general notion of differentiability, called Gateaux
differentiability.
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Chapter 4 Differentials in normed vector spaces

Remark 4.1.4:

(1) If V = R, then the notion corresponds to the classical notion of derivative, that is the continuous linear
map D f(a) writes D f(a)(h) = dfa(h) = f'(a)h. So we may also just write D f(a) = df, = f'(a).

(2) In general, the definition of d f, may depend on the norms ||-||\, and ||-||;;;. However, if V and W are
finite dimensional vector spaces, we have seen in Theorem 3.2.22 that all the norms are equivalent, so
the existence of d f, does not depend on the norms that we equip on the spaces.

(3) It is important to require the differential df, to be a continuous map. In finite dimensional spaces,
all the linear maps are continuous (Corollary 3.2.24), so in such spaces, we only need to check the
linearity, then the continuity follows automatically.

Example 4.1.5:

(1) If f € L.(V,W), then the relation f(a+ h) = f(a)+ f(h) implies that f is differentiable on V'
with df, = f foreverya € V.

(2) Consider the product on R?,
v: R = R
(z,y) — zy
Then,
¢($ + hg, Y+ hy) - 1/1(567 y) = xhy + hxy + hxhy'

Since the map (hy, hy) — xhy + yh, is linear, and hyhy = o(||(hs, hy)||), we deduce that

Aty (h) = why + yhy for h = (hy, hy) € R2.
(3) Consider the matrix product on M,,(R),

b Mp(R) x Ma(R) = My(R)
(M, N) — MN -

We equip the vector space M,,(R) with the norm ||-|| defined in Remark 3.2.16. Let M, N €
M,,(R) be fixed. Then, for H, K € M,,(R), we have

O(M+ H,N +K)—(M,N) = MK + HN + HK.

The map (H, K) — MK + HN is linear, and || HK || < ||H||||K]| < ||(H, K)|[>. Therefore,
we find dyy v (H, K) = MK + HN.
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Example 4.1.6 : Let V be a normed vector space, and
GL(V)={uec L(V,V):uand u"" are continuous}.

Define the map Inv : GL.(V) — GL.(V),u +— u~t. For h € GL.(V) such that [||h|| < 1, we know
that id +A is invertible with inverse

(id+h) "' =id—h+ > (=1)"h"™

n=2

We have
2
HIhIH

< 2 I = T ey

n=2

Z nhn

n=2

Thus, when A — 0, we have
(id+h)~t =id —h + o(||A]).

This means that Inv is differentiable at id with differential d Inv;q : h — —h.

&@Hlare : SV AREREZER - B
GL(V)={ue L(V,V):uR u " EEE}.

EEEB v : GLA(V) = GL(V),u = u" o W hoe GLV) MR ||h]| < 1+ FFIRE id +7
AR - BRERBRE M
(id+h)"' =id=h + Y (=1)"h"

n>2
#xfiE
HIhIH2

<A = 1

n=2

Z nhn

n=2

At - & h — 0 FHFIFE
(id+n)~" =id —h + o([|A]])-

ERRE Inv £ id 28 - B SEM dInvig : h— —h °

Proposition 4.1.7 : If f is differentiable at a € A, then f is also continuous at a.

R 4.1.7 P R fEac AR FRE f BETE o FRE -

Proof : Suppose that f is differentiable at a € A. Then, we can find a continuous linear function
w:V — W andr > 0 such that

Vh e By(0,r),  fla+h)= f(a)+ ¢(h)+ [|hlly e(h),
where lim,_,oe(h) = 0. Fix 6 > 0and 0 < ’ < 7 such that ||e(h)||;, < ¢ for h € By (0,7”). Then,
Vh € By (0,7), [[f(a+h) = f(@)llw < oMy + Al 0 < (M +0) |2,

where M = |||¢]||. This implies the continuity of f at a. O

3GHA  RER f £ o € A BIDY > BRERRPIREIRBSEBIRERE - V - W UK r > 0 15
Vh e By(0,r), fla+h)=fa)+e(h)+ Ay e(h),

Hf limy0e(h) =0 BEE § >0 UK 0 < <rEF |le(h)|y, < S HR h e By (0,r) o FRE -
BME

Vh e By(0,7), |f(a+h) = f(a)llw < le®llw + [hlly o < (M +6)[Ally

Heh M = |||  E#6FM f 7£ o BOERME - O

Proposition 4.1.8: Let V, W be two normed vector spaces, A C 'V be an open subset, and f,g : A — W
be two differentiable functions at a € A. Then,

(1) f + g is differentiable at a, and d(f + g)o = dfy + dga,
(2) forevery A\ € K, \f is differentiable at a, and d(\f), = A d f,.
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Chapter 4 Differentials in normed vector spaces

Proof : Complete the proof by yourself using directly the definition in Definition 4.1.1. O

Proposition 4.1.9 (Chain rule) : Let V, W, X be normed K-vector spaces, A C V and B C W be two
open subsets. Consider two functions f : A CV — Wandg: B C W — X satisfying f(A) C B.
Suppose that f is differentiable at a € A and g is differentiable at f(a). Then,go f : ACV — X is
differentiable at a, and we have

d(go fla= dgf(a) odfs. (4.2)

Remark 4.1.10:If V =W = X = R, Eq. (4.2) becomes (g o f)'(a) = ¢'(f(a)) - f'(a), which is the chain
rule we have seen in the first-year calculus.

Proof : By the differentiability of f at a, we can write
fla+h) = f(a) +dfa(h) +o(||h]ly), whenh — 0.

When we compose with g and by the differentiability of g at b = f(a), we get

(go f)la+h)=g(f(a)+dfa(h) + o(|[h]l))
el Pt
= g(f(a)) + dgo(h) + o(||W'||},)-

Since df, € L.(V,W), by Theorem 3.2.12, we know that b/ = O(||h||;,). Similarly, due to the fact
that dg, € L.(W, X), we have

dge(h') = dgp o dfa(h) + dgs(o(lIhlly)) = dgs o dfa(h) + o(||Ally).
and the map dgy o d f, is linear and continuous being composition of such functions. In consequence,
(9o f)la+h) = (go f)a)+dgsodfa(h) +o(||hlly), whenh — 0.

implying that d(g o f), = dgp o d f. O

Corollary 4.1.11:Let f,g : A C V — R be differentiable at a € A, then the product fg is also
differentiable at a, and

d(fg)a = g(a) ~dfe + f(a) - dga-

Proof : It is a direct application of Proposition 4.1.9. Actually, let us consider the functions

p: A — R? v: R = R
v oo (fla)gla) (r,y) = zy°
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Then, the product fg is the composition x — (1) o )(x), and we have

d(px(h) = (dfx(h)vdga:(h))
oy (s hy) = Py + By,

Therefore, by composition, we find, for h — 0,

d(f9)a(h) = dipy(a) © dpa(h) = g(a) dfa(h) + f(a) dga(h)

4.1.2 Mean-value theorem

We recall from the first-year calculus that for a continuous and differentiable function f : I — R, where
I C R is an open interval, we have the mean-value theorem stated as below. For a,b € I with a < b, there
exists ¢ € (a,b) such that

f®) = fa) = f'(c)(b - a). (4.3)

In particular, if we know that supyc(q ) | f'(c)| < M, then [f(b) — f(a)| < M (b — a), which is known as
the mean-value inequality. Below, we are going to generalize the mean-value theorem and the mean-value
inequality to functions defined on an open subset of a normed vector space, with values in another normed
vector space.

Lemma 4.1.12: Let a < b be real numbers, and W be a normed vector space. Let f : [a,b] — W and
g : [a,b] — R be two continuous functions on [a, b] and differentiable on (a,b). If || ' (¢)|ly < ¢'(t) for
allt € (a,b), then || f(b) — f(a)lly < g(b) — g(a).

Proof : First, let us assume that || f'(¢)||,;, < ¢/(t) for all ¢ € (a,b). This means that,

A (LB N
R P L (C S0 [y O
= Vte(ab),y >tV eltyl, [f(z)-fO)lw <glz)—g) (4.4)
Let [, 5] C (a,b), and we want to show that
1£(B) = fle)llw < 9(B) — g(e). (4.5)
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5GHA 1 B0 BEFRER (|10l < o'(t) HIRFAE ¢ € (a,b) - EAKRE

Vt € (a,b), lim f(x)_{(t)H —g(x)_f(t) <0
pecd w T
= Vte (a,b),Iy >tV e (t,y), Hf :Eftf H (xx)_f(t)
= Vte(a,b),3y >t Ve eltyl, |f(z)—f®)lw <glz)—g(). (4.4)
S o, 8 € (a,b) » BPNEFEEA
1F(B) = fle)llw < 9(B) — g(e). (4.5)
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Chapter 4 Differentials in normed vector spaces

Let
I'={0 € (a, 0] : Vo € [0, 0], | f(2) = f(@)lw < g(z) — g(a)}.
It follows from Eq. (4.4) that I is nonempty. Let v = sup I', and we want to show that v = 3, which
will imply Eq. (4.5).
We prove by contradiction. Suppose that v < . Since f and g are continuous, we also have

1f(v) = f(@)lw < 9(7) — g(a). (4.6)

But from Eq. (4.4), we know that

€ (v, B,V € [v,0],  [If(@) = f(llw < g(x) —9(7). (4.7)

Then, it follows from Eq. (4.6) and Eq. (4.7) that there exists 6 € (-, (] such that

Vo e [v,0],  [If(x) = f@)lly < g(z) —g(a).

This shows that § € I', which is not possible because we assumed that § > ~ = supI'. Therefore,
Eq. (4.5) is true. Then, we may take & — @ and 8 — b in Eq. (4.5), and by continuity of f and g, we
also have [| f(b) — f(a)llyy < g(b) — g(a).

To conclude, we need to deal with the case with the original hypothesis || f'(t)[|;;; < ¢/(t) for all
t € (a,b). Fix e > 0, we may consider g.(t) = g(t) + et for t € [a,b]. Then, ||f'(¢)|ly, < gL(t) for
t € (a,b). We may apply the above arguments to obtain || f(b) — f(a)||y < g=(b) — g-(a). By taking
e — 0, we find the desired result. O

Theorem 4.1.13 (Mean-value inequality) : Let V' and W be two normed vector spaces, and A C V
be an open subset. Let f : A C V. — W be a function. Consider a,b € A such that the line segment
[a,b] C A. Suppose that

(a) f is continuous on [a, b],
(b) f is differentiable on (a,b),
(c) there exists M > 0 such that ||df.|| < M forc € (a,b).

Then,
1£(6) = fa)llw < M|[b—all . (4.8)

FHE MHEBZEMEPRIHMD

I'={0 € (o, p]: Vo € [a, 0], [ f(x) = f(@)]lw < g(x) = g(a)}-

RIERX @4) BRPONED 2IEEH - Sy = supl » NRFKMIBEHE 4 = 5> HFIFEESEE
I (4.5) °
BFERAREE - BE Yy < g BHR f ¢ HE2FEN > BftLEs

1f(v) = fl)llw < 9(7) —g(a). (4.6)
BRI (1.4) - TFIFE
36 € (v, B, Vr € [v,6],  [f(2) = F(Dllw < g(z) —g(7)- (4.7)
BE 1B (10) BB (17) BE—E » UEA=AFREFR  RFIFEEFE < (1, 0] 15
Vo € [v,0], [If(x) = f@)lly < g(@) — g(a).

EERMBE 6 e I EZA0TEER » AARKMAIEMRER 6 > v = supl ° FRAEFIFHITL (4.5)
AREEE TR @5 P BAEMUER o — o BE 5 — b B8 [ g FEEY - Mt ES
1£(6) = fla)llw < g(b) —g(a) °

RERBEMAREE  RFFMEERENBERZEREANEE ||/, < @) HRFABE ¢ € (a,b) °
BEec >0 BPTUERBRE g.(t) = g(t) + et HEF ¢ € [a,b] e BBEHR t € (a,0) » TME
If' ()]l < gh(t) o LFERRIFEERBRPIHESR ||£(0) — f(@)|lyy < 92(b) — g=(a) e B e — 0 » FAM
FRRMEEFANER - O

Proof : Let g : [0,1] — W be defined by g(t) = f(a + t(b — a)) for t € [0, 1]. Then, g is continuous
on [0, 1] and differentiable on (0, 1), with derivative

g/(t) = dfa+t(b7a) (b - CL), vt e (CL, b)
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Chapter 4 Differentials in normed vector spaces

Therefore,

gy < M||b—all, fort € (0,1). By Lemma 4.1.12, we find the desired result. O

Remark 4.1.14 : We note that here in general normed vector spaces (dimension larger or equal to 2), the
best result we can get is only an inequality, even when the operator norm of the differential is always equal
to M in the condition (c) of Theorem 4.1.13. We may consider for example the map

f: R — R?
t +— (cost,sint).

It is not hard to check that for every ¢ € R, we have df; = (—sint, cost) which satisfies [|df:|| = 1.
However, we have || f(0) — f(27)|| = 0 # 27 - 1.

Theorem 4.1.15 (Mean-value theorem) : Let V' be a normed vector space and W = R be an Euclidean
space, and A C 'V be an open subset. Consider a function f : A C V' — R" that is differentiable on A.
Leta,b € A such that [a,b] C A. Then, for any vector v € R", there exists ¢ € (a,b) such that

v-[f(b) = f(@)] = v-dfe(b - a). (4.9)

Proof : Let h = b — a. Since A is open and [a, a + h] C A, there exists 6 > 0 such that a + th € A for
t € (=0,1+9). Fixavectorv € R" and let g : (—d,1 + §) — R be defined by

g(t)=v- fla+th), Vte (—0,1+)9).
Then, f is differentiable on (—d, 1 4 §) and its derivative writes
g'(t) = v-dfarm(h).
By the classical one-dimensional mean-value theorem (Eq. (4.3)), we have
g(1) —g(0) = ¢'(t), forsomet e (0,1),

which is exactly Eq. (4.9). 0

4.1.3 Directional derivative

Definition 4.1.16 : Let a € A. We say that the directional derivative of f at a in the direction u € V
exists, denoted by f,(a), if the following limit exists

£ (@) — i £ )~ (@)

“ h—0 h

(4.10)
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24104 0 BVERD E—ROMERNSZEH (HEANER 2) - HFAEEINRIFERM
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BMTHBE - HRFE ¢ c R BIVE dfi = (-sint,cost) BEBR |dfi]| = 1 270 - BE
1£(0) = F2m)| =0#2m 1

EiE 4115 [HETHE] SV AREEEEM - W =R ARKZH > B A CV 2ERTF
ES - EZEBTEALUHMIRENf - ACV R B a,bec AFERF [a,b] C A FBE » HRER
[E v e R" > F7E c € (a,b) FF

v-[f(b) = f(a)] = v-dfe(b—a). (4.9)

BHA: Sh=0-ac- BHRAZBHEE Blo,a+h CA FES>0FFa+the AHR
te(=6,14+06) BEIEEEvcR" WS g: (—6,1+05) - R EHEM

g(t)=v- f(a+th), Vte (—0,1+9).
ARFE > f1E (—6,1+6) 2RI - BRI BM
g'(t) = v dfaren(h).
BE—HEEEE (X @3) » BMER
g(1) — g(0) = ¢'(t), HREM¢ < (0,1),

EIEFHeE (4.9) ° 0

BZE BREH

EFEA41.16 : Tac AURMAEB uwe V- IR TEMWRERE

h—0 h

(4.10)

)
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Chapter 4 Differentials in normed vector spaces

Proposition 4.1.17 : If f is differentiable at a, then its directional derivative at a in any directionu € V/
is well defined, and we have f(a) = df,(u) = Df(a)(u).

Remark 4.1.18 : We note that if the directional derivative of f at a in any direction exists, it does not
necessarily imply that f is differentiable at a. Actually, even the continuity at a does not hold in general. We
may consider f : R?> — R defined by

Coifr£0
x, — x ) b
f@y) {y, ifz =0.

Then, f is not continuous at (0, 0) because for example,
lim /2, v/7) =1 £0 = f(0,0).

However, for any u = (a,b) € R?, the direction derivative of f at (0, 0) in the direction u exists,

£(0,0) = lim

f(h(a7b))_f(070)_ %7 ifa7é0,
h b, ifa=0.

Below, let us take V' = R" to be the n-dimensional Euclidean space, with the canonical basis given by

(é1,...,en). Let A be an open subsetof V,and f : A — W.

Definition 4.1.19 : For 1 < ¢ < n, if the directional derivative of f at a in the direction e; exists, we
say that its partial derivative at a with rerspect to the i-th coordinate exists and define

of
axi (a)

= fe,(a) (4.11)

Remark 4.1.20:

(1) Following Remark 4.1.18, it is possible that all the partial derivatives of f at a exist without f being
differentiable or continuous at a.

2) If A C R™ — Ris differentiable at a € A, then all the partial derivatives at a exist, and
= p
n
— 0

where (dz; = €])1<i<n is the dual basis in (R")* = L(R", R) of the canonical basis (e;)1<i<n of R”,
that is

a)dz;, grad f= Z a)e;,

dxi(ej) = 6;-'((6j> = (51'73', V1 < ’i,j <n.
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BIBRAPIER £ 7E o M u BOJTIFEINTETE » S20E £ (a) °

R 4.1.17 : R [ 1F o A > BREMTE o« BBEEEAM v e V MO ERRE - BRME
fula) = dfa(u) = Df(a)(u) °

EfF 4118 @ BFUEER) > R [ £ o HRNERF AN AREHEEFT  BF—ERRE fEa B
BBy s BIELE > WA UEETE o TEE - RFITUERE f: R? - R EHEM

BAE - £ 7E (0,0) FEME - BBRME
lim f(z,v/z) = 140 = f(0,0).
SR » SHPMERE u = (a,b) € R » f 7E (0,0) SHEAT u M9 EIEEIF -

f/ (O O) — lim f(h(a; b)) — f(0,0) _ %, g a 7& 0’
o " b7 Ha=

BETR HMEV =R" & n HENEUKZR » MBZERERE (e1,...,en) ° D ABV HRAF
EG URf:A>Wo

EE4119 I HR1<i<n R fE o WEFE ¢; NABEEHEFTE » BIFRMIRME o BHR
5 i (BERNRM D ?‘T‘ BE®
of
81"2-

(a) = f!,(a) (4.11)

¥R 4.1.20 :

(1) E25EAE 4.1.18 AR BIAVARLL - FFIRESOIRE] f E1FMTE « FTBRMAEFE B f o F =2
Al EERTEER ©

(2 IR f: ACR" - RTE a € AT BBEMPAIETE o RMSD EFE - BERMB
- 8
E:
1
HAP (dz; = €])1<icn = (R")* = L(R™,R) B 1HHFER R" PIRERE (¢)1<icn NHBEE
I

a) dwz;,

a)e;,

d:ni(ej) = e;‘(ej) = 5i,j7 V1 < ’i,j <n.
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Chapter 4 Differentials in normed vector spaces

In particular, we have

zn: grad f)-h (4.12)
— 0
Theorem 4.1.21: Let f : A C R"™ — W. Suppose that
(a) all the partial derivatives of f exist on A,
(b) the partial derivatives are continuous at a.
Then, f is differentiable at a with
En: a)dz;. (4.13)
— 0

Remark 4.1.22 : We recall that D f(a) is a linear map from R” to W. For each 1 < i < n, the partial
derivative g—:gi (a) is a vector in W, dz; is a linear form on R", that is a linear (continuous) function from R"
to R. If we evaluate Eq. (4.13) at u € R", the left-hand side gives us D f(a)(u) € W, and each term on the
right-hand side gives us a scalar dz;(u) = u; € R, multiplied by the vector g—g{i(a) eWw.

Proof : We equip R” with the norm ||z| = >"i*; |z;|. Let
g: A — w

roe @)= Y.

=1

We want to show that when © — a, we have g(z) — g(a) = o(||z — a||).
Let € > 0. The continuity in assumption (b) guarantees that there exists 7 > 0 such that for 1 <7 <

n, we have 5 of of
g
3%(95)HW ‘3%( ) 3%( )

Since A is an open set, by choosing a smaller 7 > 0, we may assume that B(a,r) C A.
For z € B(a,r), we consider the following points

<e. (4.14)
w

Ve € AN B(a,r), ‘

yOZ(a17"'aan):a7

yp = (1, .+, Tp, Qfa1y- -y an), VE=1,...,n.

We note that yg = a, ¥, = z, and the intermediate y;,’s are obtained by replacing coordinates of a by
those of = one by one. For 1 < k < n, define

gr - [ak,xk] — %74
t = og(T1, . 1, t Ay, e, Q).
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D@m= 2L (@hi = (arad, f) b (@12

EE4121 S ACR 5> W BR
(a) £ A L f FREBRMRMAFTE ;
(b) FTERMATE o 48

ABE - f 7 o AISH - BFHFIE

i 4.1
Z 8% a)dx; (4.13)

5B 4.1.22 ¢ RFIEFIREE—K 5548 Df (o) BEN R BEE W HRERE - HREME 1 <i <
n o RS 2L (o) RIEE W RHAEE > do; ZEE R LHSEZE - HRER > REH R BHE
RSN GEME) R - (IRFHER (4.13) BUBETE u e R » EFBERRMADf(a)(v) e W HE
B S ERREFME doi(u) = v e R REAE L(a) e W o

= PIE R EERFEE (2| = X0 x| o B
g: A — w
x = f(x le 61’1

HFIBEER B v — o K 3B g(2) — g(a) = o(lz —a|)
Te> 00 (b) PRNEEENBRERSHFRMAFE > 0 EEHRAE 1 <i<n HME

ggi v HW ‘§i< ) - gi( )H <e. (4.14)

w

Vz € AN B(a,r), ‘

R A 2ERE - BMATLCEZEE/ NN » > 0 UEWRE Bla,r) C Ao
B/ x € Bla,r)  HMERTEHIEL

yOZ(CLl’---;an):%

Y = (X1, Ty A1, - -+, 0n), YVE=1,...,n.

HFVERER yo = a, yn = 2 » BEREBE 4, BHBEBIE o PRER - —BIRS « NERRE
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Chapter 4 Differentials in normed vector spaces

The derivative of g; writes

dg

Dy (xla ces 1,1 Ay, - 7an)7

gr(t) =
and it follows from Eq. (4.14) that ||g;.(¢)|,;; < € on [ag, z}]. Therefore, it follows from Lemma 4.1.12
that
g (xr) = gr(ar)llw < elzr — axl.

Since gi(ak) = g(yr-1) and g (x) = g(yk), we get

n

> l9(yk) — 9(yk—1)] ’ Z 9(e—1)llw
k=1 k=1

n
<e) lop—al =elz—al.

k=1

lg(x) = g(a)llw =

Thus, we have obtained
Vo € B(a,r), |g(x)—gla)ly <ellz—all.

Or equivalently, g(z) — g(a) = o(||z — a|). O

Remark 4.1.23 : Note that the converse of Theorem 4.1.21 is false. We have functions which are differ-
entiable whose partial derivatives need not to be continuous. For example, consider the classical example
f : R — R defined by

22 sin(L if z
f(x):{ S (x)’ f #07

0, ifz =0.

We can compute the derivative of f at 0 as below,

7/(0) = lim F) = 10) _ lim A sin(3) = 0.

h—0 h h—0

However, the derivative of f at x # 0 writes
f(z) = 2zsin(L) — cos(1).

And clearly, the f’ is not continuous at 0.
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R -BWRI<k<n E&R

gk 1 lag,xr] — W
t =gz, 1, t A, e, Gp).
BRER g FVEEE M
dg
/
t T1,...,Tk_1,t,a e, Q
gk() 8l'k( 1, s bk—1y 0y Uk+1, ) n)v

BRIRIC (4.14) - FPIFHIE [ar, 2] £ FFIB |lg,(0)]l,, < e o B - E51E 4112 » FKIT

F)
lgr(zxk) — gr(ar)lw < el — akl.

B gr(ar) = g(yk—1) B gr(zr) = g(yi) * HME

> lg(yk) —g(yk_l)]| Z 9(e-1)llw
k=1 k=1

n
<ed lwp—apl =ellz—all.
P

lg(x) = g(a)llw =

Fit - FAFISE
Vo e Bla,r), |lg(z) —g(a)lly <ellz—all.

EER T TUEERE 9(2) — g(a) = of|lz — al]) - .

% 4123 1 FRIIEE 4121 YR ERERN - AT URE AT MR - BRI BT EE
B9 o BN - EE TEEESEES f: R - R E&RM

FFIRTLAGTER £ 7£ 0 B99 -

iy _ i f(h) — £(0) _
f1(0) = }llli)l%)f = }llli%hsm(%) = 0.

AT f 1 = # 0 I B

[=

f/(z) = 2zsin(2) — cos(2).

BEIAMY » T ERER /1 7E 0 EBHE -
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Chapter 4 Differentials in normed vector spaces

4.1.4 Jacobian matrix

We look at the special case where our normed vector spaces are taken to be Euclidean spaces, that is
V = R" and W = R™ for some n,m > 1. Let (vi,...,v,) be the canonical basis of V' = R”" and
(w1, ..., wy) be the canonical basis of W = R™. Let A C R”" be an open subset and f : A — R™
be a differentiable function at @ € A. Since df, € L.(R",R™), it can also be represented by an m x n
real-valued matrix using the canonical bases, that is, with matrix coefficients given by

dfa(vj)-wi, 1<Z<m,1<]<n

Definition 4.1.24 : The Jacobian matrix of f at a is the matrix J¢(a) € My, »(R), given by

o) = [ @),

1<j<n

where f; = Proj,o ffor1 <i<mand f = >, fiw;. When m = n, the Jacobian matrix is a square
matrix, and we call its determmant det(J¢(a)) the Jacobian determinant or simply the Jacobian.

Remark 4.1.25 : We note that the i-th row of the Jacobian matrix J¢(a) is the gradient of f;, that is

— ax'(a)vj’ or (grada fl)vl7'..7vn <8.%' ( )) . .
=1 Y J 1<j<n

We may also write the differential of f at a as follows, using Eq. (4.12), we find, for all » € R", that

—
grad, f; =
J

=Y Dfila)(hyw; = 3" [(grad, f;) - h]w.
i=1 i=1

This is exactly the matrix multiplication between J¢(a) and h, where the vector h is represented in the
canonical basis (v1,...,v,) asan n x 1 column matrix, and the resulting matrix is an m x 1 matrix, which

is Df(a)(h) represented in the canonical basis (w1, . .., wy,) of R™.

Proposition 4.1.26 (Composition and Jacobian matrices) : Let m,n,k > 1 and A C R™, B C R"
be two open subsets. Let f : A — R™ and g : R® — R* be such that f(A) C B. Suppose that f is
differentiable at a and g is differentiable at f(a). For 1 < ¢ < n, we also write f; = Proj, o f to be the
i-th coordinate of the function f. Then, the functionh = go f : A — RF is differentiable at a and its
Jacobian matrix writes

Jn(a) = Jy(f(a)) - Jy(a).

Alternatively, we may also write, for1 < j < m,

oh afi . dg
e (@) = g 52 @5, @)
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SEMM/NES Jacobi ¥E[E

HMIE BRI E’J'I‘%iﬂ IBERANRERNETHBHHREKEL WV =R B W =R" #
REER n,m>1°9 (v,...,0,) BV =R WIZEEE ' (w1,...,w,) B W =R FIZERE -
& ACR® %F‘;ﬁ?%ﬁ UF f: A= R"BEac AMBIRE - BR df, € L(R",R™) » G1RIB
HBEEZERERES MBI UE—E m x n BERENERKRRERT  RAER - EEERENRED 5
2

dfe(vj) - w;, 1<i<m,1<j<n.

EFE41.24 © f7E a B9 Jacobi FFHZFERE J;(a) € My, ,(R) » BAH

o) = [ ).,

1<j<n

He¥mt 1 <m > FHMIEE fi = Proj, o f» FRABE f =37, fiw; ° & m = n Kf > Jacobi B
@E@Hﬂ/fﬁ@ BIHEMEYITFIIC det(J(a)) #8243 Jacobi 175 » TZE Jacobian °

5% 4.1.25 @ EFVEREF > Jacobi 2B Js(a) i 5 > BF

afz 5 — ) afz
T (a)vj, Bk (grada fz)vl,..., . (895]( ))KKH.
EAIL (4.12) - AL EILGE f £ o« D EFHNE - BREE L c R HMIEE
=Y Dfi(a)(hyw; = Y [(grad, ;) - hws.
=1 i=1

TS ERISF PR RERE Jf(a) B2 h ZEIRVTRAR - HPRE h FJLURERE (v1,...,0,) > BRn x 18
177EfE - MRBRF[ENEREGREME m x 1 ERE - G Df(a)(h) BER™ WRERE (w1,...,wn)
RS EIRY o

R f; BUE - RIS

—> n
grad, f; =
j:

4.1.26 [EFEREE Jacobi FEFE] : S m,n, k> 1 UK A CR™ M B C R" ARMERTFE
BB AR URg:R* > RFER fF(A)CB-BER fEa®M > BgTE f(a) A - ¥
R1<i<n HFHB f; = Proj; o f ECIERIER f BIZE i {EIEEAZ o BRRE » KB h =gof: A > RF
a AI » B B9 Jacobi XEFEES

Jn(a) = Jy(f(a)) - Jy(a).
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Chapter 4 Differentials in normed vector spaces

Proof : It is a direct consequence of Proposition 4.1.9 written in terms of the Jacobian matrices defined
in Definition 4.1.24. O

Example 4.1.27 :Let f : R? — R be a C! function. Consider the map

0: RygxR — R?
(r,0) +— (rcos6,rsin).

Then, the composition ' = f o ¢ is a C! function, and can be seen as the function f written in the
polor coordinates. We have

Jp(r,0) = Jy(rcosf,rsinf)J,(r,0)

9p1 Op1 '
& ((97F @):(ﬁ ﬁ) or 00 :(% W)(COS@ —r51n9>'
or 00 oxr Oy % % dr Oy sin@ rcos6
or 00
In other words,
O _ cosp2E OO g OF _ gy g9F | conbOF
o Vor T v o0 M oy T ar T 90

4.2 Higher-order derivatives

In this subsection, we will focus on the case of finite dimensional vector spaces. However, we will still
mention a generalization of higher-order differentials to general normed vector spaces in Section 4.2.3.

4.2.1 Schwarz theorem

Let A be an open subset of R™ and f : A — W be a function. Let p > 1 be an integer, and 1 < 41,...,7, <
n. We may define the partial derivative of order p by induction, under the assumption of existence,

oPf 0 ( or—Lf )

8xip e 8@1 8561';7 89:ip_1 ce 8a:i1

We say that f is of class C? if all its partial derivatives up to order p exist and are continuous on A.
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HEEER - BB 1 <j <m > HFIBRESNR

(,fgf;(a) =3 %) 99 4ay).

= a
i1 awj 8y,

EH I ERAMEAME 419 FIMNEERR  AMFTELEENMARAERRTHE
£ 4.1.24 ¥ Jacobi XEFEENH] o O

g8l 4127 1 © f:R? - RBCENRE - R THEHRS

©: RygxR — R?
(r,0) +— (rcos6,rsind).

EERRIBERT ERREF = fop Z2fE C' FHRE - BRMUKIEARE f ERERPHIRT
o - B

Jr(r,0) = Jy(rcosf,rsinb)J,(r,6)

91 Opr
N (aj iF):(fo ﬁ) or 00 :(ai af)<cose —rsm€>.
or 06 oxr Oy By Dy or Oy sinf rcosf
or 00
Y aEEER
of 87F_sin087F 8i_, 8j cos987}7
e 0 e B oG, Tl g

BIE SRS
NPT > RAEEIEEREERRERMER « AT > BETES 123 /)\BF » RFAGRE
R M TE— AR B R 2R FRBHERE -

$E—/EJ Schwarz EIE

RABR'WREFREG B/ A WREH - Dp> 1 REBH - B1<iy,... i <n e EFEE
BRZ T - BAEMESBEES RRES p R

oPf 0 ( oP—Lf )

al'ip e axil 81‘7;17 al'ip_l e 8:01-1

NR f A —HE p BEREHEFERT A LEE - BT f 2 CP |y -
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Chapter 4 Differentials in normed vector spaces

Theorem 4.2.1 (Schwarz theorem) : Let f : A C R? — R be a function, where A C R? is an open
subset. Suppose that the partial derivative
0% f 0% f
and
0xdy oyox

exist on A, and are continuous at a € A. Then,

Pf | of
axﬁy(a) N 8y8x(a)'

(4.15)

Remark 4.2.2 : It follows from the above theorem that, under the assumption of existence and continuity,
the order of partial derivative does not count.

Example 4.2.3 : This example is due to Peano. Consider the function f : R? — R defined by

JayIs i () £ (0,0),
f(x’y)_{o () = (0,0).

On one hand,
2 A2y ot .
of . |HEREL)if (2,y) # (0,0),
7($,y) - ( v
Ox 0 if (z,y) = (0,0).

Therefore, %(0, y) = —y fory € R, giving us

0% f
oyox

(0,0) = —1.
On the other hand,

z(zt—4x2y?—y? .
8ﬁxw_{(uu%ﬂ)lﬂmw#®ﬂ%
oy~ 0 i
Therefore, g—i(x, 0) = z for x € R, giving us

0% f
0zxdy

(0,0) = 1.

Actually, one can easily check that, the second partial derivatives are not continuous. In fact, for
(z,y) # (0,0), we have

o2 f @.q) = 26 4+ 904y? — 9x2yt — o8
Oyox V7= (22 +y?)3 ’
which gives
% 0%
lim m(x,()) =1, and il_rg% ay&r(o’y) = -1

You may also see this discontinuity using an antisymmetry argument, without doing computations.
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EIE 421 [Schwarz EE] ! 9 f: ACR? - RARE » Hh A C R? 2ERTFES - RK
(=lpCas

O%f o2 f

0xdy H oyox
TALEE Bffac AEE - BE - BB

0% f ) = 0% f )
Oxdy @ = 8y8x(a i

(4.15)

AR 422 @ R EMEERFIEN - EEEMNEEENERRZT  RUINIEFLEAZE -

§8f 4.2.3 : ;SR H Peano IRHHIGIF - EEEE [ : R? - R TEM

2y2

Fag) = LY B @) £ 0.0)
o % (r,9) = (0,0)
—HE - RV
0F (. — L TR B @) £ 0.0)
0: " o # (z,y) = (0,0).

PRI y € R - EAFI183I 2L(0,y) = —y » LEEHEFRM

0% f B
m(0,0) = 1.
S BfE
0F o) ) (a,y) # (0,0),
gy~ 0 % (x.y) = (0,0).

FRAHTS 2 € R » FFISE %gj(x, 0) = z » M B &R

ggy(o, 0)=1.
BE L HATHERE - IR ZREESAERE - R (2,y) # (0,0) - HfIE
O f 28+ 9aty? — 9%y — yf
By =Y = (22 + y2)? ’
EgaRAM
lim %;{E(x,O) =1 MR lm aayzﬂ(o,y) =1

BRIBIB : 20244 12 H 10 H 15:55



Chapter 4 Differentials in normed vector spaces

Proof : Without loss of generality, we may assume that a = (0,0) € A. Let h,k > 0 such that
[0,h] x [0,k] C A and

Consider the function ¢ defined by

¢: [0,h] — R
x = f(x,k)— f(z,0).

Then, §(h, k) = ¢(h) — ¢(0). Since ¢ is continuous on [0, 4] and differentiable on (0, h), it follows
from the mean-value inequality on R (Eq. (4.3)) that there exists t; € (0, 1) such that
5(h, k) = hy' (t1h) = h[gf (t1h, k) — gf

X xr

(t1h, 0)} .

The function y +— %(tl h,y) is continuous on [0, 1] and differentiable on (0, 1), it follows again from
the mean-value inequality that there exists to € (0, 1) such that

O(h,k) = hk 't (t1h, tak) (4.16)
) - 83/8% 174, L2V ). .
If we consider the function v defined by
v [0k] — R

Y = f(h,y)—f(O,y)

and follow the same steps as above, we may find t3,%4 € (0, 1) such that

o2 f
8(h,k) = hk 5=

oy

(tsh,tak). (4.17)

By putting Eq. (4.16) and Eq. (4.17) together and taking h, k — 0, the continuity of the partial deriva-
tives at (0, 0) implies that they are equal at (0, 0). O

Corollary 4.2.4: Let f : A CR"™ — R™ be a function, where A C R™ is an open subset. Suppose that
f is of class CP, then the partial derivatives up to order p do not depend on the order in which we take the
derivative. Therefore, we may simply write these derivatives in the following form,

ok f

FYR R where i1+ - +inp =k < p.
... 0y

Last modified: 15:55 on Tuesday 10" December, 2024

14

FNE MEE[MPHMD

IBEREMEE - M T ERRETEENRIR - RRE TSR -

$ERE R BFIRTUMERER o = (0,0) € Ao B hk > 0 [0,h] x [0,k] CA B

ERERE o EEM
¢: [0,h] — R
x = f(z, k) — f(z,0).
BREE 6(h, k) = @(h) — ©(0) e AR ¢ 7E [0, ] L3ERE - B7E (0,h) LAI# » 1B R ERHEFRE
(X 43)  EFEH €(0,1) T

5(h, k) = hy' (t1h) = h[g‘i(tlh, k) — gi(tlh,oﬂ.
R y — 9 (t1h,y) fE[0,1] LEFE - B (0,1) LA - BREAHEFSEN - BABGMEE
ty € (0,1) E1F
o2 f
(k) = Bl o (t1h k). (4.16)

INRFFIZRRE  EHEM

v [0,k — R
y = flhy) = f(0,y)

W BFAE FEMERNT R - IR 3,14 € (0,1) F1F
82 f

O(h, k) = b5 (tsh tak) (4.17)
B (4.16) BAR (4.17) MIE—HE > WHAE A,k — 0 IBBRMSDTE (0,0) BOEEMS - P
EMFITE (0,0) 2EFR - a

RiF424 I HfFACR" - R"ARY - HP A CR" 2ERFES - BRER f =& C° 1Y >
BBEFRE—EE p BREEEREURR MO NIER © Bt - FHPIRTLUEELRM D =R T
o

6kf

1 --- n
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Chapter 4 Differentials in normed vector spaces

4.2.2 Hessian matrix

Definition 4.2.5:Let f : A C R” — R be a function, where A C R" is an open subset. Suppose
that all the second order partial derivatives of f exist at a € A. Then, the Hessian matrix of f at a is
defined by
0’ f
H = . 4.18
@) = g (4.15)

1<i,j<n

If the second derivatives are continuous at a, then Schwarz theorem (Theorem 4.2.1) implies that the
Hessian matrix is symmetric at a.

Below, we will always consider a function f whose second order derivatives are continuous, so that its
Hessian matrix is symmetric.

Proposition 4.2.6 : Under the same assumption as in Definition 4.2.5, we have

Hy(a) = Jy(grad f(a))”.

Proof : It is a direct consequence by applying the definition of the Jacobian matrix to the gradient
vector. ]

When we study the local behavior of a function f : A C R"™ — R with some good assumptions (continuity
of all the second derivatives), the Hessian matrix is symmetric and defines a quadratic form (ZZXAY). The
property of this quadratic form at a critical point can tell us whether this critical point is a local maximum,
a local minimum, or a saddle point (%#f). See Section 4.3.2 and Section 4.3.3 for more details.

4.2.3 Higher-order differentials

Given a function f : A C V — W betweeen an open subset A of a normed vector space V' and another
normed vector space W, we defined its differential at a point @ € A in Definition 4.1.1, and its differential
map D f in Definition 4.1.3, under the condition that these notions exist. We may define its higher-order
differentials by differentiating the differential map Df : A — L.(V,W).

From Definition 4.1.1, we know that the differential of D f should take its values in L.(V, L.(V,W)),
which may be identified as the space £2(V x V, W), the space of continuous bilinear maps from V' x V to
W, via the following map

LV, L(V,W)) = L2V x V,W)
o L Jvxv oW
(x,y) = @(@)(y)

Similarly, the differential of order p > 1 takes values in the space L2(VP, W), which is the space of continuous
p-linear maps.
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$E /Bl Hessian JEPE

EE425 . D ACR' - RARE - HEH ACR" REBRFES - BRK f T ac AFIEN
PSS EESTELE o BBEE ¢ f 1E o BY Hessian B LAE FE M

2
(o) = | o=@

INR —PEEHE o #ZEMER » 1B9% Schwarz EIE (F¥E 4.2.1) - FHIXIE Hessian FEFETE o
=B o

} . (4.18)
1<i,j<n

BTR  BfIZERIRE f B mE —FEEEEERRER » FTLAfRY Hessian FEfE & 2 ¥IHERT

iRl 4.2.6 @ EAES 425 HEINRERZT » M\

Hy(a) = Jy(grad f(a))”.

FGHA 1 E R AT U EEEBIL Jacobi FEEMER * AEMERE LFAIFREIN - O

EFNEBRERT (CREHAERY) - ERMSHEE f: A CR" - RHNBHEITAE - aJUFE
F8 Hessian B[RV T84 - S4smAMETE & H R B! (quadratic form) B4 E - EREVIZRER » —
REFHRAKNEE > IUEHFRAMEEEREAMGERTRAE  BEm/IVE  BEEERES (saddle
point) © FMEREME 432 /NERBE 433 /NEEEEZEHHM ©

BZE BRMS

R —EREEZRE V PRIFRSE A M ES —ERSEZE W KRB f - ACV - W £FER
BRERT » BRFIEER 411 ERTMER o € AR > BEEER 413 FER T A2 BRE
Df o tNRFFHBWMDIRES Df : A — L(V, W) 5 - BIRFIETLUER SRS

ER 4.1.1 » FHFIE Df IS FEXRBUETE LV, L(V,W)) F - TE B ZE A 2 5] LAF B
V x V B W BEEERMEIRET PR RIZER £2(V x V, W) o FAFIRT LA T3 BRETE HEEEFE

L(V,L(V,WV)) — L2V x VW

)
{VXV—> W
d —

(z,y) = @(z)(y)

RO p > 1 EEREEETEZR C2(Ve, W) B - A UEERER p RIERIFIEARIZER -
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Chapter 4 Differentials in normed vector spaces

Definition 4.2.7 : We define the higher-order differentials of f recursively.

« For p > 1, we say that f is differentiable p + 1 times at a € A if its p-th differential DPf : A —
LE(VP W) is well defined, and writes

DPf(a+ hpia)(ha, .o hp) = DPf(a)(by, - hp) + pra(ha, - by, hppn) + o([lhpeally)

when hyi1 — 0, uniformly for (hq,...,h,) in a bounded set of VP, for some ¢,11 €
LA (VP W), If such a map 41 exists, it is unique, and is called the (p + 1)-th differential
of f at a, denoted by DP*! f(a).

« For p > 1, we say that f is of class C? if DP f is well defined on A and is continuous on A.

Remark 4.2.8 :Letustake V = R”, W = R, and A C V be an open subset. Consider a C! function
f + A — W and suppose that its second partial derivatives exist. Fix a € A, and take ¢ > 0 such that
B(a,e) C A. Then, for hs € B(0, ), we have

n n 2
=2 [§i< )+ 325;1, ()ha5 + o[ haly)| ds(hr)

a)hi + o([[hzlly) O(l[Pally)-

Similar relations between higher-order differentials and higher-order derivatives exist as well. We do not
discuss more here since this is not the main goal of this class.

In the following section, we will keep the same setting, thatis V' = R™ and W = R, and look at the Taylor

formulas of a function f : A — W, where A C V is an open subset. In this case, we will only need the
higher-order differentials D? f evaluated at (h, ..., h).
————

p times

4.3 Local behavior of real-valued functions
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EE4.2.7 @ BAILGEBELARKES f WEREMD -
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F ppr1 € LEFL(VPHL W) BREME

DPf(a+ hpy1)(ha, ... hy) = DPf(a)(hi,..., hy) + @pg1(ha, .. by, hpyr) 4+ o] hpsilly,)

HERAETAER VP RERE (hy,...,h,) RSN - BIBMIR £ 7 0 € A AL
W5 p+ 1 R o MREREHMET o, 71 + BICERAE—09 + FBIE £ 75 o B0 (p+ 1) PR
S+ 8AF DV f(a) o

cHRp> 1 WRDrfE A LERRIFEERE - AIFFIRR f 2 CP 1ERY -

428 P WRBMPWNV =R" " W=R " UK ACV ABRFES - ZEC R f: AW
FRERM P ETEIE o B o € A WE e > 0 18 B(a,e) C A © FBEE » B hy € B(0,¢) » TME

ng a+h2 dﬂfz(hl)

Df(a+ h2)(h
1 9%

n
1=

Z {8377, + Z 3%8% (a)hQ,j + 0<Hh2HV)] dxz(hl)

i=1
Z hzj 8x]

i=1j5=1
WA D2f(a) B Hessian H,(a) $HE CEIE) SSMTR - TR
hl,hg — ZZhQﬂa
i=17=1

NIREEMTRSEEHRCE  BfIEEELUNRAGRI - BEERAFRSHIRS - IREREER
E%EI’\JEE’\J °

.

||
&H
+
M: T

a)hyi + of[lh2[ly) O(l[hally)-

Bt

{ail

hlz—thf( a)hy.

ETENNE  BMEEEHEBNER UMV =R'UERW =R EZEFTEEHRFE
BACV ERE f: A - WHNRBERK EEABRRP > RAMRFTESHEMS Drf RVETE
(h,...,h) BYIES ©
——

p &

B BRHNELMEE
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Chapter 4 Differentials in normed vector spaces

In this section, we are interested in real-valued functions and their local behaviors.

4.3.1 Taylor formulas

Let p > 1 be an integer. We recall that for a C? function f : I — R, where I C R is an open interval, we
have the following Taylor formulas. Let x € I and h € R be such that z + h € I.

BP
Taylor-Lagrange f(x + h) )+ Z £ ( f(p)(c)—' for some ¢ € (xz,x + h).
p!
. () (Lt )
Taylor integral  f(z + h) )+ Z f — + / P)(x + th)dt.
Taylor-Young f(x + h) )+ Z (2 + o(|h|?) when h — 0.

Below, we are going to generalize these formulas to real-valued functions defined on a subset of a higher
dimensional Euclidean space R".

Let A be an open subset of R”, f : A — R be a function of class C” withp > 1,and a € A. We have already
defined the differential d f,, of f at a in Definition 4.1.1, and we gave the relation between the differential and
the directional derivative f;,(a) in Proposition 4.1.17. Moreover, it follows from Theorem 4.1.21 that this can
also be expressed using partial derivatives of f at a. Below, we are going to define higher-order directional
derivatives of f.

We will see that the Taylor formulas in higher dimensions are not too much different from their one-
dimensional counterparts, due to the fact that when we restrict the function f on a segment [z, x + h], we
are actually studying a function defined on a one-dimensional subspace.

Definition 4.3.1: For 1 < m < p, we may define the mth derivative of f at a in the direction u € R"
as follows,

E: § (@)ui, - .. Ui, (4.19)
833 6$
i im * 11

11=1

= Z m! ,amf . (a)u{l. Ll (4.20)

i ! .| J1 In
Jrdepjn=m J1 e In Ox' ... 0xy

where the equality is a direct consequence of Theorem 4.2.1.

Theorem 4.3.2 (Taylor-Lagrange formula) : Let x € A and h € R" such that [z, x + h] C A. Then,
there exists t € (0, 1) such that

p=1 ¢(m) (p)
f@+h)=f)+ Y I '(x) LI Etth) (4.21)

m! p!
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EEEEET  HAIEHRERBBBEITS °

$E—INEl Taylor BRI

> 1 AEH - HMEEHER cr EHNRE f: 1 - R HP 1 CR SERERF - ZHMEETEHN
Taylor)ﬁﬁaﬁft cHrelARhMeRERFe+heleo

P
Taylor-Lagrange f(z + h) )+ Z Fim + /@ (C)Z' HWREM@ c e (v,2 +h).
hm 1 (1 o t)p—l
Taylor integral f(x + h + Z f p Wf(p) (.T,' + th) dt
0 —1)!
Taylor-Young f(xz + h) )+ Z Fim +o(|h|P) B h — 0.

ETR - RIgEELERATNHMEIERESHERKZER R ERERE -

TABR PHNEAFES [ A-RBECERE Hbp> 1 EBHaoc A TEZ411H
BRAERKERE f £ o D df, > MBTEE 4.1.17 5> FFABEE THSRAGEMS [ (o) ZHE
BURAERTV o LbSY - WETEIE 4.1.21 IS - EHEERER f 7E o BRMD KEAE - TR - RFIEES
[ EEEAEMS

HFIEED  SHENZYRFAALMA—MIRAREREZERK  BAERFHERE f REE
WRER [z, 4+ h] LEE - ZFIEEE—EET =R LRIRE -

EE4A431 I BR1I<m<p BIE fE o BESME v e R* B m BEMD EERM

T = im * i1

i1=1

- ¥ m! R (a)ud* ... ulr, (4.20)

i1 i J1 JIn
e e gnl o) O

HWEA R UHREE 4.2.1 HESIRY -

EIE 4.3.2 [Taylor-Lagrange BFATR] : S rxc AUKR h e R* 815 [z,2 + h] C A - BBEFTE
t€(0,1) 518

p—1 ¢(m) (p)
flz) + Z fn (@) 1 In ($+th)_

flx+h)= - |

(4.21)

m=1
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Chapter 4 Differentials in normed vector spaces

Proof: Since Aisopenand [z, x+h] C A, there exists § > 0 such thatz+th € Aforallt € (—0,1+0)
Letg: (—0,1 4 ¢) — R be defined by

g(t) = f(z +1th), Vte (=814 35).

(4.22)
We note that g is still a function of class C? being composition of such functions. We also have f(
h) — f(z) = g(1) — g(0).

(0). Let us apply the classical Taylor formula to g, that is

U5 a0 g0
- !
m=1 m:

for some ¢t € (0, 1).
p!

We may explicit the derivatives of g as below using the chain rule (Proposition 4.1.9). Fort € (-4, 149)
we have

g'(t) = dferm(h) = Z gxf (z + th)h; = fi,(z + th),

(x + thhih; = [ (x + th).
mj ox;
And by induction, we easily find that

g™ () = £ (x + th),

and ¢(™(0) = f}(lm)(x), Ym > 1.
This allows us to conclude.

0

Using the same technique by setting the function g as in Eq. (4.22) and the other one-dimensional Taylor
formulas, we easily deduce the following results

Theorem 4.3.3 (Taylor formula with integral remainder) : Letx € A and h € R" such that [z, x+h]
A. Then,

_ t)p—1
Fx+h) = +th (@) Alwf,gp)(x—kth)dt.

(4.23)
Proof : See Exercise 4.19. O
Theorem 4.3.4 (Taylor-Young formula) : Let = € A. Then, for h — 0, we have

fh ( ) P
flz+h) Z o(|hP). (4.24)

FNE EZTEEPIMD
B AN ARHER 2,2+ CA BFES>0FEFS e +the ABRABEt € (=6,1+6)°
Sg:(—6,1+6) = REEM

g(t) = f(z +th),

Vi e (=0,1+40). (4.22)
BMERER » ¢ B0 P WRE - AMEE
g(1) —g(0) °

RENER > THFIBLESE f(z+h) — f(2)
HFIRTLUE—HERY Taylor BRI ¢ £ LRLER

p=l gy (m) (»)
g(1) —g(0)= 37 m,(o) + g;,(t) HWIRFEME < (0,1).
= ml !

ZEBHEHEE (A 41.9) - BFIATLUE ¢ DB TR - Bt € (—6,1+6) » FfIB

g'(t) = dfeyn(h Z

1

g =>> 82f (z + th)h;hj = (2)(a:—|—th)

o O0x;0x;

P (z +th),

BEREE - HfIFTEHSE

g™ (t) = £ @+ th), WMB g™(0) =
SERE R MFAAE R -

O
BEERRE g0 WHEAMET (4.22) PHEPNKRT - B EEMB—HRE#EMAT » HPITTLUE
BT HMERT -

EH 4.3.3 [Taylor BN HEESERIE]

Sz e AMUR h e R 13 [z,2 + h] C A ° FREFRK
(k)

f(z+h) = +th / 1_“’ 1 FP) (@ +th) dt. (4.23)
56EA : REE 419 © a
EIE 434 [Taylor-Young BER] @ Brc A-BE - Eh— 0K KME

f(z+h) Z f i o(|h[P). (4.24)
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Chapter 4 Differentials in normed vector spaces

Proof : See Exercise 4.19. O

4.3.2 Quadratic form

Definition 4.3.5 : Given a symmetric matrix A € M,,(R), we can define a quadratic form (ZZREY)
on R" by
qa(x) = qa(z1, ..., xn) = Z aijTiT; = T Az, VreR", (4.25)
1<i,5<n

where a vector in R™ can be seen as a column vector.

Definition 4.3.6 : Given a quadratic form (), we say that it is

positive if Q(x) > 0 for all z € R™,

positive-definite if Q)(x) > 0 for all z € R™\{0},

negative if Q(z) < 0 for all z € R",

negative-definite if Q(x) < 0 for all x € R™\{0}.

Remark 4.3.7 : Under the condition that all the second partial derivatives are continuous at a € A, we may
rewrite fﬁ”(a) as follows,

n n 82f
() = wiuy = u' Hy(a)u,
;]2::1 83@8;@ J f

where H(a) is a symmetric matrix, the vector u can be seen as a column vector, and u” is its transposition.
This defines a quadratic form in the sense of Definition 4.3.5.

Remark 4.3.8 : From the class of linear algebra, we know that a symmetric matrix A is diagonalizable, that
is, we may find a diagonal matrix D = Diag(A1,...,\,) with \; > ... > A, and an orthogonal matrix P
(that is, PPT = PT P = I,,) such that A = PT D P. This means that, after a proper change of basis given by
P, the quadratic form is diagonal. More precisely, let v = Pu, then

ul Au = (Pu)! D(Pu) = vT Do,
meaning that

qa(u) = qp(v) = Y_ Ailvil.
i=1

Therefore, we may conclude that if A, > 0, then the quadratic form is positive-definite; if A\; < 0, then the
quadratic form is negative-definite.
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1<i,j<n

FLEXF R PHEEAUKIESZETEE °

EHE43.6 I FHMEZRE QR
- HIRFTE 2 e R" » BB Q(z) > 0 BIRFIRMBILR ;
- WRFTE 2 € R™\{0} » B Q(z) > 0 AIRMRMWBEER ;
- A « e R BffIE Q) <0 RIBRMIRMEER
- HRFTE 2z € R™\{0} » EME Q(z) < 0 BIRMRMEBLEDN -

B 437 | HERRMOMIE o c A BENBRZT » ROTLUB 117 (o) B :

n n 82f
() = wiuy = u' Hy(a)u,
;; 8%1‘8:6]' J f

Hrh Hy(a) BEHHEER - BRE o IURKIRAITHE - B RHHNEENE - EREER 4357
ERIR KA o

1A% 4.3.8 @ TEIRMABEVERIED - BPIFEHTBRER A BorH AL ; URER - HMIEKRIIEHA
55 D = Diag(A1,..., \) ME M = ... =\, » URIERIEE P (WRERBME PPT = PTP=1,)
B/ A=rPIDP - ERKRE BEEEH PRENEEEHE  “REGEHAN - EEYIER
oS =Pu BEME

u’ Au = (Pu)' D(Pu) = vT Do,
BARE

ga(u) = gp(v) =Y Ailvil*.
=1
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Chapter 4 Differentials in normed vector spaces

4.3.3 Local extrema

Below, let A be a subset of R"” and f : A — R be a function. We want to study the local extrema of f. To
do so, we are going to use the Taylor formula that we got in Section 4.3.1.

Definition 4.3.9 :If f is differentiable at an interior point a € A with df, = 0, then we call @ a
critical point of f.

Proposition 4.3.10 : Suppose that f attains a local extremum at an interior point a € A and f is
differentiable at a. Then, a is a critical point of f.

Proof : Without loss of generality, we may assume that f attains its local maximum at a. Let h € R",
and we want to show that d f,(h) = 0. Since a € A, there exists > 0 such that [a — nh, a +nh] C A.
We define the map ¢ : [-7,1] — R,t — f(a + th), which has a local maximum at ¢ = 0. Since f is
differentiable at a, we know that ¢ is differentiable at 0, and we have ¢/(0) = df,(h). Additionally, we
have

1oy i P(8) — 0(0) oy _ 1 P(t) — (0)
# 0 =1im 20D o p(0) = 1 DA g
>0 <0
which gives us ¢/(0) = 0. O

Remark 4.3.11: Proposition 4.3.10 tells us that, to look for local extrema of a function f : A — R, we need
to look at the following types of points,

(i) a € A which is a critical point of f;
(ii) a € A where f is not differentiable;
(iii) a € A\A.

Theorem 4.3.12 : Suppose that f is of class C* and there exists a € A such thatdf, = 0. Taylor-Young
formula (Eq. (4.24)) gives us

Flath) = (@) + 3Q(A) + o[k,  whenh 0.

(1) If f attains a local minimum (resp. maximum) at a, then Q) is a positive (resp. negative) quadratic
form.

(2) If Q is a positive-definite (resp. negative-definite) quadratic form, then f attains a local minimum
(resp. maximum) at a.
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EEEAlN
1 o
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Chapter 4 Differentials in normed vector spaces

Example 4.3.13 : In Theorem 4.3.12 (2), it is not enough for the quadratic form to be only positive to
have a local minimum. Indeed, we may consider the function f : R — R,z z3 at @ = 0, then the
quadratic form is ) = 0 but f does not attain a local extremum.

Proof :

(1) Suppose that f attains a local minimum at a. Let h € R™ and ¢ € R. When ¢ is sufficiently close
to 0, we have

fla+th) = f(a) + %Q(th) +o(|[th]|*) > f(a).

This implies that
0 < Q(th) + of[[th]*) = *(Q(h) + o(1),

that is Q(h) > 0 when we take ¢ — 0.

(2) Suppose that @ is a positive-definite quadratic form, then for h € R", h # 0, we have Q(h) > 0.
Since the unit sphere S(0,1) of R" is compact, we deduce that m = inf,cg(o1)Q(h) > 0.

Therefore, for h — 0, we have

2 2
Fact ) = 1) = 510 + oAl = - [ ) + o] = 5 m o+ o)

For h close enough to 0, we have m + o(1) > 0, leading to f(a + h) > f(a).

Example 4.3.14 : Let us consider the case n = 2 as an example. A quadratic form on R? may be
represented by a symmetric a matrix

a= (1) emm.

Following Remark 4.3.8, we know that A = PTDP, where P is an orthogonal matrix and D =
Diag(A1, A2) is a diagonal matrix with A; > Ay. We obtain the following relations for the eigenvalues
A1 2 A2,

A+ Ay = tl”(D) = tr(A) =7 +1,
A2 = det(D) = det(A) = rt — s2.

Therefore, we have the following cases,
(i) When rt — s? > 0, and r +t > 0, the quadratic form associated with A is positive-definite.
(i) When rt — s®> > 0, and r + ¢ < 0, the quadratic form associated with A is negative-definite.

When we apply this to a C? function f : A C R? — R,and a € A is a critical point of f. Write

0% f 0% f 0% f
r= @(a), s = 920y a), t= a—y2(a).
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1) BREfEoBERHRNME-SheR"UKtcR Bt #FH0E » HMBE
Flat th) = f(a) + SQth) + o([th]) > f(a).
EEFMER
0.< Q(th) + o(|th]%) = £(Q(h) + o(1)),
BB - BRI L o 0 B - TR O(h) > 0 0

(2 BEZRQBRIEEZXE  BBEHR hecR"ZEEBh#£0 BMEE QL) > 0° AR R* BE
fUERAR S(0,1) BRMBY - HPIREHES m = infjeg0,) Q) >0 EIL > Eh — 0K » K
(SE=]

P I Ll L%
flath) = £(h) = 51QM) + olIAI*)] = =5 [Q () + o] = F5-(m+ o(1).
B h 5 0 B - FfIE m +o(1) > 0 EILETLUER f(a+h) > f(a) © 0

g6 4.3.14 1 BEHME » = 2 WIEREFF - R? ERZRE T T EEE L BERER

I .
A:(T$>6Mmm
s t

RIBEEAR 438 » HFIRE A = PTDP » Eib P B2EIERIEMRE - B D = Diag(\, \o) 2EHE
FEME - TRE M\ > A\ o EERMIEESRI THRESEE N > )\ HEANEGRK

A+ A = tl‘(D) = tI‘(A) =71+t
M2 = det(D) = det(A) = rt — s2.

Fitt - TG TEER
Q) Bri—s>>0F8Br+t>0K HATEHKRN - XBEEIEERN °

(i) Ert—s*>>088r+t <08 HAERHKRN_REZEER -
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Chapter 4 Differentials in normed vector spaces

Then, from the discussion above, we know that
(i) When rt — 52 > 0,and r +t > 0, f attains a local minimum at a.
(i) Whenrt —s?> > 0,andr +¢ < 0, f attains a local maximum at a.
(iii) When rt — s? < 0, f does not have an extremum at a, and we call it a saddle point (¥Z%H).

(iv) When 7t — s? = 0, we cannot say anything.

4.4 Implicit function theorem
4.4.1 Inversion theorems

For a C! function f : R — R, we know that if f’(z) # 0 for all z € R, then f is a bijection and its inverse
ftisalso aC! function satisfying (f~1)[f(z)] = [f'(z)] ! forall z € R.

Let V and W be two Banach spaces, and A C V be an open subset of V..

Theorem 4.4.1 (Local inversion theorem) : Let f : A — W be a function of class C'. Suppose that
there exists a € A such that (df,) " exists and that df, and (df,)~! are continuous (we say that df, is
a bicontinuous isomorphism). Then, there exists an open set X containing a and an open setY containing

f(a) such that
(i) the function f|x is a bijection between X andY’;
(ii) the inverse function g := (f|X)_1 : Y — X is continuous;
(iii) g is of class C* and dgs@) = (dfy)~! forallz € X.

In this case, we also say that fix : X =Y isa C'-diffeomorphism between X and Y, or f : A — W is
a local C*-diffeomorphism around a.

Remark 4.4.2:

(1) This theorem is called local inversion because it only describes the local behavior around ¢ € X and
f(a) € Y. Later in Corollary 4.4.5, we will see how to upgrade this local inversion theorem into a
global inversion theorem.

(2) If we consider V- =W = R" for some n > 1, since L(V, W) = L.(V, W), the condition for the local
inversion at a € A C V reduces to the condition d f, is invertible, that is det J¢(a) # 0.
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EEEBRT  HAIER v . X oY BEXREY ZEANC MOFRRER -2 f- AW
£ o MBAZERBER C 177 IRk & -

B 442 :
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a€ ACVFERMEHGES df, ALY > WEEER det Jr(a) £0 °
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Chapter 4 Differentials in normed vector spaces

Example 4.4.3:

(1) If we consider f : R — R, x — 22, which is a C' function on R. For a € R\{0}, the derivative
f'(a) = 2a # 0, and it follows from the local inversion theorem that when f is restricted
to an open set X containing a, its inverse is well defined. Actually, when a > 0, we may
take X = Y = (0,00), and define g(y) = /y for y € Y; and when a < 0, we may take
X = (-00,0),Y = (0,00), and define g(y) = —/yfory € Y.

(2) If we define the transformation between the polar coordinates and the Cartesian coordinates,

p: (0,00) x RCR? — R?
(r,t) — (rcost,rsint),

then its differential at (r,¢) € (0,00) x R writes

1N (ot o /o / [ cost —rsint r’
deri(r',t") = (r' cost trsmt,rsmt—l—trcost)—(Sint rcost )( )

This gives us
det J,(r,t) =r #0, where J,(rt) = cost —rsint
e ’ LA sint rcost

From the local inversion theorem, at all (r,¢) € (0,00) X R, we may find an open set X con-
taining (r,t) such that f is invertible on X. However, f does not have a global inverse, because
it is clearly not injective.

Proof : Without loss of generality, we may consider = + (df,)"![f(a + =) — f(a)] instead of £, so
that we can assume a = 0, f(a) = 0, and dfy = df, = idy, so V.= W. Using the assumption that f
is of class C!, there exists r > 0 such that

B(0,r) €A and [|dfs —dfoll = lldfe —idv[l <5, Ve B(O,7).

Then, for 2 € B(0,r), we have df, = idy —u, where u = idy — df, with [[u]| < 1, and it follows
from Proposition 3.2.20 that

(dfy) ' =idv+ > u",

n=1

m(dfx)_lw <l < 2. (4.26)
n=0

(i) First, let us show that f has a local inverse. More precisely, we want to prove that for every
y € B(0, ), there exists a unique = € B(0, ) satisfying f(z) = y. We are going to construct a
function and apply the fixed point theorem (Theorem 3.2.7) to show this.
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(2) WNRIEME RABREIZ B+ AT 2 PRV ESHE

¢: (0,00) x RCR? — R?

(r,t) —  (rcost,rsint),

AREMITE (r,t) € (0,00) x R DB

cost —rsint r
depi(r', ') = (r' cost — t'rsint, 7' sint + t'r cost) = ) .
sint rcost

EFaFM

t —rsint

det J,(r,t) =r#0, HA J,(rt)= ( C?S i )
sint rcost

(7,

BIREE R REERE - T8ME (rt) € (0,00) x R » HPIATUIKEIES (r,t) WL X &
8 /72X ERFHEN - AT > f WRBERWMHRRE - ABMEARSEF -

58 RN BRARUEBBRE 2 — (df,) '[f(a+z) — f(a)] » MLIBMEEIE f @ EF—
o BAIFILRER o =0~ fa) =0 Bdfy=df, =idy * FRAV = W - £ [ 2 C! BHR
% BEEr >0 R

Bo,r)cA B |ldfe —dfoll=lldfs —idv]l < 3, Vo€ B(0,r).

HE > Wi 2 € B0,r) » BB df, = idy —u > EF u=idy —df, WE ||ul| < § > BiR#RdH
3220 KfIEHE
(dfy) ' =idv+ D",

n=1

([ear) | < 32 il < 2. (4.26)
n=0
() B BRMAER f ARBNREY - ERYRR > RABEIHWREMEy

B(0,%)  FEME—B 2 € B(0,r) WM f(z) =y > RFISEHAEERHTEE (FHE327) X
BEERBIRE -
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Chapter 4 Differentials in normed vector spaces

Let y € B(0, 5) and consider the function

h: B(0,r) — Vv
x = y+ax— f(z).
The function  is of class C!, and for every z € B(0,r), we have ||dh,|| = [[idy —df.|| < 3.

Thus, by the mean-value inequality (Theorem 4.1.13), we find
/ 5 / ]‘ /
Va,a' € B(0,r), |[|h(z) = h(z')]| < 5“:(}—33 |- (4.27)
Therefore, for x € B(0,7), we have
1
Ih(@)IF < llyll + Nl = f(2)]] = llyll + [Ih(2) = RO < llyll + 5 2]l <7

It means that h is a contraction from B(0,7) to B(0,7) C B(0,r), so the fixed point theorem
(Theorem 3.2.7) implies the existence and uniqueness of x € B(0,r) such that h(z) = z. But
since h takes values in B(0, ), it follows that the fixed point x belongs to B(0, ), and we have

f(x) =y.

To conclude, let Y = B(0,%) and X = f~'(Y) N B(0,r). Due to the continuity of f and

f(0) = 0, the open set X also contains 0. Then from what we have shown above, the restriction
fix + X = Y is a bijection.

(ii) Let g : Y — X be the inverse fx, ie. g = (f‘X)_l. Consider the function h : X — V,z
x — f(x), so we have x = f(x) + h(x) for x € X. Then, for 2,2’ € B(0,r), we have

' < }h(a) — A + @)~ £ < § e~ /] + @) - £
& oo <2)|f) - 7).

Therefore, for 7,7y’ € Y, we have

lg(y) — 9| <2 f(9(w) — FlaN| =2y —¥||- (4.28)

This implies that g is a Lipschitz function, so continuous.

(iii) Letz € X andy = f(z) € Y. Let us first check that dg, = (df;) . Let w € W such that
y+w € Y,and v = g(y+w) — g(y), which is equivalent to w = f(z +v) — f(x). By Eq. (4.28),
we have ||v|| < 2 ||lw]|. Let

A(w) = g(y +w) — g(y) — (dfs) " (w)
= (dfe) " odfe(v) — (dfe) ' [f(z 4+ v) — f()]
= —(dfe) 'f(@+v) = flx) = dfe(v)].

It follows from Eq. (4.26) that
[AW)[| < 2| f(z+v) = flz) = dfe(v)]] = 2[v] e(v),

for some function ¢ satisfying lim,_,oe(v) = 0. Let &(w) = e(g(y + w) — g(y)). Since g is

Last modified: 15:55 on Tuesday 10" December, 2024

24

FHE MHEBZEMEPRIHMD

4yeB0,1) LERRK

h: BO,r) — Vv
x =y 4z — f(x).

R L2 CER > BHREME x € B(0,r) » BE ||dh.|| = |idv — dfe]| < 3 o Btk
BEYERASER (FE41.13)  HME

Va,2' € B(0,r), |[[h(z) — k()| < % |z —2'|| . (4.27)
At - Wz € B(0,r) » &ME
1
Ih@)II < llyll + llz = f(2)| = llyll + [~(z) = RO < llyll + 5 Nl <7

SERRE b 2% B0,r) B BO,r) C B0, r) WUEHERS - EiLR ISR E
TE (RIE327) o ETEBEER—M o« € BO,r) 58 hiz) — « - BER 1 BEE
B(0,r) & » HMEEEEEEL « 87 BO0,r) & » ARG f(o) =y °

B% BADY = B0,%) UK X = f~4Y) N B(0,r) KR4S - 1RIR f BOEBEM AR
f(0) =0 % X 83T 0 - BIRBEHXFILEATFERR - IRERE [y - X — vV 2EL5
BRI o

(i) Fg:Y > XB fix WREB - BREB g = (fix) ' " BEBEEL: X > Vo ao—f(z)>
FRUAETIPFIE v € X » BB x = f(x) + h(x) o BBEE » R 22" € B(0,r) » HME

|z — 2’| < [|h(2) = h(a")[| + ]| £ () = f(2")] < % |z = 2’| + [ f(z) = f(=)]
& Jz—a'| <2|f(z) - f@@)]-
Hit » Wiy, v €Y - &MB
lg(y) = 9@l < 2[1f(9(w) = flawDI =2[ly = /|- (4.28)
&S5RI g 18 Lipschitz KE » FTAHEEHER o

(i) Bz e X URky=f(z) eY - BEMLEKEEdg, = (dfs) e Bwe WEHy+weY
o =gly+tw —gy) EERw = flo+v) - flo) EB/- RBRX (128) BMA

[l < 2wl

A(w) = gy +w) — g(y) — (dfs) " (w)
= (dfe) "o dfu(v) = (dfe) " [f(z +v) — f(2)]
= —(dfe) 'f(@+v) = f(x) = dfe(v)].

e (4.26) » FAPER

A <2 f(z+v) = f(z) = dfe(v)]| = 2]v] e(v),
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continuous, we also have lim,,_,o (w) = 0. Thus,

8@ _ 2l

w—0

fol S Tl

This means that g is differentiable at y with dg, = (df;) ™!

To conclude, since v + wu~ ! on the space of invertible endomorphisms is continuous

(Example 4.1.6 and Proposition 4.1.7), and g is continuous, we deduce that the map y — dg, =
(dfy(y)) " is also continuous, that is g is of class C*.

O

FHE MHEBZEMEPRIHMD

HARE ¢ ME lim,0e(v) = 0° 5 E(w) = e(g(y +w) — g(y)) ° AR g BEERY - Bl
HWEEA lim, 0 &(w) = 0 ° Fitk

IA@) 2l

w—0

lwll = JJwl]
BAKRE g Ey I B BEMdg, = (df.) e
REBRMABE BNy —» ' TR BREPZEEERG (& 410 UK

B 4.17) B g BEER > HPIHS y — dgy = (dfyy) ' EREER  LHER ¢
M8 C! SRS -

Corollary 4.4.4: Let f : A — W be a function of class C'. Suppose that d f, is invertible and bicontin-
uous for allx € A. Then, f is an open map, that is for any open subset X C A, the image f(X) is open
inW.

RIEa44 1 T AW HC R - REBNAE = € A df, AP EEEGER - FBE -
[ =ERRE - BHRER - HREERFEES X C A &R f(X) W PE2EME -

Proof : It is enough to prove for the case that X = A. For each a € A, the local inversion theorem
(Theorem 4.4.1) gives an open subset X, containing a and an open subset Y, containing f(a) such
that f|x, is a bijection between X, and Yy, i.e, f(X,) = Y,. Therefore,

= (U Xa) = U Fxa) = U Ve,

acA a€A a€A

which is still an open subset of W (]

S BFIRESEA X — AWER - $REEac A BRREEEE (TE441) BB
0% o HTES ¥, UREE fla) MEITES v, 18 £, 2ENR X, B Y, ZRINEHE
B HRER F(X.) = Y,  Hitt »

= (U Xa) = U FXa) = U Ya,

acA acA acA

FRUBEZME W PRIRFES - O

Corollary 4.4.5 (Global inversion theorem) : Let f : A — W be an injective function of class C'. Then,
the following properties are equivalent.

(a) The differential df, is invertible and bicontinuous for all a € A.
(b)) B= f(A)isopeninW and f~': B — A is of class C*.

If one of the above properties is satisfied, we say that f : A — B is a C!-diffeomorphism between A and
B.

Proof :

« (a) = (b). It follows from Corollary 4.4.4 that B = f(A) is open. Since f is injective, we deduce
that f is bijective from the open set A to the open set B. Now, we need to check that f~! is of
classC'. Letz € Aandy = f(x) € B. The local inversion theorem (Theorem 4.4.1), we can find
an open set A, containing x and an open set B, containing f(z) such that fi4, : Az — By is
bijective and (f4,) " is of class C*. Since (f )5 = (fja) ™" (f 1);B, = (fja,) "', and being
C! is a local property, we know that f~! is of class C! around f(z). This holds for all z € A, so
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f~lis of class C! on B.

« (b) = (a). Write g = f~!. Since both f and g are of class C', the relation g o f = Id4 and the
chain rule gives us dgy(,) o df; = Idy for all z € A. Similarly, the relation f o g = Idp gives
dfz 0dgy () = Idw for all x € A. Therefore, for all x € A, the differential d f; is invertible with
inverse dgy(,), which is continuous.

O

Remark 4.4.6 : We make a similar remark as in Remark 4.4.2 (2). If we consider an Euclidean space V =
W = R" for some n > 1, since L(V, W) = L.(V, W), we may replace the property (a) by

(@’) df, is invertible, or det Jf(a) # 0,

without requiring the bicontinuity.

4.4.2 Diffeomorphisms

Definition 4.4.7 : Let V, W be two normed vector spaces, and A C V and B C W be open subsets.
For k > 1, a function f : A — B is said to be a C¥-diffeomorphism if f is bijective, of class C* and
f~Lis also of class C*.

The following two corollaries give the conditions under which a map is a local diffeomorphism and a global
diffeomorphism in the setting of Euclidean spaces. Their proofs are based on the local inversion theorem and
the global inversion theorem. We note that they can also be generalized to Banach spaces by adding the
bicontinuity in the condition. Since we did not really discussed C* functions in general Banach spaces or
normed vector spaces when k > 2 (see Section 4.2.3), we keep our statements to Euclidean spaces for which
we had a thorough discussion about regularity in Section 4.2.1.

Corollary 4.4.8: Let A C R" be an open subset. Let f : A — R™ be a C* function. Suppose that there
exists a € A such that d f, is invertible (or equivalently, det Jy(a) # 0), then there exists an open set X,
containing a and an open set Y, containing f(a) such that fx, is a Ck-diffeomorphism from X, to Y.
We also have d(f&la)f(z) = (df,)" ! forallx € X,.

Proof : Since d f, is invertible, and we work with finite dimensional vector spaces, d f, is automatically
bicontinuous. Then, we may apply the local inversion theorem (Theorem 4.4.1) to find X, and Y, as
stated, such that f|x, isaC L_diffeomorphism. It remains to show that g = f|;(1a is a C* function.

We recall the notation J¢(a) for the Jacobian matrix of f at a, and Jy(f(a)) for the Jacobian matrix
of g at f(a). Forall z € X,, since (dg)su) = (dfz)~!, we deduce that Jy(f(z)) = Jy(z)™' =
(det Jf(a:))_lj(x), where .J(x) is the transpose of the comatrix of J¢(z) (also called the adjugate
matrix), whose coefficients are linear combinations of products of coefficients of J¢(z). Therefore, the
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first-order partial derivatives of g are rational fractions of first-order partial derivatives of f, which
are of class C*~!, implying that the first-order partial derivatives of g are also of class C*~!. We can
conclude that g is of class C*. O

Corollary 4.4.9: Let A C R™ be an open subset and f : A C R"™ — R" be an injective function of class
CF with k > 1. Then, the following properties are equivalent.

(a) The differential d f, is invertible for alla € A.
(b) B = f(A) isopenin W and f is a C*-diffeomorphism from A to B.

Proof : The proof is similar to Corollary 4.4.5 and Corollary 4.4.8. (]

4.4.3 Implicit function theorem

We describe some motivation behind the implicit function theorem. We are given a function f : A C
R™ x R™ — R" and want to look at its level lines, that is we look for x € R™ and y € R"™ such that
f(z,y) = c for some given ¢ € R™. The implicit function theorem provides local sufficient conditions such
that y can be written as a function ¢ of x, that is f(z, ¢(z)) = c. In other words, in a neighborhood of such
x, the solutions of f(x,y) = c can be represented by a graph. More generally speaking, we may take c to be
a variable, and we obtain a function ¢ in x and c. See the theorem below for a more precise statement.

Let

=01, fn): ACR™ xR"? — R"™
(xay):(xlv"'axm;ylw"ayn) = f(xay)
We may define the partial Jacobian matrices and their determinants (called partial Jacobian determinants)

with respect to the variables = (z1,...,zy) andy = (y1,...,yn) at (a,b) € A as below,

(4.29)

afi

Ofi
J

and Jpy(a,b) = [83/‘
j

(a, b)]
1<i<n
1<yj<m

(a, b)]

1<i,j<n

Theorem 4.4.10 (Implicit function theorem) : Let m,n > 1 be integers and A C R x R™ be an open
subset. Suppose that we are given a C* function f withk > 1 as in Eq. (4.29). Let us fix (a,b) € A. If the
partial Jacobian determinant det Jy (a,b) is nonzero, then there exist

« an open subset X containing a, an open subset W containing f(a,b) and an open subset Z con-
taining (a,b),

« aCF functionp: X x W — R"

such that forallz € X andw € W,y = p(x,w) is the unique solution to f(x,y) = w with condition
(x,y) € Z. In particular, we have f(x, p(x,w)) = w forallz € X andw € W.
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B Jr(z) PREGRIRAREMES - Bt > ¢ W—FERMI SR f —RBRMI BN EER
8 = L BBV PR g I—BERMOtBE M Y - FAURFIER g B CF B - O

HIE449 : SACR'BHFES B f: ACR - R ZfE CF ENBEFRY > Hoh
k>1°#BE - FIMEEZEFE -

() HIRFAB a € A > 5 df, BAIHRY ©
(b) B=f(A)EW FEF%E - B f 2EHK A E B8 c* BEWMHRERE -

S5EH : SEEREARIE 445 FIRIE 4.4.8 B, o O

S RRBEEE

BT RERRBEIET RN — L - MPIRERE f: A CR” x R" - R" AREE L {thAY
EF5iR UHMREMETE cc R BEHH v c R My € R" 17 f(2,y) = c - BREEERH
JRBIFE MR » 15 y ATAE R = IR o » URIRR f(z, o(z)) = c ° REFER » £ = BIMHE
f(z,y) = c BB » AILLABIZREKRT - E—RERER - HATATAGE c BB > HMISFIIMNZEDRN «
0 c IEREK ¢ - TEEIEG L ERETIRIRGE o

AN
T

=1, fn): ACR™ x R" — R™

(J:ay):(:Ela"'vxm;yl)"wyn) = f(l"y)

HPTUENES v = (21,...,20) Uy = (y1,. .., yn) * UTHARERTE (a,b) € A BIZBS Jacobi

ErEEREMPINTII FBIEEB Jacobi 1770)

dfi

oz, (a,b)] i
1<gs<m

(4.29)

Jpz(a,b) =

MR Jpyab) = B?i (a,b)]

1<i,5<n

EiE 4410 [BREETIE] : Smn> 1 AEHE ACR" xR BRATES - IRAER (4.29)
Bk >1 BERMIGE CF R f o BE (a,b) € A o SIREBA Jacobi 1TFIR det J;,(a, b)
EIEBH - BEFE

- BEHRFRE X 88 f(0,0) MRFEE W UREE (0,b) WFEFES 7
- —fBECFERRB p: X x W - R"

FRERFBErc X BEBweW ry=prw) B2 f(r,y) =w TE (z,y) € Z G4 TH—
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Chapter 4 Differentials in normed vector spaces

Moreover, for (a,c) € X x W, writeb = ¢(a,c), then we also have the following relations between
the partial Jacobian matrices,

J‘PJC (a7 C) == [Jf,y (a7 b)] _1Jf790 (a7 b) and J@:y(av C) = [']ﬁy (a7 b)] _1‘

Remark 4.4.11 : The inversion theorems were stated and proven for general Banach spaces, where we
require the differential to be invertible and bicontinuous. We also noted in Remark 4.4.2 and Remark 4.4.6
that when we take Euclidean spaces (or finite dimensional normed vector spaces), the bicontinuity property
automatically holds, so need not be checked. Here, for simplicity, we state the implicit function theorem for
Euclidean spaces, but you need to bear in mind that when we work with general Banach spaces, the only
additional condition you need to add to the assumption is the bicontinuity.

Proof : Let F = (Fy,...,Fp; Finst,- -, Finin) be a function defined on A with values in R "
whose components are defined by F;(z,y) = z; if 1 <i < mand Fy,,1; = fi(z,y) if 1 <i < n. The
Jacobian matrix of F is a block matrix, given by

L, | 0

(aﬂww) |
0y, 1<i,j<n

Its determinant is the same as the partial Jacobian determinant given by det J¢ ,(a, b), which is nonzero
by assumption. Then, it follows from Corollary 4.4.8 that there exists an open set Z containing (a, b)
and an open set Y’ containing F'(a,b) = (a, f(a,b)) such that F| isa C*-diffeomorphism from Z to Y.
We may restrict Y to X x W C Y, where X is an open set containing a and W an open set containing
f(a,b). Then, we may write F~1 : X x W CY — Zas F~!(z,w) = (2, 0(x,w)), where ¢ is a
C* function. Therefore, we deduce that for any (z,w) € X x W, there exists a unique  such that
(z,y) € Z with f(x,y) = w; and additionally, y = ¢(z, z).

To get the identities between the partial Jacobian matrices, we just need to apply the rela-
tion between the composition of functions and multiplication of Jacobian matrices as mentioned in
Proposition 4.1.26. ([

*

In the above theorem, we may take w to be a constant, leading to the following corollary.

Corollary 4.4.12 : Under the same assumption as Theorem 4.4.10, we may find
« an open subset X containing a and an open subset Y containing b,
« aC¥ function o : X — R"

such that for allx € X,y = (x) is the unique solution to f(x,y) = c with conditiony € Y. This
allows us to write f(z, p(z)) = c forallx € X.
Moreover, for a € X, writeb = @(x), then we also have the following relation between the partial
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BB o WIRFIB r e X BB we W HFIE f(z, p(z,w)) =w e
LS R (a,¢) € X x W » HPIEE b = ¢(a,c) » ERFEMLEEEITIIEBHR Jacobi XEEZ
RIRERI -

J%x(av c)=— [nyy(av b)] _ljf,ﬂ?(av b) MUK J%y(a7 c) = [Jf,y(av b)] _1'

F4.4.11 @ ERIEVNEPR - HAHEHRY (BEIMEE) REBEIEZTT M Banach ZEREFFAYRRA -
ERHMABERMO BRI P HEERD - HFILIRD) > E5EME 442 BEIRR 440 B - BERFINENK
EE (RERAREERLRETR) K SEREEESHENIL - RELFBARE - EE > A THEL
ROLAFER - FIGHRRBEERERRZER T - BEXNERNE @ EFMIERE—MKAY Banach
ZEfEE - H—RERMIEREERFENRER -

A B F=(F,....FEn Fogty e Fon) RERTE A LHRE - BEEE R™™ F - {1AY
DEEEWNTFT : HI1<i<m EEF(ry) =z ®1<i<n' & Fny = filz,y) ° Bk
—2K » F B9 Jacobi FEMEZE D HREME - B

Wl o

memﬂ
dy; 1<i,j<n

R 1THI TN EL BB 47 Jacobi 177U det Jy, (a, b) HE[E - MRRRET » EEIFERY - ALk - TR
B 443 ZFIRFNEEES (a,0) WK Z BET F(a,b) = (a, f(a,b)) WFRAKY E1F F; 2
B Z2 Yy Wck MoRRE - RPIALUBY REIE X x W C Y H X B2EESE « M
£ -BWREEE f(o,b) NAE - EX—K > EMPAMIBF L. X xWCY - ZBHK
Fl(z,w) = (x, p(z,w)) » HH » 218 C* BRE - Fit > HPHESHRER (v,w) € X x W >
BEEM—N y F18 (v,y) € Z B f(z,y) =w; 1SN > BfIHEE y = ¢(z,2) ©

WNEREIF B EBM Jacobi FEFEZ RIRVRAGR » PR EEFEHAME 4.1.26 B » SRLREEE Jacobi
FEPESRAEHIRACREN AT © O

*

EEREERF - FFIATLUE w AR - ESHEINE TENSGIE -

2RI 4412 @ FHEHTEE 4410 HENREZT @ HFIEEKRET)
B8 cNEFES X UREE VHNBEFESY
. —fECFERE p: X - R

FERHRFABErc X y=p(x) BR f(v

) = cTEEME y € YV 2 TR —IR - SEBRITRILUE
BE  BRFE « e X BIE f(z, 0(2))

o
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Chapter 4 Differentials in normed vector spaces

Jacobian matrices,

Jra(@,b) + Jpy(a,b)Jpe(a) =0 or  Jou(a) = —[Jry(a,0)]  Tse(a,b). (4.30)

Corollary 4.4.13 : Let A C R? be an open set and f : R2 — R be a C* function with k > 1. Let
(a,b) € A and suppose that
of

f(a,b) =0 and a—y(a,b)%O.

Then, there exists v, 3 > 0 such that for all x € (a — o, a + «), the equation f(x,y) = 0 has a unique
solution y = ¢(x) in (b — B3,b+ B). Moreover, the function  is of class C¥ on (a — o, a + o) and we

have
¢ (o) =~ (0, 0(0) [ 3o 0(@), Vo (a-avata).

Proof : The existence of a, f > 0 and regularity of ¢ follows from Corollary 4.4.12. To compute ¢/,
we differentiate the relation f(x, p(x)) = 0, giving us

gi(x, o(z)) + ¢/($)Z£(g}7 o(z)) = 0.

This can also be obtained directly from Eq. (4.30). (]

The following corollary can be shown in a similar way:.

Corollary 4.4.14 : Let A C R? be an open set and f : R?> x R — R be a C* function with k > 1. Let
(a,b,c) € A and suppose that

f(a,b,c) =0 and g‘i(a,b,c)#o.

Then, there exists a, 3,y > 0 such that for all (z,y) € (a — o,a + a) x (b — 3,b+ 3), the equation
f(z,y,z) = 0 has a unique solution z = p(x,y) in (¢ — v,c + 7). Moreover, the function p is of class
CFon(a—a,a+a)x (b— B,b+ ), and we have

g:(xvy) = _gi(xaya tp(%y))/gi(fﬂ,y,tp(%y)),

2L (01) = =g @ pl@nn) [ S0, 00 0),

Example 4.4.15 : Let us consider a C* function f : R? — R, (z,y) + sin(y) + xy* + 2%. We want
to look at the graph of f(x,y) = 0 and its asymptotic behavior around (z,y) = (0,0).
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LS B o € X > FAPIEE b = () » ERFFIEE THIERD Jacobi FBEZ FRIRARR :

Jra(@,b) + Jpy(a,0)Jpr(@) =0 B Jpu(a) = —[Jsy(a,0)] " Jsala,b). (4.30)

Rif4413 : SACR’ABREE k>1H f:R? - REECFERE - B (a,b) € A MIRFH
fla,b) =0 H gi(a,b)#O.

BEEEE o, 8> 0 FFEHRFE <€ (a—a,a+0a) » AER f(z,y) =08TE (b— 8,0+ 8) F
By = p(z) o LN BB 7E (a — a,a + o) EERE CF BN » BRME

¢ (o) =~ (@.0(2) [ (@ pla)), Yo (a-aata)

B C R 4010 0 RVEASE 0,5 > 0 IR o BRI - BEE o » RAVENIS
R f(z, o(x)) =0 M7 EMER

0 0

S wpla)) + 4 2) (@) =0,
EAEERE (450 #18 - .

TEEES | Bt A LAY TUREER -

RIB4414 - SACR*BHE k>1"Bf RZxR-RIBM[BCFERE > 5 (a,b,c) € A
W ERES

fla,b,c)=0 H g];(a,b,c) # 0.

BESEE o, 8,y > 0 FBHHNREFAE (z,y) € (a—a,a+a)x (b—B,b+p6) » AN f(x,y,2) =0
BE (c—v,c+) PEME—HE 2 = p(z,y) c AN BB o E (¢ — ,a+a) x (b—B,b+5)
g2 ChEN - BRME

gi(‘rvy) = _Zi(xaya@(xvy))/gﬁ(xvyaw(xay))a

S @) =~ @ pl@n) [ G0 o),

gl 4.4.15 1 HMER—E C>® KB f: R?2 = R, (z,y) — sin(y) + zy* + 22 - HAEEHRE
(z,y) = (0,0) BB » f(z,y) = 0 WEIZEHEEANEETS
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« It is not hard to check that f(0,0) = 0. The partial derivatives of f write

0 0

@) =y 20 and G (o) = cosly) + oy

We have %(O, 0) = 0 and %(O, 0) = 1. Therefore, it follows from Corollary 4.4.13 that there
exist a, f > 0 and a C* function ¢ : (—a, a) — R such that for every x € (—a, a), y = ¢(z)
is the unique solution to f(z,y) = 0in (-2, ).

+ Let us find the Taylor expansion of ¢ around 0. First, from the above computations, we have
©(0) = 0 and ¢'(0) = 0, so we may write p(z) = O(z?) when z — 0. To get a higher-order
expansion, we will substitute this expression into f(z, ¢()) = 0 and expand sin(y) = y+O(y?)
when y = ¢(x) — 0. We find

p(x) = () —sin(p(z)) — zp(z)' — 2

= 0(p(x)*) - 2*

= 22+ 0(z% = —22(1 + O(zY)).
If we want to get a even higher-order expansion of (, we expand the sin function to a higher
order, that is sin(y) = y — % + O(y®) when y = ¢p(x) — 0. We find

p(x) = () = sin(p()) — zp(2)* -2

T 3
o2 = A o(p(a)?) — ol

= 2+ 214+ 0(h) + 0@) — 21+ O(ah))

26
= 2% + o ¥ + O(z').

One may also proceed further by expanding the sin function to higher orders of .

4.4.4 Conditional extrema
Let A C R" be an open set and f : A — R be a function. Let g1, ..., g, : A — R be functions and
F={zcA:qgi(z)="--=g(x) =0}

We want to look for the extrema of f on I'. Such a problem is called conditional extrema.

Theorem 4.4.16 : Suppose that f, g1, . . ., gr areC functions. Suppose that J|r attains a local extremum
ata € I" and that dgi 4, . . ., dgrq are linearly independent, then there exist A1, ..., A, € R such that
dfa = >\1 dgl,a TP ooeaE >\r dgr,a- (4-31)

Last modified: 15:55 on Tuesday 10" December, 2024

30

FNE MEE[MPHMD

- BRFFERE £(0,0) =0 ° f RS B

0 0
) =y 20 MR D (y) = cos(y) + day’.

HPIE 5£(0,0) = 0 UK §L(0,0) = 1o FItt - HRIE 4.4.13 RPIATUHBEE 0,8 > 0
MCORH p: (—a,0) > REGEHREBE 2 € (—,0) y = ¢(x) R f(z,y) = 07F
(—B, ) PHE—BIEE o

- HERFE ¢ 7 0 MY Taylor BRA - B RRLEFE » BFIEH 0(0) = 032HF
©'(0) =0 FiLE 2 — 0K » BB o(z) = O(2?) - IREBIESMEER - HME
LIBREER sin(y) =y + O@°) By = ¢(z) — 0 BAZR] f(z,0(x)) = 0 8@ ° HFFE

p(x) = () = sin(p(z)) — zp(z)' — 2

— Op(@)*) - o
— 2?1005 = —22(1 + O(Y)).

MBHMBESD o ESXHNER » RAZE sin WESHNER » BRE sin(y) =
y— L+ Oy) By =p(z) =0 KGR

p(x) = () = sin(p()) — zp(z)* -2

T 3
= 22 = 1 0(p(a)?) - mola’
= 2+ 214+ 0(h) + 0@") - (1 + O(wh)
= 2 + :26 — 2%+ 0(2'9).

AP LMEIBER T X - #H sin ERENER @ 53 « EaEER -

BIUNE
SACR BBEER [ A RARK D g0 A RBREUR
P ={oedigile) == g, (z) = 0}.

HPIBERE f £ D _ERYEME o ESARRYREREEIRIFIE -

T 4.4.16 1 BR f.1,....0, 5 CERB o B fir Fac T ARIEE > Bdg,,...,dg,
SSIEIBIIH  BEELE My, ...\, € R S

dfs =M dgra+ -+ Ardgra. (4.31)
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Remark 4.4.17 : The coefficients A;’s are called Lagrange multipliers. They are unique because the linear FEAF 4.4.17 ¢ BOUBEE )\, BIERIRAE B - ELFRBEM—E » AAKRMZE dgia,...,dgr,
forms dgi 4, . .., dg, are linearly independent. SsRMEIIe -
Proof : Let s = n — r and write R® = R® x R". An element of R" can be written in the form A D s=n—r WL R" =R x R" o R" AYTTERAIUEL (z,9) = (01, -, Zs; Y1, -, Yr) ©

(z,y) = (x1,...,Ts; Y1y, Yr). Let a = (2q,94) € R" with x, € R® and y, € R".
First, we note that we necessarily have r < n because (dg; )1<i<, are linear independent, and the
dimension of £L(R™, R), the space of lineaer forms, is equal to n. If n = r, then the theorem is trivial

Fa=(24,ys) ER" HEF g, cR*Hy, cR" ©
B BIYVERIIEBER (dgia)icico eRMERIIN - BRRMZE L(RY,R) NEREESER

because (dgi,q)1<i<r forms a basis. Thus, let us assume that 7 < n — 1 in what follows, that is s > 1. n BENBRE r <n° R n=r - IRESEETEIBEEIARIL ' BA (dgia)1<i<r BHREE - Flt
Due to the linear independence of (dg; q)1<i<r, the Jacobian matrix of ¢ = (g1,...,gr) at a has TR RATUBER »r<n—1 BHEs>10
gartlk T Wi’ihout loss of generality, we may assume that the following r X r submatrix has nonzero BRI (dgia)icicr BHSMEBIIME > g = (91,...,9-) 1E a B9 Jacobi SERMBER r o FE—MK
eterminant, . ae, = 4=
g1 % BRI LUREE THEEE r x r FHRERENITHNEIESH :
det < : (a)) # 0.
9y; 1<i,j< 0gi
SLIST det p) (CL) 7£ 0.

Therefore, it follows from Corollary 4.4.12 that there exists an open set X of R® containing x, and an Yi 1<h,5<r

open set W of R” containing a = (x4, ¥,) and a C! function ¢ = (1,...,¢,) : X — R such that , e R .
P ga=( ) (e ) Ft - RRIE 4412 BBFIEH FER HFET 2, AL X "R PER a = (2,4,v.) HIBE

g(z,y) =0withz € X and (z,y) e W & y=p(x). W R CHERE o = (p1,...,0) : X — R" 18
In other words, for z € X, the elements of I' = {z : g(z) = 0} can be written as (z, p(z)). Let ga,y) =0RMBre X B (x,y) e W & y=p2)

h(z) = f(x,p(x)), which has a local extremum at x = a by assumption. This leads to

BOER R e X T = {2 :g9k) = 0 FRTEAUER (v,0()) ° B hlz) =

oh of 0y, of . _ — R
0= (a)=75-(a)+ Z Hwa)go-(a), Vi=1i.s (432) flz,p(z)) » ARIREER » HU7E « = o BRMBAM © EHRBEM
ox; ox; o ox; 0y
oh 0 dp; 0 .
Additionally, by differentiating the relation g(z, p(x)) = 0, we find 0= 7 (a) = ag (a) + Z (3(? (Jﬂa)aj((l), Vi=1,...,s. (4.32)
i i j=1 ) j
8gk " 0p; agk . N
0= o (a> +Z 890‘7 (xa)ai(a)ﬂ Vk = 17"'7T7VZ = 17"'78' (433) lﬂf.')L'* ’ ﬁu%*ﬂﬁ? g(x,cp(x)) ;!5(63 ?‘Zﬂaﬁ IJ
xl ]:1 xl y]
0 8 .
Putting Eq. (4.32) and Eq. (4.33) in the matrix form, we find the matrix 8? Z 8?gf (a), Vk=1,....,n,Vi=1,...,s. (4.33)
7 j=1 J
2ha) ... $La) §La) ... $L(a) . . - .
a1 B 3 9 B (4.32) TR (4.33) BAFERERZ T - FMIFHERE
(@) ... 32(a) 3Z(a) ... Z(a)
M= oz Oz oy1 Oyr ' of of of of
f(a) .. GE() 5Z(a) ... §E(a) | FE@ ) ) §)
whose first s columns are linear combination of its last » columns, which implies that rank M < r 5 ) ) 5
Since rank Mt = rank M, it means that the r + 1 rows of M are linearly dependent, that is, there exist aTch (@) ... TZ(Q) Tzz (@) ... TZ: (a)
140, - - - , i that are not identically zero such that - . e " =
RAIE s {TRREE r 1TRREES - ALIEMEE rank M < r o B rank M? = rank M » &1
podfa +p1dgre + -+ pr dgra = 0. (4.34) REM PN r+ 1 HIZEMEREILR > UAMER @ EFEEFERHMEARFEE no, ..., pr * E
From the assumption that (dg; ,)i<i<r is linearly independent, it follows that yig # 0, therefore, by =
dividing Eq. (4.34) by o, we prove the theorem. (] o dfa + p1dgre + -+ prdgr, = 0. (4.34)

RIR (dgia)1<icr RRRIEBIAVRER - TS 1o # 0 0 FTAKFIRTLUER (4.34) BRR 1o » WETE
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Example 4.4.18 : Find the minimum and the maximum values of the function f(z,y) = 22 — 22 +
432 + 8y in the first quadrant, that is (x,7) € A := Rsq X Rx, under the condition g(z,y) = 0
with g(x,y) = x + 2y — 7. Since the domain A is not closed in R?, we need to distinguish between
interior points and other points. The extrema of f are attained either at a € A= Rsg x Ry sat-
sifying Eq. (4.31), or at some point in A\A = ({0} x Rx0) U (Rso x {0}), that are not covered by
Theorem 4.4.16.

« Let us look for an interior point (z,y) € A satisfying g(z,y) = 0 and such that dfzy) =
Adg(z,y) has a nonzero solution A € R. First, we want to solve

{gi(%y) :)\%(a:,y), - {2;1:—2 =\,
Sy =AGi(ay), Sy+8 =2\

Thus, we find x = 2y + 3. We put this back to the condition g(x,y) = 0 and find (z,y) = (5, 1).
We compute the value f(5,1) = 27.

« The points (z, y) in A\ A satisfying g(, y) = 0 are exactly (,y) = (7,0) or (0, %) We compute
the values f(7,0) = 35 and f(0, 1) = 77.

From above, we conclude that in the first quadrant with condition g(x, y) = 0, the maximum value of

f is attained at (0, ) with value 77, and the minimum value of f is attained at (5, 1) with value 27.
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80 4418 : KRB f(z,y) = 22 - 20+ 4> + Y EF—RRBRH > BFAZ (2,y) € 4 =
R0 X Rog » WBRAEHE g(z,y) =0 HER g(z,y) =2 +2y—7=0 Z THR/IVERRKE - B
RERE AT R F2HE  BAZTEESNMUREME: - f MIEEGERER (4.31) B8,
a € A=RogxRsg’ HEETHE 4.4.16 FREFTHRBIAII A\A = ({0} x Rop) U (Rsg x {0})
EREE o

. RIFILIRANEL (,y) € A > FEMFHRE g(z,y) = 0 URFER Adf(zy) = g, BEIEFE
BIfE A c R - B » BPIEMR

0 0
Llay) =A% (x,y), PR E =X
0, 0

Kt - FFIFR) 2 = 2y + 3 - BFHEEBEHEEMST g(2,y) =0 T (z,y) = 5.1) ° T
It EEEEREIE f(5,1) =27 °

« EAABHRRE g(z,y) = 0 BB (2,y) BR (z,y) = (7,0) 5 (0, 7)o HMIEtERETEIER
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