Differentials in normed vector
spaces

4.1 Differential and partial derivatives
In the first year calculus, we have seen the notion of derivative of a function f : I — R, where I C R is
an interval. In particular, Taylor’s formula allows us to develop f around x € I in the following way,

fl@+h) = f(z) + hf'(z) + o(h),

where the term h — hf’(z) is a linearisation of f around x. If the function takes values in a higher dimen-
sional Euclidean space such as R", similar theories can also be developped. Below, we are going to see how
to generalize these notions to functions from an open subset of a normed vector space with values in another
normed vector space.

4.1.1 Differential

Let (V. |-|ly;) and (W, ||-|ly4/) be two normed vector spaces. Let us consider an open set A C V and
frA->W.

Definition 4.1.1:Let a € A. We say that f is differentiable'at a if there exists ¢ € L.(V, W) such
that
fla+h) = f(a)+¢(h) +o(||h]y), when h— 0. (4.1)

If such a map ¢ exists, it is unique, and is called the differential (f#43") of f at a, denoted by D f(a) or
dfa.

Remark 4.1.2: Since A is an open set and ¢ is an interior point, for h close enough to 0, we know that a + h
is also in A. Therefore, the condition “when h — 0 is important in Eq. (4.1), since the relation only makes
sense when h is close enough to 0.

Definition 4.1.3 :If f is differentiable at every a € A, we say that f is differentiable on A, and the
map
Df: A — L(V,W)
a df,

is called the differential map of f. If D f is continuous, we say that f is of class C'.

!Also known as Fréchet differentiable. In Exercise 4.10 we will see a more general notion of differentiability, called Gateaux
differentiability.
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Remark 4.1.4:

(1) If V = R, then the notion corresponds to the classical notion of derivative, that is the continuous linear
map D f(a) writes D f(a)(h) = dfa(h) = f'(a)h. So we may also just write D f(a) = df, = f'(a).

(2) In general, the definition of d f, may depend on the norms ||-||\, and ||-||;;;. However, if V and W are
finite dimensional vector spaces, we have seen in Theorem 3.2.22 that all the norms are equivalent, so
the existence of d f, does not depend on the norms that we equip on the spaces.

(3) It is important to require the differential df, to be a continuous map. In finite dimensional spaces,
all the linear maps are continuous (Corollary 3.2.24), so in such spaces, we only need to check the
linearity, then the continuity follows automatically.

Example 4.1.5:

(1) If f € L.(V, W), then the relation f(a+ h) = f(a) + f(h) implies that f is differentiable on V'
with df, = f foreverya € V.

(2) Consider the product on R?,
v: R = R
(z,y) — xy
Then,
77[)(51: + hg, Y+ hy) - 1/1(% y) = SUhy + ha:y + hxhy-
Since the map (hy, hy) — xhy + yh, is linear, and hyhy = o(||(ha, hy)
dvp, (h) = zhy + yh, for h = (hy, hy) € R

), we deduce that

(3) Consider the matrix product on M,,(R),

i Mp(R) X Mu(R) — My,(R)
(M,N) —  MN

We equip the vector space M,,(R) with the norm [|-|| defined in Remark 3.2.16. Let M, N €
M,,(R) be fixed. Then, for H, K € M, (R), we have

WM+ H N +K)—¢(M,N)= MK + HN + HK.

The map (H, K) — MK + HN is linear, and ||HK|| < ||H|||| K| < ||(H, K)||*. Therefore,
we find dyy v(H,K) = MK + HN.

Example 4.1.6 : Let V be a normed vector space, and
GL(V)={ue L(V,V):uand u~! are continuous}.

Define the map Inv : GL.(V) — GL.(V),u — u~t. For h € GL.(V) such that |||h|| < 1, we know
that id +h is invertible with inverse

(id+h) "' =id—h+ > (=1)"h"™

n=2
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We have
|||h\||

<A = 1

n=2

Z nhn

n=2

Thus, when h — 0, we have
(id —i—h)_1 =id —h+ o(||A|])-

This means that Inv is differentiable at id with differential d Inv;q : A — —h.

Proposition 4.1.7 : If f is differentiable at a € A, then f is also continuous at a.

Proof : Suppose that f is differentiable at a € A. Then, we can find a continuous linear function
@ :V — W and r > 0 such that

Vh e By(0,r), fla+h)=f(a)+e(h)+ |[hllye(h),
where limj,_,oe(h) = 0. Fix 0 > 0and 0 < 7’ < 7 such that ||e(h)||;, < 6 for h € By (0,7"). Then,
Vh e By(0,7), |[f(a+h) = fa)llw < le®llw + 7]y 0 < (M +6)[|Ally

where M = |||p]||. This implies the continuity of f at a. O

Proposition 4.1.8: Let V, W be two normed vector spaces, A C V' be an open subset, and f,g : A — W
be two differentiable functions at a € A. Then,

(1) f + g is differentiable at a, and d(f + g)q = df, + dga,

(2) forevery A € K, \f is differentiable at a, and d(\f), = Adf,.

Proof : Complete the proof by yourself using directly the definition in Definition 4.1.1. n

Proposition 4.1.9 (Chain rule) : Let V, W, X be normed K-vector spaces, A C V and B C W be two
open subsets. Consider two functions f : A CV — Wandg: B C W — X satisfying f(A) C B.
Suppose that f is differentiable at a € A and g is differentiable at f(a). Then,go f : ACV — X is
differentiable at a, and we have

d(g o f)a = dgf(a) © dfa- (4.2)

Remark 4.1.10:IfV =W = X = R, Eq. (4.2) becomes (g o f)'(a) = ¢'(f(a)) - f'(a), which is the chain

rule we have seen in the first-year calculus.
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Proof : By the differentiability of f at a, we can write
fla+h) = f(a) +df.(h) +o(||h|ly;), whenh — 0.

When we compose with g and by the differentiability of g at b = f(a), we get

(go f)la+h)=g(f(a)+dfa(h)+o(||R]))
el g
= g(f(a)) + dgs(h') + o(|W'|})-

Since df, € L.(V,W), by Theorem 3.2.12, we know that ' = O(||h||;,). Similarly, due to the fact
that dg, € L.(W, X), we have

dge (') = dgp o dfa(h) + dgs(o(l|1lly)) = dgs o dfa(h) + o(||Ally).

and the map dgy o d f, is linear and continuous being composition of such functions. In consequence,
(go flla+h) = (go f)(a)+dgsodfa(h)+o(|lly), whenh — 0.

implying that d(g o f), = dgp o d fs. O

Corollary 4.1.11:Let f,g : A C V — R be differentiable at a € A, then the product fg is also
differentiable at a, and

d(fg)a = g(a) - dfa + f(a) - dga-

Proof : It is a direct application of Proposition 4.1.9. Actually, let us consider the functions

p: A — R? v: R? — R
z o= (f(x),9(x) (z,y) = wy

Then, the product fg is the composition x — (i) o ¢)(x), and we have

d(px(h) = (dfm(h)vdg:ﬁ(h))
Aoy (s hy) = By + By,

Therefore, by composition, we find, for h — 0,

d(fg9)a(h) = dipy() © dpa(h) = g(a) dfa(h) + f(a) dga(h)

4.1.2 Mean-value theorem

We recall from the first-year calculus that for a continuous and differentiable function f : I — R, where
I C R is an open interval, we have the mean-value theorem stated as below. For a,b € I with a < b, there
exists ¢ € (a, b) such that

fb) = f(a) = f'(c)(b—a). (4.3)

4 Last modified: 15:55 on Tuesday 10™ December, 2024



Chapter 4 Differentials in normed vector spaces

In particular, if we know that supycpq ) |f'(c)| < M, then [f(b) — f(a)| < M (b — a), which is known as
the mean-value inequality. Below, we are going to generalize the mean-value theorem and the mean-value
inequality to functions defined on an open subset of a normed vector space, with values in another normed
vector space.

Lemma 4.1.12: Let a < b be real numbers, and W be a normed vector space. Let f : [a,b] — W and
g : [a,b] — R be two continuous functions on [a, b] and differentiable on (a,b). If || f'(¢)|ly, < ¢'(t) for

all't € (a,b), then || f(b) — f(a)lly < g(b) —g(a).

Proof : First, let us assume that || f'(¢)||,;, < ¢'(t) for all ¢ € (a,b). This means that,

fz) = f(1) g9(x) —g(t)

Vt € (a,b), lim H BT I8)
fgf x—1 w x—1
= Vte(a,b),3 HHH M
y >tV € (t,y), pr— po—
= Vte€ (a,b),3y >t Ve eltyl, |f(z) - fO)lw < g(z) —g(b). (4.4)
Let [, 5] C (a, b), and we want to show that
1£(B) = ()l < g(B) — g(e). (4.5)

Let
I'={0 € (a p]:Vz€[a,0],]|f(x) - f(@)lly < g(z) —g(a)}.
It follows from Eq. (4.4) that I is nonempty. Let v = sup I, and we want to show that v = 3, which
will imply Eq. (4.5).
We prove by contradiction. Suppose that v < 3. Since f and g are continuous, we also have

1£(7) = fl@)llw < 9(7) — g(@). (4.6)

But from Eq. (4.4), we know that

35 € (v, Bl,Vz € [v,9], [If(=) = fF(Mw < 9(x) —9(7). (4.7)

Then, it follows from Eq. (4.6) and Eq. (4.7) that there exists 6 € (v, 3] such that

Vo e [y,d], [f(z) = flo)llw <g(z) —g(a).

This shows that § € I', which is not possible because we assumed that 6 > v = supI'. Therefore,
Eq. (4.5) is true. Then, we may take « — a and 8 — b in Eq. (4.5), and by continuity of f and g, we
also have [|£(b) — £(a) |y < 9(b) — g(a).
To conclude, we need to deal with the case with the original hypothesis || f'(¢)||;;; < ¢/(t) for all
€ (a,b). Fix e > 0, we may consider g.(t) = g(t) + et for t € [a,b]. Then, || f'(t)||,, < g.(t) for
t € (a,b). We may apply the above arguments to obtain || f(b) — f(a)|ly < g-(b) — g<(a). By taking
¢ — 0, we find the desired result. O
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Theorem 4.1.13 (Mean-value inequality) : Let V' and W be two normed vector spaces, and A C V
be an open subset. Let f : A C V. — W be a function. Consider a,b € A such that the line segment

[a,b] C A. Suppose that
(a) f is continuous on [a, b],
(b) f is differentiable on (a,b),
(c) there exists M > 0 such that ||df.|| < M forc € (a,b).

Then,
1£(6) = f(a)llw < M|[b—all . (4.8)

Proof : Let g : [0, 1] — W be defined by g(¢) = f(a + t(b — a)) for t € [0, 1]. Then, g is continuous
on [0, 1] and differentiable on (0, 1), with derivative

g/(t) = dfa+t(bfa) (b - a)7 vt e (a’ b)

Therefore, ||¢'(t)|ly, < M ||b—al|y fort € (0,1). By Lemma 4.1.12, we find the desired result. O

Remark 4.1.14 : We note that here in general normed vector spaces (dimension larger or equal to 2), the
best result we can get is only an inequality, even when the operator norm of the differential is always equal
to M in the condition (c) of Theorem 4.1.13. We may consider for example the map

fi R — R2
t — (cost,sint).

It is not hard to check that for every ¢ € R, we have df; = (—sint,cost) which satisfies [|df|| = 1.
However, we have || f(0) — f(27)|| = 0 # 27 - 1.

Theorem 4.1.15 (Mean-value theorem) : Let V' be a normed vector space and W = R™ be an Euclidean
space, and A C V be an open subset. Consider a function f : A C V — R” that is differentiable on A.
Let a,b € A such that [a,b] C A. Then, for any vector v € R", there exists ¢ € (a, b) such that

v-[f(b) = f(a)] = v-dfe(b— a). (4.9)

Proof: Let h = b — a. Since A is open and [a, a + h] C A, there exists § > 0 such that a + th € A for
t € (—0,1+0). Fixavectorv € R" and let g : (—9,1 + d) — R be defined by

g(t) =v- f(a+th), ¥te (—0,1+9).
Then, f is differentiable on (—d, 1 4 §) and its derivative writes

Ql(t) = v - dfarn(h).
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By the classical one-dimensional mean-value theorem (Eq. (4.3)), we have
g(1) — g(0) = ¢'(t), forsomet € (0,1),

which is exactly Eq. (4.9). O

4.1.3 Directional derivative

Definition 4.1.16 : Let a € A. We say that the directional derivative of f at a in the direction u € V'
exists, denoted by f/ (a), if the following limit exists

Proposition 4.1.17 : If f is differentiable at a, then its directional derivative at a in any directionu € V'
is well defined, and we have f](a) = df,(u) = Df(a)(u).

Remark 4.1.18 : We note that if the directional derivative of f at @ in any direction exists, it does not
necessarily imply that f is differentiable at a. Actually, even the continuity at a does not hold in general. We
may consider f : R> — R defined by

L ifgy #0
z, _ T 0 )
/(@y) {y, ifx =0.

Then, f is not continuous at (0, 0) because for example,
lim f(x, /) = 1 #0 = f(0,0).
x—0

However, for any u = (a,b) € R?, the direction derivative of f at (0, 0) in the direction u exists,

/ T

f(h(a,b))—f((),())_ %a ifa?éo’
h b, ifa=0.

Below, let us take V' = R" to be the n-dimensional Euclidean space, with the canonical basis given by
(e1,...,€n). Let Abe an open subsetof V,and f : A — W.

Definition 4.1.19 : For 1 < i < n, if the directional derivative of f at a in the direction e; exists, we
say that its partial derivative at a with rerspect to the i-th coordinate exists and define

of
al’i

(a) = f;,(a) (4.11)
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Remark 4.1.20:
(1) Following Remark 4.1.18, it is possible that all the partial derivatives of f at a exist without f being
differentiable or continuous at a.
(2) If A C R™ — R is differentiable at a € A, then all the partial derivatives at a exist, and

of e " Of A
oz, (a)dx;, grad, f= ; oz, (a)ei,

Df(a) =)
=1

where (dz; = €])1<i<n is the dual basis in (R")* = L(R", R) of the canonical basis (e;)1<i<n of R”,

that is
dxi(ej) = 6;(63') = (51'7]', V1 < ’i,j < n.

In particular, we have

D@m= 2L (@i = (arad, ) b (@12

Theorem 4.1.21: Let f : A C R™ — W. Suppose that
(a) all the partial derivatives of f exist on A,
(b) the partial derivatives are continuous at a.

Then, f is differentiable at a with

Df(a) = Z B, (a) dx;. (4.13)

Remark 4.1.22 : We recall that D f(a) is a linear map from R" to W. For each 1 < ¢ < n, the partial
derivative d—g (a) is a vector in W, dx; is a linear form on R", that is a linear (continuous) function from R"

to R. If we evaluate Eq. (4.13) at u € R", the left-hand side gives us D f(a)(u) € W, and each term on the
right-hand side gives us a scalar dz;(u) = u; € R, multiplied by the vector g—i(a) ew.

Proof : We equip R" with the norm ||z| = >"I*; |x;|. Let
g: A — w
x = f(x)— ;x,axi (a).

We want to show that when x — a, we have g(z) — g(a) = o(||x — al|).
Let € > 0. The continuity in assumption (b) guarantees that there exists r > 0 such that for 1 <7 <

of of
o1, (z) — o, (a)

Since A is an open set, by choosing a smaller 7 > 0, we may assume that B(a,r) C A.

n, we have

dg
X

. 4.14
Ox; HW =€ (.19

w

Ve € AN B(a,r), ‘
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For z € B(a,r), we consider the following points

yoz(alanwan):aa

yp = (T1, ..., Tpy Qfg1y - -y 0n), VE=1,... n.

We note that yg = a, ¥, = x, and the intermediate y;’s are obtained by replacing coordinates of a by
those of « one by one. For 1 < k < n, define

gk ¢ lag,xr] — w
t = g(T1, . 1, Aty -y Gp)-

The derivative of g; writes

9g
p(t) = =——(x1,...,25_1,t,a o,a
gk( ) 8$k( 1, sy bk—1,0, Ok41, ) n),
and it follows from Eq. (4.14) that || g, (¢)|l,;; < € on [ag, ;). Therefore, it follows from Lemma 4.1.12
that

gk (@r) — grar)lw < el — axl.
Since gi(ax) = 9(yr—1) and gi(zr) = g(yx), we get

n

> l9wr) = 9(yr—1)]

lg(2) = g(a)lly = H
k=1 w

n
< Z l9(yk) — 9(yk—1)llw
k=1
n
<€Z\9€k—ak| =¢llz—af.
k=1

Thus, we have obtained
Vz € B(a,r), |9(z) —g(a)lly <elz—a.

Or equivalently, g(z) — g(a) = o(||]z — al|). O

Remark 4.1.23 : Note that the converse of Theorem 4.1.21 is false. We have functions which are differ-
entiable whose partial derivatives need not to be continuous. For example, consider the classical example

f : R — R defined by

fla) = {x2 sin(), ifx #0,

0, ifz =0.

We can compute the derivative of f at 0 as below,

oy — i )= FO)
f1(0) = }IZ%T = }llli%hsm(%) = 0.

However, the derivative of f at  # 0 writes
f'(x) = 2z sin(2) — cos(2).

And clearly, the f’ is not continuous at 0.
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4.1.4 Jacobian matrix

We look at the special case where our normed vector spaces are taken to be Euclidean spaces, that is

Vv

= R" and W = R™ for some n,m > 1. Let (v1,...,v,) be the canonical basis of V' = R" and

(w1, ...,wm) be the canonical basis of W = R™. Let A C R"” be an open subset and f : A — R™
be a differentiable function at @ € A. Since df, € L.(R™,R™), it can also be represented by an m x n
real-valued matrix using the canonical bases, that is, with matrix coefficients given by

dfa(vy) -w;, 1<i<m,1<j<n.

Definition 4.1.24 : The Jacobian matrix of f at a is the matrix J¢(a) € My, ,(R), given by

af;
o) = 5ot @)]
1<isn
where f; = Proj;o fforl <i<mand f =} ;" fiw;. When m = n, the Jacobian matrix is a square

matrix, and we call its determmant det(Jf(a)) the Jacobian determinant or simply the Jacobian.

Remark 4.1.25 : We note that the i-th row of the Jacobian matrix J;(a) is the gradient of f;, that is

— o0f; — of;
grad, fi = EI Loy, or (amad, 1) <a;f”> |
V1y.-+yUn 7 1<J<TL

We may also write the differential of f at a as follows, using Eq. (4.12), we find, for all » € R", that

:ZDfi(a) Z ﬁafz h|w;.
i=1

=1

This is exactly the matrix multiplication between Jf(a) and h, where the vector h is represented in the
canonical basis (v1,...,v,) asann X 1 column matrix, and the resulting matrix is an m x 1 matrix, which
is D f(a)(h) represented in the canonical basis (w1, . . ., wy,) of R™.

Proposition 4.1.26 (Composition and Jacobian matrices) : Let m,n,k > 1 and A C R™, B C R"
be two open subsets. Let f : A — R™ and g : R® — R* be such that f(A) C B. Suppose that f is
differentiable at a and g is differentiable at f(a). For 1 < ¢ < n, we also write f; = Proj, o f to be the
i-th coordinate of the function f. Then, the functionh = go f : A — RF is differentiable at a and its
Jacobian matrix writes

Jn(a) = Jy(f(a)) - Jy(a).

Alternatively, we may also write, for1 < j < m,

10
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Proof : It is a direct consequence of Proposition 4.1.9 written in terms of the Jacobian matrices defined
in Definition 4.1.24. i

Example 4.1.27 : Let f : R? — R be a C! function. Consider the map

(T2l R>0 xR — RQ
(r,0) +— (rcos6,rsiné).

Then, the composition F' = f o ¢ is a C! function, and can be seen as the function f written in the
polor coordinates. We have

Jp(r,0) = Jg(rcosB,rsin®)J,(r,6)

91 91 |
& (6£ ‘BLF):(@i 871’) or 00 :(87]’ Qf)(cow —T81n9>'
or 00 ox 0Oy % % oxr dy sinf)  rcosf
or 00
In other words,
OF _ ooggOF _SMOOE 4 OF _  gOF  cos0OF
or U a9 " dy B r 00’

4.2 Higher-order derivatives

In this subsection, we will focus on the case of finite dimensional vector spaces. However, we will still
mention a generalization of higher-order differentials to general normed vector spaces in Section 4.2.3.

4.2.1 Schwarz theorem

Let A be an open subset of R and f : A — W be a function. Let p > 1 be an integer,and 1 < i1,...,7, <
n. We may define the partial derivative of order p by induction, under the assumption of existence,

oPf 0 ( oL f )

8:1:% e 8:1:1'1 al'ip 6‘1‘%71 N al'il

We say that f is of class CP if all its partial derivatives up to order p exist and are continuous on A.

Theorem 4.2.1 (Schwarz theorem) : Let f : A C R%2 — R be a function, where A C R? is an open
subset. Suppose that the partial derivative

0% f 0% f
and
0xdy 0yox

exist on A, and are continuous at a € A. Then,

0% f B 0% f
Oxdy (a) = ay&v(a)'

(4.15)
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Remark 4.2.2 : It follows from the above theorem that, under the assumption of existence and continuity,
the order of partial derivative does not count.

Example 4.2.3 : This example is due to Peano. Consider the function f : R? — R defined by

_JeEs i () # 0,0),
f(z,y) {0 v o0

On one hand,
4 2.2 4
of . U HEE YD if (2,y) # (0,0),
7(.’17,1/) - (@*+y%)
O 0 if (z,) = (0,0).

Therefore, %(O, y) = —y fory € R, giving us

0’ f
oyox

(0,0) = —1.

On the other hand,

af _ ”(xz+—2)2 if (z,y) # (0,0),
By =Y) {o ' if (,y) = (0,0).

Therefore, g—i(x, 0) = z for x € R, giving us

0% f
0xdy

(0,0) = 1.

Actually, one can easily check that, the second partial derivatives are not continuous. In fact, for
(z,y) # (0,0), we have

an ( ) 336 + 91’43/2 _ 9$2y4 _ yﬁ
€T =
Oyox Y (22 +y?)3 ’
which gives
- 0°f i
liny Sy @0 =1, and limz 50 (0.y) = 1.

You may also see this discontinuity using an antisymmetry argument, without doing computations.

Proof : Without loss of generality, we may assume that a = (0,0) € A. Let h,k > 0 such that
[0,h] x [0,k] C A and

Consider the function ¢ defined by

¢: [0,h] — R
x = f(x, k)= f(x,0).

Then, d(h,k) = ¢(h) — ¢(0). Since ¢ is continuous on [0, k] and differentiable on (0, &), it follows
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from the mean-value inequality on R (Eq. (4.3)) that there exists ¢; € (0, 1) such that

of of
/ —
5(h, k) = hy' (t1h) = h[ax (t1h, k) = 5 (b, 0)].
The function y — —gi (t1h,y) is continuous on [0, 1] and differentiable on (0, 1), it follows again from

the mean-value inequality that there exists to € (0, 1) such that

0(h,k) = hk O (t1h, tok) (4.16)
) - ayax 174, L2 ). .
If we consider the function ¢ defined by
Y [0,k] — R

y = flhy) = f(0y)
and follow the same steps as above, we may find t3, ¢4 € (0, 1) such that

o2 f
O(h, k) = bk

(tgh,t4]€). (4.17)

By putting Eq. (4.16) and Eq. (4.17) together and taking h, &k — 0, the continuity of the partial deriva-
tives at (0, 0) implies that they are equal at (0, 0). O

Corollary 4.24: Let f : A CR"™ — R™ be a function, where A C R" is an open subset. Suppose that
f is of class C?, then the partial derivatives up to order p do not depend on the order in which we take the
derivative. Therefore, we may simply write these derivatives in the following form,

ok f

W Where Zl++ln:k<p
Il... In

4.2.2 Hessian matrix

Definition 4.25:Let f : A C R™ — R be a function, where A C R" is an open subset. Suppose
that all the second order partial derivatives of f exist at a € A. Then, the Hessian matrix of f at a is
defined by
0% f
H¢(a) = [ (a)] : (4.18)
I 89:181:] 1<i,j<n

If the second derivatives are continuous at a, then Schwarz theorem (Theorem 4.2.1) implies that the
Hessian matrix is symmetric at a.

Below, we will always consider a function f whose second order derivatives are continuous, so that its
Hessian matrix is symmetric.

Last modified: 15:55 on Tuesday 10" December, 2024 13



Chapter 4 Differentials in normed vector spaces

Proposition 4.2.6 : Under the same assumption as in Definition 4.2.5, we have

Hy(a) = Jy(grad f(a))".

Proof : It is a direct consequence by applying the definition of the Jacobian matrix to the gradient
vector. ]

When we study the local behavior of a function f : A C R™ — R with some good assumptions (continuity
of all the second derivatives), the Hessian matrix is symmetric and defines a quadratic form (ZZXH!). The
property of this quadratic form at a critical point can tell us whether this critical point is a local maximum,
a local minimum, or a saddle point (¥4%4). See Section 4.3.2 and Section 4.3.3 for more details.

4.2.3 Higher-order differentials

Given a function f : A C V — W betweeen an open subset A of a normed vector space V' and another
normed vector space W, we defined its differential at a point a € A in Definition 4.1.1, and its differential
map D f in Definition 4.1.3, under the condition that these notions exist. We may define its higher-order
differentials by differentiating the differential map Df : A — L.(V,W).

From Definition 4.1.1, we know that the differential of D f should take its values in L.(V, L.(V, W)),
which may be identified as the space L2(V x V, W), the space of continuous bilinear maps from V' x V to
W, via the following map

LV, L(V,IV)) — L2(V xV, W)
o L Jvxvo W
(z,y) — @(z)(y)

Similarly, the differential of order p > 1 takes values in the space LZ(V?, W), which is the space of continuous
p-linear maps.

Definition 4.2.7 : We define the higher-order differentials of f recursively.

« For p > 1, we say that f is differentiable p + 1 times at a € A if its p-th differential DPf : A —
LP(VP W) is well defined, and writes

Dpf(a =+ hp+1)(h17 R hp) = Dpf(a/)<h17 R h‘p) + @p-l—l(hl; ceey hp7 hp+1) + O(th-i-IHV)

when h,r1 — 0, uniformly for (hq,...,hp) in a bounded set of VP, for some ¢pi1 €
LPHL(VPTL W), If such a map 41 exists, it is unique, and is called the (p + 1)-th differential
of f at a, denoted by DP*! f(a).

« For p > 1, we say that f is of class C? if DP f is well defined on A and is continuous on A.

Remark 4.2.8 :Let ustake V = R", W = R, and A C V be an open subset. Consider a C! function
f A — W and suppose that its second partial derivatives exist. Fix a € A, and take ¢ > 0 such that
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Chapter 4 Differentials in normed vector spaces

B(a,e) C A. Then, for hy € B(0,¢), we have

af (a + h2) dib‘l(hl)
1 9Ti

Df(a+ h)(h1)

Il
gﬂ:

(2

0 f

{8332 +]z:1 O0x;0

= )(h1) +Zzh2,ya 8 (a)h1,i + o([[hzlly,) O(l|a]ly)-

i=17=1

Il
M:

)hsj + ol[[hally,)] dwi(ha)
1

.
Il

This implies that D? f(a) is the (continuous) bilinear form given by the Hessian H(a), written by
_ T
(h1, ha) — Z z_: h2,jm(a)h1,i = hy Hy(a)h,.

Similar relations between higher-order differentials and higher-order derivatives exist as well. We do not
discuss more here since this is not the main goal of this class.

In the following section, we will keep the same setting, that is V' = R™ and W = R, and look at the Taylor
formulas of a function f : A — W, where A C V is an open subset. In this case, we will only need the
higher-order differentials DP f evaluated at (h, ..., h).

———

p times

4.3 Local behavior of real-valued functions

In this section, we are interested in real-valued functions and their local behaviors.

4.3.1 Taylor formulas

Let p > 1 be an integer. We recall that for a C? function f : I — R, where I C R is an open interval, we
have the following Taylor formulas. Let x € I and h € R be such that x + h € I.

p—1 m p
Taylor-Lagrange f(x + h) = f(x) + Z f(m)(:c)h—‘ + f(p)(c)h—' for some ¢ € (x,z + h).
— m! p!

p—1 m -
Taylor integral  f(z + h) = f(x) + Z f(m)(x)% + P /01 (1(p_t)1p)'1f(p) (x 4 th)dt.
hm

Taylor-Young f(x + h Z — + o(|h|”) when h — 0.

Below, we are going to generalize these formulas to real-valued functions defined on a subset of a higher
dimensional Euclidean space R".

Let A be an open subset of R”, f : A — R be a function of class C” withp > 1,and a € A. We have already
defined the differential d f,, of f at a in Definition 4.1.1, and we gave the relation between the differential and
the directional derivative f],(a) in Proposition 4.1.17. Moreover, it follows from Theorem 4.1.21 that this can
also be expressed using partial derivatives of f at a. Below, we are going to define higher-order directional
derivatives of f.
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Chapter 4 Differentials in normed vector spaces

We will see that the Taylor formulas in higher dimensions are not too much different from their one-
dimensional counterparts, due to the fact that when we restrict the function f on a segment [z, z + h], we
are actually studying a function defined on a one-dimensional subspace.

Definition 4.3.1: For 1 < m < p, we may define the mth derivative of f at a in the direction u € R"
as follows,

fi™ (a) = Z Z 8x : (937 —————(a)ui, - - Uiy, (4.19)

i1=1
=

Jit+t+jn=m

m! amf
g1t gnl 0t L By

(a)ul' ... uln, (4.20)

where the equality is a direct consequence of Theorem 4.2.1.

Theorem 4.3.2 (Taylor-Lagrange formula) : Let x € A and h € R" such that [z, x + h] C A. Then,
there existst € (0,1) such that

p=l pm) ()
f(x+h) = f(z)+ Z fhm!(a:) n In (:}L;!—I— th).

m=1

(4.21)

Proof: Since Aisopenand [x,z+h] C A, there exists § > 0 suchthatx+th € Aforallt € (-4, 1+9).
Let g : (—0,1 4 6) — R be defined by

g(t) = f(z +th), Vte (=8,1+0). (4.22)

We note that g is still a function of class C? being composition of such functions. We also have f(x +
h) — f(z) = g(1) — ¢g(0). Let us apply the classical Taylor formula to g, that is

—1 ) (»)
g(1) —g(0)= > J m!(O) +7 p!(t> for some ¢t € (0,1).

m=1

We may explicit the derivatives of g as below using the chain rule (Proposition 4.1.9). Fort € (=4, 1+9),
we have

g'(t) = dferem(h Z p(x +th),
1
p S (92f @)
t) = +th)h;h; = +th
g'(t) jz_:“_zl 92,0 1($ ) (z + th).

And by induction, we easily find that
g™ (t)=f, "(x+th), and g¢g"™(0)=f,"(x), Ym=>1.

This allows us to conclude. O
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Using the same technique by setting the function ¢ as in Eq. (4.22) and the other one-dimensional Taylor
formulas, we easily deduce the following results.

Theorem 4.3.3 (Taylor formula with integral remainder) : Letx € A andh € R" such that [x,x+h] C
A. Then,

m)
fz+h) = f(z)+ Z ( ) /O (1(p_ t)) £ (@ + th) dt. (4.23)

Proof : See Exercise 4.19. O

Theorem 4.3.4 (Taylor-Young formula) : Let x € A. Then, for h — 0, we have

B LA () )
fl@+h) = f@)+ 3 L=+ of|Ap). (4.24)

m=1

Proof : See Exercise 4.19. O

4.3.2 Quadratic form

Definition 4.3.5 : Given a symmetric matrix A € M, (R), we can define a quadratic form (ZZXEY)
on R" by
— _ . T n
ga(x) = qa(z1, ..., xy) = Z a;jriv; =x Az, Vo eR", (4.25)
1<i,j<n

where a vector in R™ can be seen as a column vector.

Definition 4.3.6 : Given a quadratic form (), we say that it is
« positive if Q(x) > 0 for all z € R,
« positive-definite if QQ(x) > 0 for all z € R™\{0},

« negativeif Q(z) < 0 for all z € R",

« negative-definite if Q(x) < 0 for all z € R™\{0}.

Remark 4.3.7 : Under the condition that all the second partial derivatives are continuous at @ € A, we may

rewrite ff)(a) as follows,

n n
= Z Z U = uTHf(a)u,
i: J—

9:10:13]

where Hy (a) is a symmetric matrix, the vector u can be seen as a column vector, and ul is its transposition.
This defines a quadratic form in the sense of Definition 4.3.5.
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Remark 4.3.8 : From the class of linear algebra, we know that a symmetric matrix A is diagonalizable, that
is, we may find a diagonal matrix D = Diag(\1,...,A,) with \; > ... > ), and an orthogonal matrix P
(thatis, PPT = PTP = I,,) such that A = PT D P. This means that, after a proper change of basis given by
P, the quadratic form is diagonal. More precisely, let v = Pu, then

u” Au = (Pu)' D(Pu) = vT Do,
meaning that

ga(u) = gp(v) =Y Ailvil*.
=1

Therefore, we may conclude that if A, > 0, then the quadratic form is positive-definite; if A\; < 0, then the
quadratic form is negative-definite.

4.3.3 Local extrema

Below, let A be a subset of R™ and f : A — R be a function. We want to study the local extrema of f. To
do so, we are going to use the Taylor formula that we got in Section 4.3.1.

Definition 4.3.9 :If f is differentiable at an interior point a € A with d fa = 0, then we call a a
critical point of f.

Proposition 4.3.10 : Suppose that f attains a local extremum at an interior point a € A and fis
differentiable at a. Then, a is a critical point of f.

Proof : Without loss of generality, we may assume that f attains its local maximum at a. Let h € R",
and we want to show that df,(h) = 0. Since a € A, there exists ) > 0 such that [a — nh, a +nh] C A.
We define the map ¢ : [-n,n] — R,t — f(a + th), which has a local maximum at ¢ = 0. Since f is
differentiable at a, we know that ¢ is differentiable at 0, and we have ¢’(0) = d f,(h). Additionally, we

have
p(t) —(0) P —¢0) -

/ T / T
¢'(0) = lim ; <0, and ¢(0) = lim ;
>0 t<0
which gives us ¢/(0) = 0. O

Remark 4.3.11: Proposition 4.3.10 tells us that, to look for local extrema of a function f : A — R, we need
to look at the following types of points,

(i) a € A which is a critical point of f;
(ii) a € A where f is not differentiable;
(iii) a € A\A.
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Theorem 4.3.12: Suppose that f is of class C* and there exists a € A such thatdf, = 0. Taylor-Young
formula (Eq. (4.24)) gives us

fla+h) = f(a) + %Q(h) + O(Hh”z), when h — 0.

(1) If f attains a local minimum (resp. maximum) at a, then Q) is a positive (resp. negative) quadratic
form.

(2) If Q is a positive-definite (resp. negative-definite) quadratic form, then f attains a local minimum
(resp. maximum) at a.

Example 4.3.13 : In Theorem 4.3.12 (2), it is not enough for the quadratic form to be only positive to
have a local minimum. Indeed, we may consider the function f : R — R,z — 23 at a = 0, then the
quadratic form is @ = 0 but f does not attain a local extremum.

Proof :

(1) Suppose that f attains a local minimum at a. Let h € R™ and ¢ € R. When ¢ is sufficiently close
to 0, we have

fla+th) = f(a) + %Q(th) +o([[thl]*) = f(a).

This implies that
0< Q(th) +o(th]]*) = £(Q(h) + o(1),
that is Q(h) > 0 when we take ¢ — 0.

(2) Suppose that @ is a positive-definite quadratic form, then for h € R", h # 0, we have Q(h) > 0.
Since the unit sphere S(0, 1) of R" is compact, we deduce that m = infj,cg(o1)Q(h) > 0.
Therefore, for h — 0, we have

2 2
Flact ) = 1) = 510 + o) = - [Q () + o] = ot o)

For h close enough to 0, we have m + o(1) > 0, leading to f(a + h) > f(a).

Example 4.3.14 : Let us consider the case n = 2 as an example. A quadratic form on R? may be
represented by a symmetric a matrix

A:(Z j)eMz(R).

Following Remark 4.3.8, we know that A = PTDP, where P is an orthogonal matrix and D =
Diag(A1, \2) is a diagonal matrix with A\; > Ay. We obtain the following relations for the eigenvalues
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A1 = Ag,

AL+ Ao =tr(D) =tr(A) =7+ ¢,
A2 = det(D) = det(A) = rt — s°.

Therefore, we have the following cases,
(i) When rt — s? > 0,and r + ¢ > 0, the quadratic form associated with A is positive-definite.
(ii) When rt — s? > 0, and r + t < 0, the quadratic form associated with A is negative-definite.
When we apply this to a C? function f : A C R? — R,and a € A is a critical point of f. Write

B 0% f B 0% f B 0% f
= 5@, 5= 5@, t=G5)

r

Then, from the discussion above, we know that
(i) When rt — s2>0,andr 4+t >0, f attains a local minimum at a.
(i) When 7t — s2 > 0,and 7 + ¢ < 0, f attains a local maximum at a.
(iiiy When rt — 52 < 0, f does not have an extremum at a, and we call it a saddle point (¥ZEf).

(iv) When 7t — s? = 0, we cannot say anything.

4.4 Implicit function theorem
4.4.1 Inversion theorems

For a C! function f : R — R, we know that if f’(z) # 0 for all z € R, then f is a bijection and its inverse
f~tisalso aC! function satisfying (f~1)[f(z)] = [f'(z)] ! forall z € R.

Let V and W be two Banach spaces, and A C V be an open subset of V.

Theorem 4.4.1 (Local inversion theorem) : Let f : A — W be a function of class C'. Suppose that
there exists a € A such that (df,) " exists and that df, and (df,)~! are continuous (we say that df, is
a bicontinuous isomorphism). Then, there exists an open set X containing a and an open setY containing

f(a) such that
(i) the function f|x is a bijection between X andY ;
(ii) the inverse function g := (f|X)_1 : Y — X is continuous;
(iii) g is of class C* and dgf(z) = (dfy)~! forallz € X.

In this case, we also say that fix : X =Y isa C'-diffeomorphism between X and Y, or f : A — W is
a local C! -diffeomorphism around a.
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Remark 4.4.2:

(1) This theorem is called local inversion because it only describes the local behavior around ¢ € X and
f(a) € Y. Later in Corollary 4.4.5, we will see how to upgrade this local inversion theorem into a
global inversion theorem.

(2) If we consider V- =W = R" for some n > 1, since L(V, W) = L.(V, W), the condition for the local
inversion at a € A C V reduces to the condition d f, is invertible, that is det J¢(a) # 0.

Example 4.4.3:

(1) If we consider f : R — R, 2 + 2%, which is a C! function on R. For a € R\{0}, the derivative
f'(a) = 2a # 0, and it follows from the local inversion theorem that when f is restricted
to an open set X containing a, its inverse is well defined. Actually, when ¢ > 0, we may
take X = Y = (0,00), and define g(y) = ,/y for y € Y; and when a < 0, we may take
X = (-00,0),Y = (0,00), and define g(y) = —/y fory € Y.

(2) If we define the transformation between the polar coordinates and the Cartesian coordinates,

¢: (0,00) x RCR? — R?
(r,t) — (rcost,rsint),

then its differential at (r,¢) € (0,00) x R writes

N I /s / [ cost —rsint r’
deypi(r',t") = (r' cost — t'rsint,r smt+trcost)—<sint - eost )( >

This gives us

ks 40, e )< S5E )

From the local inversion theorem, at all (r,¢) € (0,00) X R, we may find an open set X con-
taining (r,t) such that f is invertible on X. However, f does not have a global inverse, because
it is clearly not injective.

Proof : Without loss of generality, we may consider z — (df,) ![f(a + z) — f(a)] instead of f, so
that we can assume a = 0, f(a) = 0, and dfy = df, = idy, so V = W. Using the assumption that f
is of class C1, there exists > 0 such that

B(0,r) CA and ||df, —dfoll = ldfs —idv|| < 5, V€ B(0,r).

Then, for z € B(0,r), we have df, = idy —u, where u = idy —df, with [|u[| < 3, and it follows
from Proposition 3.2.20 that

(dfe) ' =idy+ > u",

n>1

Iz~ < 3 il < 2 (826
n=0
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(i)

(iii)

22

First, let us show that f has a local inverse. More precisely, we want to prove that for every
y € B(0, ), there exists a unique = € B(0, 7) satisfying f(z) = y. We are going to construct a
function and apply the fixed point theorem (Theorem 3.2.7) to show this.

Let y € B(0, 5) and consider the function

h: B(0,r) — Vv
x = y+ax— f(z).
The function h is of class C!, and for every z € B(0,7), we have ||dh,|| = [[idy —df.|| < 3.
Thus, by the mean-value inequality (Theorem 4.1.13), we find
/ 5 / ]‘ /
Va,2' € B(0,r), |[|h(z) —h(z')|| < 3 |z —2'|| . (4.27)

Therefore, for x € B(0,7), we have
1
Ih@)IF < llyll + llz = f(@)]] = llyll + [Ih(2) = RO < llyll + 5 2]l <7

It means that / is a contraction from B(0,7) to B(0,7) C B(0,r), so the fixed point theorem
(Theorem 3.2.7) implies the existence and uniqueness of x € B(0,r) such that h(z) = z. But
since h takes values in B(0, r), it follows that the fixed point x belongs to B(0, ), and we have

flz)=y.

To conclude, let Y = B(0,%) and X = f~(Y) N B(0,r). Due to the continuity of f and
f(0) = 0, the open set X also contains 0. Then from what we have shown above, the restriction
Jix + X — Y is a bijection.

Let g : Y — X be the inverse f|x,ie. g = (f‘X)_l. Consider the function h : X — V,z —
x — f(x), so we have © = f(z) + h(x) for x € X. Then, for z,2’ € B(0,r), we have
1
o — &'l < 11(2) — A + 1£(@) = @ < & e =2 + 17(@) — £
& ool <2)f@) - 1)

Therefore, for i,/ € Y, we have

lg(y) — 9| <2 f(9w) — FlaN| =2y —¥||- (4.28)

This implies that g is a Lipschitz function, so continuous.

Letz € X andy = f(x) € Y. Let us first check that dg, = (df;)~!. Let w € W such that
y+w €Y, and v = g(y+w) — g(y), which is equivalent to w = f(z +v) — f(x). By Eq. (4.28),
we have ||v|| < 2 ||lw]|. Let

A(w) = g(y +w) — g(y) — (dfz) " (w)
= (dfz) "t odfa(v) — (dfe) ' f(z +v) — f(2)]
= —(dfe) ' [f(z +v) = f(z) = dfa(v)].
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It follows from Eq. (4.26) that
[Aw)|| <2 f(z+v) = fz) = dfe(v)]] = 2[jv] e(v),

for some function ¢ satisfying lim, g £(v) = 0. Let £(w) = e(g(y + w) — g(y)). Since g is
continuous, we also have lim,, 0 £(w) = 0. Thus,

8@ _ 2l
el

[[]] w—0

This means that g is differentiable at y with dg, = (df.)~'.

To conclude, since u ++ wu~! on the space of invertible endomorphisms is continuous

(Example 4.1.6 and Proposition 4.1.7), and g is continuous, we deduce that the map y — dg, =
(df(y)) " is also continuous, that is g is of class C'.

O

Corollary 4.4.4: Let f : A — W be a function of class C'. Suppose that d f, is invertible and bicontin-
uous for allx € A. Then, f is an open map, that is for any open subset X C A, the image f(X) is open
inW.

Proof : It is enough to prove for the case that X = A. For each a € A, the local inversion theorem
(Theorem 4.4.1) gives an open subset X, containing a and an open subset Y, containing f(a) such
that f|x, is a bijection between X, and Yy, i.e., f(X,) = Y;. Therefore,

f(A):f(UXa): Uf(Xa): UYaa

acA a€A a€A

which is still an open subset of W. g

Corollary 4.4.5 (Global inversion theorem) : Let f : A — W be an injective function of class C*. Then,
the following properties are equivalent.

(a) The differential df, is invertible and bicontinuous for all a € A.
(b) B = f(A)isopeninW and f~1 : B — A is of class C.

If one of the above properties is satisfied, we say that f : A — B is a C' -diffeomorphism between A and
B.

Proof :

+ (a) = (b). It follows from Corollary 4.4.4 that B = f(A) is open. Since f is injective, we deduce
that f is bijective from the open set A to the open set B. Now, we need to check that f~! is of
classC!. Letz € Aandy = f(z) € B. The local inversion theorem (Theorem 4.4.1), we can find
an open set A, containing z and an open set B, containing f(r) such that f4, : Az — By is
bijective and (f|4,) " is of class C*. Since (f )5 = (fja) ™" (f )5, = (fja,) "', and being
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C! is a local property, we know that f~! is of class C! around f(z). This holds for all x € A, so
f~1is of class C' on B.

« (b) = (a). Write g = f~!. Since both f and g are of class C', the relation g o f = Id4 and the
chain rule gives us dgy(,) o df; = Idy for all z € A. Similarly, the relation f o g = Idp gives
dfz odgy(y) = ldw for all 2 € A. Therefore, for all x € A, the differential d f, is invertible with
inverse dgy(,), which is continuous.

O

Remark 4.4.6 : We make a similar remark as in Remark 4.4.2 (2). If we consider an Euclidean space V =
W = R" for some n > 1, since L(V, W) = L.(V, W), we may replace the property (a) by

(@’) df, is invertible, or det Jf(a) # 0,

without requiring the bicontinuity.

4.4.2 Diffeomorphisms

Definition 4.4.7 : Let V, W be two normed vector spaces, and A C V and B C W be open subsets.
For k > 1, a function f : A — B is said to be a C¥-diffeomorphism if f is bijective, of class C* and
f~Lis also of class C*.

The following two corollaries give the conditions under which a map is a local diffeomorphism and a global
diffeomorphism in the setting of Euclidean spaces. Their proofs are based on the local inversion theorem and
the global inversion theorem. We note that they can also be generalized to Banach spaces by adding the
bicontinuity in the condition. Since we did not really discussed C* functions in general Banach spaces or
normed vector spaces when k > 2 (see Section 4.2.3), we keep our statements to Euclidean spaces for which
we had a thorough discussion about regularity in Section 4.2.1.

Corollary 4.4.8 : Let A C R" be an open subset. Let f : A — R™ be a C* function. Suppose that there
exists a € A such that d f, is invertible (or equivalently, det J¢(a) # 0), then there exists an open set X,
containing a and an open set Y, containing f(a) such that f|x, is a CF-diffeomorphism from X, to Yy,
We also have d(f&la)f(m) = (df,)" ! forallx € X,.

Proof : Since d f, is invertible, and we work with finite dimensional vector spaces, d f, is automatically
bicontinuous. Then, we may apply the local inversion theorem (Theorem 4.4.1) to find X, and Y, as
stated, such that f|x, isaC L_diffeomorphism. It remains to show that g = f&la is a C* function.

We recall the notation Jy(a) for the Jacobian matrix of f at a, and J,(f(a)) for the Jacobian matrix
of g at f(a). Forall z € X,, since (dg)s) = (dfz)~!, we deduce that Jy(f(z)) = Jy(z)™' =
(det Jf(:p))_lj(x), where .J(x) is the transpose of the comatrix of J¢(z) (also called the adjugate
matrix), whose coefficients are linear combinations of products of coefficients of J¢(z). Therefore, the
first-order partial derivatives of g are rational fractions of first-order partial derivatives of f, which
are of class C*~1, implying that the first-order partial derivatives of g are also of class C*~!. We can
conclude that g is of class C*. (]
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Corollary 4.4.9: Let A C R" be an open subset and f : A C R™ — R" be an injective function of class
C* with k > 1. Then, the following properties are equivalent.

(a) The differential df, is invertible for alla € A.

(b) B = f(A) is open in W and f is a C*-diffeomorphism from A to B.

Proof : The proof is similar to Corollary 4.4.5 and Corollary 4.4.8. g

4.4.3 Implicit function theorem

We describe some motivation behind the implicit function theorem. We are given a function f : A C
R™ x R™ — R" and want to look at its level lines, that is we look for x € R™ and y € R" such that
f(z,y) = c for some given ¢ € R". The implicit function theorem provides local sufficient conditions such
that y can be written as a function ¢ of x, that is f(z, ¢(x)) = c. In other words, in a neighborhood of such
x, the solutions of f(x,y) = c can be represented by a graph. More generally speaking, we may take c to be
a variable, and we obtain a function ¢ in x and c. See the theorem below for a more precise statement.

Let

=01, fn): ACR™ xR — R"
(,y) = (x1, .-y Tmi Y1, - -, Yn) —  flx,y).

We may define the partial Jacobian matrices and their determinants (called partial Jacobian determinants)
with respect to the variables x = (z1,...,%,,) andy = (y1,...,yn) at (a,b) € A as below,

(4.29)

Ofi
Jpo(a,b) = laﬂfj(%b)} . and Jry(a,b) = [

1<g<m

gf *(a, b)} .
Yi 1<i,j<n

Theorem 4.4.10 (Implicit function theorem) : Let m,n > 1 be integers and A C R™ x R™ be an open
subset. Suppose that we are given a C* function f with k > 1 as in Eq. (4.29). Let us fix (a,b) € A. If the
partial Jacobian determinant det Jy ,(a, b) is nonzero, then there exist

« an open subset X containing a, an open subset W containing f(a,b) and an open subset Z con-
taining (a,b),

« aCF function p : X x W — R”

such that for allz € X andw € W,y = p(x,w) is the unique solution to f(x,y) = w with condition
(z,y) € Z. In particular, we have f(z, p(z,w)) = w forallz € X andw € W.

Moreover, for (a,c) € X x W, writeb = ¢(a, c), then we also have the following relations between
the partial Jacobian matrices,

Jw,az(aa C) == [Jﬁy(a, b)] 71Jf,x(a’ b) and J%y(a> C) = [Jf,y(a, b)} 71'
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Remark 4.4.11 : The inversion theorems were stated and proven for general Banach spaces, where we
require the differential to be invertible and bicontinuous. We also noted in Remark 4.4.2 and Remark 4.4.6
that when we take Euclidean spaces (or finite dimensional normed vector spaces), the bicontinuity property
automatically holds, so need not be checked. Here, for simplicity, we state the implicit function theorem for
Euclidean spaces, but you need to bear in mind that when we work with general Banach spaces, the only
additional condition you need to add to the assumption is the bicontinuity.

Proof : Let F = (Fy,...,Fpn; Fiust, ..., Fruin) be a function defined on A with values in R™*"
whose components are defined by F;(z,y) = z; if 1 <i < mand Fy,,1; = fi(z,y) if 1 <i < n. The
Jacobian matrix of F' is a block matrix, given by

L, | 0

(afi <a,b>) |
9y, 1<6,5<n

x

*

Its determinant is the same as the partial Jacobian determinant given by det J¢ ,(a, b), which is nonzero
by assumption. Then, it follows from Corollary 4.4.8 that there exists an open set Z containing (a, b)
and an open set Y’ containing F'(a, b) = (a, f(a,b)) such that F|; isa C*-diffeomorphism from Z to Y.
We may restrict Y to X x W C Y, where X is an open set containing a and W an open set containing
f(a,b). Then, we may write F~! : X x W C Y — Z as F~(z,w) = (z, p(z,w)), where ¢ is a
C* function. Therefore, we deduce that for any (z,w) € X x W, there exists a unique y such that
(x,y) € Z with f(z,y) = w; and additionally, y = ¢(z, 2).

To get the identities between the partial Jacobian matrices, we just need to apply the rela-
tion between the composition of functions and multiplication of Jacobian matrices as mentioned in
Proposition 4.1.26. ]

In the above theorem, we may take w to be a constant, leading to the following corollary.

Corollary 4.4.12: Under the same assumption as Theorem 4.4.10, we may find
« an open subset X containing a and an open subset Y containing b,
« aCF functionp : X — R"

such that for all x € X,y = @(x) is the unique solution to f(x,y) = c with conditiony € Y. This
allows us to write f(z, p(z)) = c forallx € X.

Moreover, for a € X, writeb = @(x), then we also have the following relation between the partial
Jacobian matrices,

Jra(@,b) + Jry(a,0)Jpe(@) =0 or  Juu(a) = —[Jry(a,0)] Jse(a,b). (4.30)

Corollary 4.4.13 : Let A C R? be an open set and f : R? — R be a C* function with k > 1. Let
(a,b) € A and suppose that
of

f(a,b) =0 and a—y(a,b)#O.

Then, there exists v, 3 > 0 such that for all x € (a — o, a + «), the equation f(x,y) = 0 has a unique
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solution y = ¢(x) in (b — B,b + B). Moreover, the function ¢ is of class C* on (a — o, a + ) and we

have
¢ (@) =~ oL @, 0@) [ (@ p(@), Vo€ (0 - avata).

Proof : The existence of a, 8 > 0 and regularity of ¢ follows from Corollary 4.4.12. To compute ¢/,
we differentiate the relation f(z, ¢(x)) = 0, giving us

%(m, o(x)) + (p/(x)gjyc(x, o(z)) = 0.

This can also be obtained directly from Eq. (4.30). 0

The following corollary can be shown in a similar way.

Corollary 4.4.14 : Let A C R? be an open set and f : R? x R — R be a C* function with k > 1. Let
(a,b,c) € A and suppose that

d
f(a,b,c) =0 and —f(a,b, c) #0.
0z
Then, there exists «, 3,y > 0 such that for all (z,y) € (a — a,a + a) x (b — B,b+ ), the equation
f(z,y,2) = 0 has a unique solution z = p(x,y) in (¢ — v, c + ). Moreover, the function ¢ is of class
CFon(a—a,a+a)x (b—B,b+ ), and we have

2 w0) = S @ plen) [ Lot

22 (@) = ~ 5 @0 9(00) | (09 (0 0).

Example 4.4.15 : Let us consider a C* function f : R? — R, (z,y) > sin(y) + zy* + 22. We want
to look at the graph of f(z,y) = 0 and its asymptotic behavior around (x,y) = (0, 0).

« Itis not hard to check that f(0,0) = 0. The partial derivatives of f write

Of () o OF (4.4) = 3
5 &Y =y + 2 and 6y(ﬂc,y)—C<>S(y)+496y-

We have g—i(o, 0) = 0 and %(O, 0) = 1. Therefore, it follows from Corollary 4.4.13 that there

exist v, 5 > 0 and a C* function ¢ : (—a, @) — R such that for every x € (—a, ), y = p(x)
is the unique solution to f(z,y) = 0in (=2, 5).

+ Let us find the Taylor expansion of ¢ around 0. First, from the above computations, we have
©(0) = 0 and ¢'(0) = 0, so we may write p(z) = O(z?) when z — 0. To get a higher-order
expansion, we will substitute this expression into f(z, ¢(z)) = 0 and expand sin(y) = y+O(y>)
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when y = ¢(x) — 0. We find
p(z) = p(z) = sin(p(2)) — 2p(2)" - 2?
= O(p(x)’) - 2?
= 2%+ 0% = —2%(1 + O(z?)).
If we want to get a even higher-order expansion of ¢, we expand the sin function to a higher
order, that is sin(y) = y — % + O(y®) when y = ¢p(x) — 0. We find
p(x) = p(z) = sin(p(2)) — 2p(2)* - 22

T 3
a2 = A o(p(e)?) - (e

— 224 ”;56(1 +0(zh) + 0@ — 2%(1 + O(z?))

26
= 2 + 5 2% 4+ O(219).

One may also proceed further by expanding the sin function to higher orders of (.

4.4.4 Conditional extrema

Let A C R" be an open set and f : A — R be a function. Let g1, ..., g, : A — R be functions and
F={zxecA:g(x)=--=g(x) =0}

We want to look for the extrema of f on I'. Such a problem is called conditional extrema.

Theorem 4.4.16 : Suppose that f, g1, . . ., gr areC" functions. Suppose that J|r attains a local extremum
ata € I" and that dgi 4, . . ., dgrq are linearly independent, then there exist A1, ..., A\, € R such that
dfa = >\1 dgl,a SFoco=p >\r dgr,a- (4~31)

Remark 4.4.17 : The coefficients \;’s are called Lagrange multipliers. They are unique because the linear
forms dgi 4, - . ., dgr are linearly independent.

Proof : Let s = n — r and write R® = R® x R". An element of R™ can be written in the form
(x,y) = (z1,...,2s;Y1, .-, Yr). Let a = (24,ys) € R” with z, € R® and y, € R".

First, we note that we necessarily have r < n because (dg; )1<i<r are linear independent, and the
dimension of £L(R"™,R), the space of lineaer forms, is equal to n. If n = r, then the theorem is trivial
because (dgi,q)1<i<r forms a basis. Thus, let us assume that 7 < n — 1 in what follows, thatis s > 1.

Due to the linear independence of (dg; q)1<i<r, the Jacobian matrix of ¢ = (g1,...,gr) at a has
rank 7. Without loss of generality, we may assume that the following r x r submatrix has nonzero
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determinant,
Jg;
8y]~

det ( (a)) # 0.
1<i,j<r

Therefore, it follows from Corollary 4.4.12 that there exists an open set X of R® containing x, and an
open set W of R™ containing a = (74, y,) and a C! function ¢ = (1, ...,¢,) : X — R" such that

g(z,y) =0withz € X and (z,y) e W &  y=p(z).

In other words, for z € X, the elements of I' = {2z : g(z) = 0} can be written as (z, ¢(x)). Let
h(z) = f(z,¢(x)), which has a local extremum at x = a by assumption. This leads to

PN N O
0= P, (a) = o (a)—f—j; a:Bi( “)8yj (a), Vi=1,...,s. (4.32)
Additionally, by differentiating the relation g(x, ¢(x)) = 0, we find
_ Ogx ~ Op;,  Ogk _ _
0= axi(a)-i-Z P, (:ca)ayj(a), VE=1,...,r,Vi=1,...,s. (4.33)

=1

Putting Eq. (4.32) and Eq. (4.33) in the matrix form, we find the matrix

) ) ) )
(@) ... $L(a) 8—yfl(a) ay{(a)
HONEE ON TONN 10
M= ox1 Oxs 8y1. 8y,«'
g, g, g, g,
agl (a) ags (a) agl (a) azg,r (a)

whose first s columns are linear combination of its last r columns, which implies that rank M < r.
Since rank M? = rank M, it means that the r + 1 rows of M are linearly dependent, that is, there exist
1o, - - -, iy that are not identically zero such that

podfe+p1dgie+ -+ pr dgra = 0. (4.34)

From the assumption that (dg; ,)i<i<r is linearly independent, it follows that pig # 0, therefore, by
dividing Eq. (4.34) by po, we prove the theorem. O

Example 4.4.18 : Find the minimum and the maximum values of the function f(z,y) = 2% — 2z +
49% + 8y in the first quadrant, that is (z,7) € A := Rsg x Rxg, under the condition g(z,y) = 0
with g(x,y) = = + 2y — 7. Since the domain A is not closed in R?, we need to distinguish between
interior points and other points. The extrema of f are attained either at a € A= Rsg X Ry sat-
sifying Eq. (4.31), or at some point in A\A = ({0} x Rs) U (Rsg x {0}), that are not covered by
Theorem 4.4.16.

+ Let us look for an interior point (z,y) € A satisfying g(z,y) = 0 and such that df 2y =
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A dg(m’y) has a nonzero solution A € R. First, we want to solve
g(ey) =X (x,y), o Jre2o=
= 8y +8 =2\

Thus, we find x = 2y + 3. We put this back to the condition g(x,y) = 0 and find (z,y) = (5,1).
We compute the value f(5,1) = 27.

« The points (z, y) in A\ A satisfying g(z, y) = 0 are exactly (,y) = (7,0) or (0, 7). We compute
the values f(7,0) = 35 and f(0, Z) = 77.

From above, we conclude that in the first quadrant with condition g(z,y) = 0, the maximum value of
f is attained at (0, ) with value 77, and the minimum value of f is attained at (5, 1) with value 27.
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