
7 Complements on Riemann Integrals

7.1 Riemann integrability on an interval

7.1.1 Setting

In the theory of Riemann–Stieltjes integrals that we saw in Section 5.2, both the integrand and the inte-

grator needed to be defined and bounded on a segment. However, it is not always the case that the integrand

is bounded, or the domain of integration is a compact subset of R. In this chapter, we take the Riemann in-

tegrals as example, to see how to make sense of Riemann integrals, in the case that the domain of definition

is a general interval, or the integrand is not a bounded function.

For the integrand, we are going to take them to be piecewise continuous functions; and for the domain of

definition, we only consider the intervals of the following forms,

[a, b) for − ∞ < a < b ⩽ +∞,

(a, b] for − ∞ ⩽ a < b < +∞,

(a, b) for − ∞ ⩽ a < b ⩽ +∞.

We note that we allow a = −∞ if the interval is open on the left side; b = +∞ if the interval is open on the

right side. From the theory for the intervals of [a, b) type, we deduce easily the theory for the intervals of

(a, b] type by symmetry; then, for the intervals of (a, b) type, we decompose them into (a, c] ∪ [c, b), where

c ∈ (a, b). Therefore, in what follows, to study general intervals, it is actually sufficient to study only the

intervals of [a, b) type.

We also recall that we are only interested in real-valued functions here, since for functions taking values

in a finite-dimensional vector space, we follow the decomposition as in Remark 5.2.2 (6), and define the

corresponding integral on a general interval by linearity.

Definition 7.1.1 :

• A function f : [a, b] → R is said to be piecewise continuous on the segment [a, b] if there exists a

partition P = (xk)0⩽k⩽n ∈ P([a, b]) such that for every 1 ⩽ k ⩽ n, the restriction of f on the
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open subinterval (xk−1, xk) can be extended to a continuous function on [xk−1, xk].

• Let I ⊆ R be a subset. A function f : I → R is said to be piecewise continuous on I if for any

segment J ⊆ I , the restricted function f|J is piecewise continuous on J .

• For any subset I ⊆ R, we write PC(I,R) for the set of functions that are piecewise continuous

on I .

• For any normed vector space (W, ‖·‖), we may define the space PC(I, V ) of piecewise contin-

uous functions with values in W in a similar way.

Example 7.1.2 :

(1) The function x 7→ 1
x is piecewise continuous on R∗ = R\{0}.

(2) The function x 7→ ln x is piecewise continuous on R>0 = (0, +∞).

Proposition 7.1.3 : Let I = [a, b] be a segment of R. Any piecewise continuous function f : I → R on

I is bounded and Riemann-integrable on I .

Proof : Let f ∈ PC(I,R) with I = [a, b] which is a segment. By definition, for every 1 ⩽ k ⩽ n, there

is a continuous function g : [xk−1, xk] → R such that f|(xk−1,xk) ≡ g|(xk−1,xk). Since g is integrable

on [xk−1, xk], so is f , see Corollary 5.3.22. And we apply Proposition 5.2.10 to conclude that f is

integrable on [a, b]. □

7.1.2 Integrability on an interval

We saw in Theorem 6.1.16 that for a series with values in a Banach space (W, ‖·‖), if it converges abso-

lutely, then it converges. And if it does not converge absolutely, by rearranging the terms, we are able to

get any value as limit, see Theorem 6.5.5. When it comes to the Riemann integration on a general interval,

we encounter similar phenomena. Actually, for a piecewise continuous function on a general interval I ,

its integral on any subsegment can be defined thanks to Proposition 7.1.3, then by taking larger and larger

subsegments to cover the whole interval, we have a chance to get a meaningful limit, that we want to define

as the integral on I . This limit may not be defined uniquely if we do not have absolute convergence. To make

things simpler, we start with absolutely convergent integrals, which bring us back to study non-negative
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integrands. Later in Section 7.2.2, we will discuss the situation without the absolute convergence.

Let I be an interval, and denote by PC+(I) = PC+(I,R) := PC(I,R+) the set of non-negative piecewise

continuous functions on I .

Definition 7.1.4 : Let f ∈ PC+(I) be a non-negative piecewise continuous function on I . We say

that f is integrable on I if there exists M ⩾ 0 such that
∫

J f ⩽ M for any segment J ⊆ I , and we

write ∫
I

f = sup
J⊆I

J is a segment

∫
J

f. (7.1)

Remark 7.1.5 : If a = inf I and b = sup I , we may also rewrite the integral in Eq. (7.1) as follows,

∫ b

a
f =

∫
I

f.

Note that in the case that the interval is a segment I = [a, b], and the function f is a non-negative piecewise

continuous, the definition of integrability in Eq. (7.1) coincides with the notion of integrability in Definition

5.2.1, in the sense that (RS) condition is satisfied with α(x) = x.

Proposition 7.1.6 : Let f ∈ PC+(I) be a non-negative integrable function on I . Then, for any sequence

(Jn = [an, bn])n⩾1 of segments with

∀n ⩾ 1, Jn ⊆ Jn+1 ⊆ · · · ⊆ I and
⋃

n⩾1
Jn = I, (7.2)

we have ∫
I

f = sup
n⩾1

∫
Jn

f = lim
n→∞

∫
Jn

f = lim
n→∞

∫ bn

an

f(x) dx.

Proof : Let us consider a sequence (Jn)n⩾1 of segments satisfying Eq. (7.2). We want to show that the

limit of
∫

Jn
f is equal to

∫
I f defined in Eq. (7.1).

• For every n ⩾ 1, we have Jn ⊆ I , since f is non-negative, we have
∫

Jn
f ⩽

∫
I f . By taking

lim sup on n, we find

lim sup
n→∞

∫
Jn

f ⩽
∫

I
f.

• Given ε > 0. By the characterization of supremum, Eq. (7.1) tells us there exists a segment
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J = [a, b] ⊆ I such that
∫

J f + ε ⩾
∫

I f . Since a, b ∈ I =
⋃

n⩾1 Jn, there exists N ⩾ 1 such

that a, b ∈ Jn for all n ⩾ N . Therefore, for n ⩾ N , we have

∫
Jn

f ⩾
∫

J
f ⩾

∫
I

f − ε.

In other words,

lim inf
n→∞

∫
Jn

f ⩾
∫

I
f − ε.

Since ε > 0 can be made arbitrarily small, we find

lim inf
n→∞

∫
Jn

f ⩾
∫

I
f.

In conclusion, we have ∫
I

f ⩽ lim inf
n→∞

∫
Jn

f ⩽ lim sup
n→∞

∫
Jn

f ⩽
∫

I
f,

that is limn→∞
∫

Jn
f =

∫
I f . □

Example 7.1.7 : Below we give examples of non-negative continuous integrable / non-integrable

functions.

(1) For λ > 0, the function t 7→ e−λt is integrable on R+ = [0, +∞). To see this, let us fix λ > 0

and take Jn = [0, n] for all n ⩾ 1. For every n ⩾ 1, we have

∫
In

e−λt dt =
∫ n

0
e−λt dt =

[
− e−λt

λ

]n

0

= 1 − e−λn

λ
⩽ 1

λ
< ∞.

The condition in Definition 7.1.4 is indeed satisfied.

(2) The function x 7→ | sin x| is not integrable. In fact, for every k ∈ N0, we have

∫ (k+1)π

kπ
| sin x| dx =

∫ π

0
sin x dx = 2.

Therefore,

∀n ⩾ 0,

∫ nπ

0
| sin x| dx = 2n,

which cannot be bounded uniformly in n.
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Example 7.1.8 (Riemann’s integrals) : We study the integrability of functions f : t 7→ t−α for α ∈ R.

(1) For any a > 0, the function t 7→ t−α is integrable on [a, +∞) if and only if α > 1.

(2) For any a > 0, the function t 7→ t−α is integrable on (0, a] if and only if α < 1.

(3) For a < b, the function t 7→ (b − t)−α is integrable on [a, b) if and only if α < 1.

(4) For a < b, the function t 7→ (t − a)−α is integrable on (a, b] if and only if α < 1.

Example 7.1.9 (Bertrand’s integrals) :We study the integrability of functions t 7→ t−α| ln t|−β for

α, β ∈ R.

(1) For any a > 1, it is integrable on [a, +∞) if and only if (i) α > 1 or (ii) α = 1 and β > 1.

(2) For any a ∈ (0, 1), it is integrable on (0, a] if and only if (i) α < 1 or (ii) α = 1 and β > 1.

See Exercise 7.2 for more details.

Definition 7.1.10 : Let I ⊆ R be an interval and (W, ‖·‖) be a finite-dimensional Banach space1. A

piecewise continuous function f : I → W is said to be integrable on I if ‖f‖ is integrable on I in

the sense of Definition 7.1.4. Given a sequence (Jn)n⩾1 of segments in I satisfying Eq. (7.2), we may

define ∫
I

f := lim
n→∞

∫
Jn

f ∈ W. (7.3)

We denote by L1(I, W ) the set of piecewise continuous functions from I to W that are integrable in

the sense defined here, that is

L1(I, W ) :=
{

f : I → W :
∫

I
‖f‖ < +∞

}
.

Remark 7.1.11 : In Definition 7.1.10, if we take (W, ‖·‖) = (R, | · |), we find the corresponding notion of

integrability for real-valued functions.

1Note that we have explained in Remark 5.2.2 how to construct the integral of
∫

J
f in the case that J is a segment and f is a W -

valued function. It is also possible to make sense of this integral if W is a general Banach space (without the finite-dimensional
assumption). For example, f is continuous, we use the uniform continuity of f to appriximate it by a step function.
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Proposition 7.1.12 : In Definition 7.1.10, the limit of the sequence (
∫

Jn
f)n⩾1 exists, and does not depend

on the choice of (Jn)n⩾1, as long as (Jn)n⩾1 is chosen to satisfy Eq. (7.2).

Remark 7.1.13 : As a direct consequence of Proposition 7.1.12,

• for an interval of type [a, b) with −∞ < a < b < +∞, we may consider Jn = [a, b − 1
n ] for all n ⩾ 1;

• for an interval of type [a, +∞) with −∞ < a < +∞, we may consider Jn = [a, n] for all n ⩾ 1.

Proof : We need to check that the limit in Eq. (7.3) is well defined, and does not depend on the choice

of (Jn)n⩾1.

• Let (Jn)n⩾1 be a sequence of segments satisfying Eq. (7.2). For every n ⩾ 1, write Jn = [an, bn],

let un =
∫

Jn
f and Un =

∫
Jn

‖f‖. We want to show that (un)n⩾1 is a Cauchy sequence. Since

(W, ‖·‖) is a Banach space, (un)n⩾ converges.

Let ε > 0. Since ‖f‖ is integrable on I , the sequence (Un)n⩾1 converges so is a Cauchy sequence.

Therefore, we may find N ⩾ 1 such that |Up − Uq| < ε for all p, q ⩾ N . This means that for

p > q ⩾ N , we have

‖up − uq‖ =
∥∥∥∥∥
∫

[ap,aq ]
f +

∫
[bq ,bp]

f

∥∥∥∥∥ ⩽
∫

[ap,aq ]
‖f‖ +

∫
[bq ,bp]

‖f‖ = Up − Uq < ε.

This shows that (un)n⩾1 is a Cauchy sequence, so converges.

• Let (Jn)n⩾1 and (Kn)n⩾1 be seuqneces of segments satisfying Eq. (7.2). From the first part of the

proof, we know that the following limits exist,

un :=
∫

Jn

f −−−→
n→∞

u and vn :=
∫

Kn

f −−−→
n→∞

v.

For every n ⩾ 1, let Ln := Jn ∪ Kn, which is a union of two segments. We note that for small

values of n, Ln might not be a segment, but for large enough n, Ln will always be a segment

(non-empty intersection between Jn and Kn). Therefore, we may find N ⩾ 1 such that Ln is a

segment for all n ⩾ N . Then, (Ln+N )n⩾1 is also a sequence of segments satisfying Eq. (7.2). We

may write

wn :=
∫

Ln

f −−−→
n→∞

w.
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As in the first part, let

∀n ⩾ 1, Un =
∫

Jn

‖f‖ and Wn =
∫

Ln

‖f‖ .

We have

‖wn − un‖ =
∥∥∥∥∥
∫

Ln\Jn

f

∥∥∥∥∥ ⩽
∫

Ln\Jn

‖f‖ = Wn − Un −−−→
n→∞

0,

where the last convergence comes from Proposition 7.1.6. This implies that w = u. Similarly,

we also have w = v, so u = v. □

7.1.3 Properties

The integral on a general interval I defined in Definition 7.1.10 satisfies many properties that are also

satisfied for integrals defined on segments. It can be understood by the fact that the procedure of taking the

limit in Definition 7.1.10 preserves linearity. We can use the following identities safely if f is a integrable

W -valued piecewise continuous function,

• Union relation:
∫

I f +
∫

J f =
∫

I∪J f provided that I ∩ J = ∅ and two among the three integrals are

well defined.

• Triangle inequality: ‖
∫

I f‖ ⩽
∫

I ‖f‖.

• Integration by parts for C1 functions.

• Change of variables with respect to a C1 function. See Exercise A1.5 for an example where problems

may arise if the change of variables is not C1.

Now, we are going to give a few criteria for the integrability on an interval. We start with an interval of the

form I = [a, b) and consider f ∈ PC(I, W ), where W is a finite-dimensional Banach space. The following

properties can be proven almost immediately without any technicalities, so we only state the properties,

without giving any proofs.

Proposition 7.1.14 : Let f ∈ PC(I, W ) be a piecewise continuous function on I . The following proper-

ties are equivalent.

(1) f is integrable on [a, b).

(2) (Partial integral) x 7→
∫ x

a ‖f(t)‖ dt is bounded on [a, b).

(3) (Partial integral) x 7→
∫ x

a ‖f(t)‖ dt has a limit when x → b−.

Last modified: 13:30 on Thursday 1st May, 2025 7



Chapter 7 Complements on Riemann Integrals

(4) (Remainder integral) The limit of x 7→
∫ b

x ‖f(t)‖ dt when x → b− is 0.

(5) (Cauchy’s criterion) For ε > 0, there exists A ∈ I such that

∀x, y ∈ [A, b), x < y,

∫ y

x
‖f(t)‖ dt < ε.

Proof : It is a direction consequence of Definition 7.1.10, Proposition 7.1.12, and Remark 7.1.13. □

Proposition 7.1.15 : Let f ∈ PC(I, W ) be a piecewise continuous function on I and c ∈ I̊ . Write

I− := I ∩ (−∞, c] and I+ := I ∩ [c, +∞). Then, the following properties are equivalent.

(1) f is integrable on I .

(2) f is integrable on I− and I+.

And in this case, we have
∫

I f =
∫

I−
f +

∫
I+

f .

Proof : It is a direct consequence of the union relation. □

Proposition 7.1.16 : Let f ∈ PC(I, W ) be a piecewise continuous function on I with values in a finite-

dimensional Banach space W , and φ ∈ PC+(I) be a non-negative piecewise continuous function on

I .

(1) If ‖f‖ ⩽ φ on I and φ is integrable, then f is integrable and we have ‖
∫

I f‖ ⩽
∫

I φ.

(2) If f takes values in R+ and is non-integrable with f ⩽ φ, then φ is non-integrable.

Proof :

(1) For x ∈ [a, b), we have

∫ x

a
‖f(t)‖ dt ⩽

∫ x

a
φ(t) dt ⩽

∫ b

a
φ(t) dt =

∫
I

φ.

The left side in the above formula is bounded, so we can conclude by Proposition 7.1.14. More-

over, by the triangle inequality, we have ‖
∫

I f‖ ⩽
∫

I ‖f‖.
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(2) By contradiction, if φ were integrable, then by (1), f would also be integrable. □

Example 7.1.17 : Check that the non-negative function f : t 7→ 1√
t(1−t)

is integrable on (0, 1). Let

us take c = 1
2 , I− = (0, 1

2 ] and I+ = [1
2 , 1).

• For t ∈ I−, we have f(t) ⩽ 2√
t
. The function t 7→ 1√

t
is integrable on (0, 1

2 ], so is f .

• For t ∈ I+, we have f(t) ⩽ 2√
1−t

. The function t 7→ 1√
1−t

is integrable on [1
2 , 1), so is f .

7.1.4 Comparison of integrals

We consider a finite-dimensional Banach space (W, ‖·‖). We are going to give some comparison results

for non-negative integrable and non-integrable functions. These results are analogous to those for series, see

Section 6.2.1. Note that the function that we compare to needs to be non-negative.

Definition 7.1.18 : Let f : [a, b) → W and g : [a, b) → R be two piecewise continuous functions.

• We write f =
b

O(g) or f(x) = O(g(x)) when x → b if there exists M > 0 and δ > 0 such that

∀x ∈ [a, b) ∩ B(b, δ), ‖f(x)‖ ⩽ M |g(x)|.

• We write f =
b

o(g) or f(x) = g(x) when x → b if for every ε > 0 there exists δ > 0 such that

∀x ∈ [a, b) ∩ B(b, δ), ‖f(x)‖ ⩽ ε|g(x)|.

• If W = R, we write f ∼
b

g or f(x) ∼ g(x) when x → b if f − g =
b

o(g).

We recall that for convergent series with asymptotic relations for their non-negative general terms, we

may compare their remainders, see Theorem 6.2.8. When it comes to non-negative integrable functions, we

may compare their remainder integrals, as stated in the following proposition.

Proposition 7.1.19 (Comparison for integrable functions) : Let f : [a, b) → W be a piecewise contin-

uous function, and g : [a, b) → R+ be a non-negative integrable function. Then, the following properties

hold.
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(1) If f =
b

O(g), then f is integrable on [a, b) and
∫ b

x f =
x→b

O
( ∫ b

x g
)
.

(2) If f =
b

o(g), then f is integrable on [a, b) and
∫ b

x f =
x→b

o
( ∫ b

x g
)
.

(3) If W = R and f ∼
b

g, then f is integrable on [a, b) and
∫ b

x f ∼
x→b

∫ b
x g.

Remark 7.1.20 :

(1) We insist again that these comparison results are only valid for a non-negative function g. It is possible

to have f ∼b g but the integrals
∫ b

a f and
∫ b

a g have different behaviors. The same phenomenon also

occurs for series, we recall the result from Remark 6.2.4. For the integrals, we will give a corresponding

counterexample later, see Example 7.2.16.

(2) We note that these comparison relations are “preserved” by taking a primitive. However, we do not

have a similar result for derivatives. For example, t 7→ t3/2 sin
(1

t

)
is integrable on (0, 1] and is o(t)

when t → 0+. From Proposition 7.1.19 (2), we know that

∫ x

0
t3/2 sin

(1
t

)
dt =

x→0+
o(x2).

But the following derivative is clearly not o(1), because is not convergent when t → 0+,

d
dt

(
t3/2 sin

(1
t

))
= 3

2
t1/2 sin

(1
t

)
− t−1/2 cos

(1
t

)
.

Proof :

(1) By assumption, there exists M > 0 and δ > 0 such that

∀t ∈ [b − δ, b), ‖f(t)‖ ⩽ Mg(t).

Therefore, for any x ∈ [b − δ, b), we have

∥∥∥∥∥
∫ b

x
f

∥∥∥∥∥ ⩽
∫ b

x
‖f‖ ⩽ M

∫ b

x
g,

which is what we want to show.
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(2) Let ε > 0. By assumption, there exists δ > 0 such that

∀t ∈ [b − δ, b), ‖f(t)‖ ⩽ εg(t).

Therefore, for any x ∈ [b − δ, b), we have

∥∥∥∥∥
∫ b

x
f

∥∥∥∥∥ ⩽
∫ b

x
‖f‖ ⩽ ε

∫ b

x
g,

which is what we want to show.

(3) Suppose f ∼
b

g. This means that f − g =
b

o(g). Then we apply the result from (2) to conclude

that ∫ b

x
(f − g) =

x→b
o
( ∫ b

x
g
)

⇔
∫ b

x
f ∼

x→b

∫ b

x
g. □

Example 7.1.21 : The Gamma function Γ is defined by

∀x > 0, Γ(x) =
∫ +∞

0
tx−1e−t dt.

The function f : t 7→ tx−1e−t is continuous on R∗
+ = (0, +∞).

• Around 0. When t → 0, we have f(t) ∼ tx−1. Since x − 1 > −1, by Riemann’s integral

(Example 7.1.8) and the comparison for integrable functions (Proposition 7.1.19), we deduce

that f is integrable around 0.

• Around +∞. We have

tx−1e−t = O
( 1

t2

)
when t → ∞.

Since the function t 7→ 1
t2 is integrable around +∞, by the comparison for integrable functions

(Proposition 7.1.19), we deduce that f is integrable around +∞.

In conclusion, the Gamma function Γ(x) is well defined for all x > 0. We may check some values

taken by the Gamma function: Γ(1) = 1 (direct computation), Γ(1
2) =

√
π (Gaussian integral up to a

change of variables, see Exercise A1.6). Additionally, by an integration by parts, we may show that

Γ(x + 1) = xΓ(x), ∀x > 0. (7.4)

You may find more properties and a characterization of the Gamma function in Exercise 7.9.
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Example 7.1.22 : Our goal is to find an asymptotic expression of arccos x around x = 1. First, note

that

∀x ∈ [0, 1],
∫ 1

x

dt√
1 − t2

= arccos x.

Then, we note that the following equivalent relation,

1√
1 − t2

= 1√
1 + t

√
1 − t

∼ 1√
2
√

1 − t
, when t → 1.

Since t 7→ 1√
1−t

is integrable on [0, 1), by Proposition 7.1.19 (3), when x → 1, we find that

arccos x =
∫ 1

x

dt√
1 − t2

∼
∫ 1

x

dt√
2
√

1 − t
=
√

2(1 − x), when x → 1.

Example 7.1.23 : The following is the Gaussian integral, whose valuewas computed in Exercise A1.6,

1√
2π

∫ ∞

−∞
e− t2

2 dt = 1.

Let us estimate the tail of the above integral

F (x) := 1√
2π

∫ ∞

x
e− t2

2 dt, when x → ∞.

(1) First, we have the following asymptotic comparison,

e− t2
2 = o

(
te− t2

2
)
, when t → ∞.

It follows from Proposition 7.1.19 (2) that, when x → ∞, we have

F (x) = o
( ∫ ∞

x
te− t2

2 dt
)

= o
([

− e− t2
2
]∞

x

)
= o

(
e− x2

2
)
.

(2) To get a more precise asymptotic formula for F (x) when x → ∞, we may start with an inte-

gration by parts. We write

√
2πF (x) =

∫ ∞

x

−te− t2
2

−t
dt =

[
e− t2

2

−t

]∞

t=x

−
∫ ∞

x

e− t2
2

t2 dt = e− x2
2

x
−
∫ ∞

x

e− t2
2

t2 dt.
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Moreover, we have

∫ ∞

x

e− t2
2

t2 dt = o

(∫ ∞

x
e− t2

2 dt

)
= o(F (x)), when x → ∞,

we deduce that

F (x) = 1√
2π

e− x2
2

x
(1 + o(1)), when x → ∞.

By induction, you may show that for any n ⩾ 0,

√
2πF (x) = e− x2

2

(
1
x

+
n∑

k=1
(−1)k (2k − 1)!!

x2k+1

)
+ (−1)n+1(2n + 1)!!

∫ ∞

x

e− t2
2

t2n+2 dt,

which implies that

F (x) = e− x2
2

√
2π

(
1
x

+
n∑

k=1
(−1)k (2k − 1)!!

x2k+1

)
(1 + o(1)), when x → ∞.

We recall that for divergent series with asymptotic relations for their non-negative general terms, we may

compare their partial sums, see Theorem 6.2.8. When it comes to non-negative non-integrable functions, we

may compare their partial integrals, as stated in the following proposition.

Proposition 7.1.24 (Comparison for non-integrable functions) : Let f : [a, b) → W and g : [a, b) →

R+ be a non-negative non-integrable function. Then, the following properties hold.

(1) If f =
b

O(g), then
∫ x

a f =
x→b

O
( ∫ x

a g
)
.

(2) If f =
b

o(g), then
∫ x

a f =
x→b

o
( ∫ x

a g
)
.

(3) If W = R and f ∼
b

g, then f is non-integrable on [a, b) and
∫ x

a f ∼
x→b

∫ x
a g.

Proof : Since g is non-negative and not integrable on [a, b), we have

lim
x→b

∫ x

a
g = +∞. (7.5)
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(1) By assumption, there exists M > 0 and δ > 0 such that

∀t ∈ [b − δ, b), ‖f(t)‖ ⩽ Mg(t).

Therefore, for any x ∈ [b − δ, b), we have

∥∥∥∥∫ x

a
f

∥∥∥∥ ⩽
∫ x

a
‖f‖ ⩽

∫ b−δ

a
‖f‖ + M

∫ x

b−δ
g ⩽

∫ b−δ

a
‖f‖ + M

∫ x

a
g.

Additionally, from Eq. (7.5), we deduce that there exists δ′ ∈ (0, δ) such that

∀x ∈ [b − δ′, b),
∫ b−δ

a
‖f‖ ⩽ M

∫ x

a
g.

Putting the two above relations together, we get

∀x ∈ [b − δ′, b),
∥∥∥∥∫ x

a
f

∥∥∥∥ ⩽ 2M

∫ x

a
g,

which is what we want to show.

(2) Let ε > 0. By assumption, there exists δ > 0 such that

∀t ∈ [b − δ, b), ‖f(t)‖ ⩽ εg(t).

Therefore, for any x ∈ [b − δ, b), we have

∥∥∥∥∫ x

a
f

∥∥∥∥ ⩽
∫ b−δ

a
‖f‖ + ε

∫ x

b−δ
g ⩽

∫ b−δ

a
‖f‖ + ε

∫ x

a
g.

Additionally, from Eq. (7.5), we deduce that there exists δ′ ∈ (0, δ) such that

∀x ∈ [b − δ′, b),
∫ b−δ

a
‖f‖ ⩽ ε

∫ x

a
g.

Putting the two above relations together, we get

∀x ∈ [b − δ′, b),
∥∥∥∥∫ x

a
f

∥∥∥∥ ⩽ 2ε

∫ x

a
g,

which is what we want to show.

(3) Suppose f ∼
b

g. This means that f − g =
b

o(g). Then we apply the result from (2) to conclude
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that ∫ x

a
(f − g) =

x→b
o
( ∫ x

a
g
)

⇔
∫ x

a
f ∼

x→b

∫ x

a
g. □

Example 7.1.25 : The following integral diverges when x → ∞ (Example 7.1.9),

∫ x

2

dt

ln t
.

We want to find an equivalent expression of it when x → ∞. By an integration by parts, we find

∫ x

2

dt

ln t
=
[

t

ln t

]x

t=2

+
∫ x

2

dt

(ln t)2 .

We also have the following asymptotic comparison,

1
(ln t)2 = o

(
1

ln t

)
, when t → ∞,

which leads to ∫ x

2

dt

(ln t)2 = o

(∫ x

2

dt

ln t

)
, when x → ∞.

Putting all the above relations together, we deduce

∫ x

2

dt

ln t
∼ x

ln x
, when x → ∞.

7.2 Improper integrals

As we mentioned in Section 7.1.1, to study the integrals of functions on general intervals, it is enough to

consider the case I = [a, b) where −∞ < a < b ⩽ +∞. The integrands that we are going to consider below

are not necessarily non-negative. If the interval of integration writes I = (a, b), where −∞ < a < b < +∞,

then as in Proposition 7.1.15, we need to take any c ∈ (a, b) and divide the interval into I− = (a, c] and

I+ = [c, b), and deal with them independently, see Definition 7.2.9.

7.2.1 Definition and properties
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Definition 7.2.1 : Let f : [a, b) → R be a piecewise continuous function.

(1) We say that the integral
∫

[a,b) f =
∫

[a,b) f(t) dt converges if the function

x 7→
∫

[a,x]
f(t) dt :=

∫ x

a
f(t) dt

is well defined and has a finite limit when x → b−. In this case, the limit is denoted by
∫

[a,b) f

or
∫

[a,b) f(t) dt. Such an integral is called an improper integral (瑕積分).

(2) If the above limit does not exist, then we say that the integral
∫

[a,b) f diverges.

Remark 7.2.2 : In the case that f is non-negative, then the convergence defined in Definition 7.2.1 coincides

with the notion of integrability defined in Definition 7.1.4.

Proposition 7.2.3 (Cauchy’s criterion) : Let f : [a, b) → R be a piecewise continuous function. The

following properties are equivalent.

(1) The integral
∫

[a,b) f converges.

(2) For any ε > 0, there exists c ∈ [a, b) such that for any x, y ∈ [c, b) with x < y, we have

∣∣∣ ∫ y

x
f(t) dt

∣∣∣ < ε.

Proof : Since (R, | · |) is complete, the convergence and the Cauchy’s property are equivalent. □

Proposition 7.2.4 : Let f : [a, b) → R be a piecewise continuous function. Let c ∈ [a, b). Then, the

following properties hold.

(1) Both integrals
∫

[a,b) f and
∫

[c,b) f have the same behavior.

(2) If they both converge, we have

∫
[a,b)

f =
∫

[a,c]
f +

∫
[c,b)

f.
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Proof : Both properties are direct consequences of the cyclic relation on segments (Proposition 5.2.10),

∀c ∈ [a, b), ∀x ∈ [c, b),
∫ x

a
f =

∫ c

a
f +

∫ x

c
f. □

Corollary 7.2.5 : Let f : [a, b) → R be a piecewise continuous function. If the integral
∫

[a,b) f converges,

then when x → b−, we have ∫
[x,b)

f → 0.

In such a case, the integral
∫

[a,x] f is called partial integral, and the integral
∫

[x,b) f is called the remainder

integral of the integral
∫

[a,b) f .

Proof : Suppose that the limit when x → b− of
∫

[a,x] f is finite, and is denoted by
∫

[a,b) f . This means

that
∫

[x,b) f =
∫

[a,b) f −
∫

[a,x] f tends to 0 when x → b−. □

Proposition 7.2.6 : Let f : [a, b] → R be a bounded function. Assume that f ∈ R(x; a, b), then the

improper integral
∫

[a,b) f converges and we have

∫
[a,b)

f =
∫ b

a
f.

Remark 7.2.7 : This proposition shows that, if a function f : [a, b] → R is Riemann-integrable, then its

integral and the improper integral on [a, b) coincide. In other words, the definition of the improper integral

in Definition 7.2.1 generalizes the notion we saw previously on segments in Chapter 5. Therefore, we may

also denote the improper integral using the classical notation,

∫ b

a
f :=

∫
[a,b)

f,

whenever f : [a, b) → R is a function that is piecewise continuous on [a, b) and such that the integral
∫

[a,b) f

converges.

Proposition 7.2.8 : Let f : [a, b) → R be bounded and F be a primitive of f . The following properties

are equivalent,
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(1) The integral
∫ b

a f converges,

(2) F has a finite limit at b−.

In this case, we have ∫ b

a
f = lim

x→b−
F (x) − F (a),

and the function

x 7→
∫ b

x
f

is well defined on [a, b), differentiable on (a, b), with derivative −f .

Proof : The proof follows directly from what has been said above and is left as an exercise. □

Definition 7.2.9 : Let −∞ < a < b < +∞ and f : (a, b) → R be a piecewise continuous function.

Fix c ∈ (a, b). We say that the improper integral

∫
(a,b)

f :=
∫ b

a
f

is well defined, if both
∫

(a,c] f and
∫

[c,b) f are well defined.

Remark 7.2.10 : In Definition 7.2.9, we note that the choice of c ∈ (a, b) is irrelevant. In fact, for any

c1, c2 ∈ (a, b) with c1 < c2, we have

•
∫

(a,c1] f converges if and only if
∫

(a,c2] f converges;

•
∫

[c1,b) f converges if and only if
∫

[c2,b) f converges.

Example 7.2.11 : Let us consider the function f : (0, 1) → R, defined by

∀x ∈ (0, 1), f(x) = 1
x

− 1
1 − x

.

(1) If we consider In = [ 1
n , 1 − 1

n ], then we have, for any n ⩾ 1,

∫
In

f =
[
ln x + ln(1 − x)

]1− 1
n

x= 1
n

= 0.
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(2) If we consider Jn = [ 1
n , 1 − 2

n ], then we have, for any n ⩾ 1,

∫
Jn

f =
[
ln x + ln(1 − x)

]1− 2
n

x= 1
n

= ln
(
1 − 2

n

)
− ln

(
1 − 1

n

)
+ ln 2,

which implies that ∫
Jn

f −−−→
n→∞

ln 2.

(3) However, the integral of f on (0, 1
2 ] does not converge. For n ⩾ 1, consider Kn = ( 1

n , 1
2 ], then

∫
Kn

f =
[
ln x + ln(1 − x)

] 1
2
x= 1

n

= 2 ln 1
2

− ln 1
n

− ln
(
1 − 1

n

)
−−−→
n→∞

+∞.

The existence of the improper integral of f on (0, 1) needs to be checked as in (3), see Definition 7.2.9.

In conclusion, (1) and (2) give different finite limits because f is not integrable in the sense of

Definition 7.1.10.

7.2.2 Conditional convergence

We saw that there are series that converge conditionally, i.e. they converge but do not converge abso-

lutely, see Section 6.4. The way we define the integral on a general interval in Definition 7.2.1 is similar

to the definition of a series, so we also have integrals that converge, but do not converge absolutely, and

we say that such integrals covnerge conditionally. For such integrals, we also have Abel’s transform, and the

corresponding Dirichlet’s test for convergent integrals, see Theorem 7.2.14.

Definition 7.2.12 : Given a piecewise continuous function f : I → R, we say that its integral∫
I f is conditionally convergent if its integral converges (in the sense of an improper integral, see

Definition 7.2.1 and Definition 7.2.9) but does not converge absolutely (or f is not integrable on

I , see Definition 7.1.10).

Example 7.2.13 : The following integral is conditionally convergent,

∫ ∞

π

sin x

x
dx. (7.6)
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• Let us show that this integral does not converge absolutely. For every k ∈ N, we have

∫ (k+1)π

kπ

∣∣∣sin x

x

∣∣∣ dx ⩾
∫ (k+1)π

kπ

| sin x|
(k + 1)π

dx = 2
(k + 1)π

.

Since the series
∑

n⩾1
1
n diverges, we deduce that

∫ ∞

π

∣∣∣sin x

x

∣∣∣ dx

also diverges. Therefore, Eq. (7.6) does not converge absolutely.

• Let t > π. We write

∫ t

π

sin x

x
dx =

[
− cos x

x

]t

x=π

−
∫ t

π

cos x

x2 dx = 1
π

− cos t

t
−
∫ t

π

cos x

x2 dx.

When t → ∞, we have cos t
t → 0. Additionally, since the function x 7→ cos x

x2 is integrable on

[π, ∞), we know that the integral ∫ t

π

cos x

x2 dx

converges when t → ∞.

Theorem 7.2.14 (Abel’s rule) : Let f : [a, b) → R be of class C1 and g : [a, b) → R be continuous.

Suppose that

(i) f is decreasing with limx→b f(x) = 0;

(ii) There exists M > 0 such that for any x ∈ [a, b), we have |
∫ x

a g(t) dt| ⩽ M .

Then, the integral
∫ b

a f(t)g(t) dt is convergent.

Proof : Let ε > 0. Due to the assumption (i), we may find A ∈ [a, b) such that

∀x ∈ [A, b), 0 ⩽ f(x) ⩽ ε.

We may also define

∀x ∈ [a, b), G(x) =
∫ x

a
g(t) dt,

and it follows from (ii) that |G(x)| ⩽ M for all x ∈ [a, b).
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For any x, y ∈ [a, b) with y ⩾ x ⩾ A, an integration by parts gives us

∫ y

x
f(t)g(t) dt =

[
f(t)G(t)

]y
t=x

−
∫ y

x
f ′(t)G(t) dt.

Let us control each of the terms on the right side of the above formula. We have

|f(y)G(y) − f(x)G(x)| ⩽ 2εM,

and ∣∣∣ ∫ y

x
f ′(t)G(t) dt

∣∣∣ ⩽ ∫ y

x
(−f ′(t))M dt = [f(x) − f(y)]M ⩽ εM.

This means that ∣∣∣ ∫ y

x
f(t)g(t) dt

∣∣∣ ⩽ 3εM,

so the Cauchy’s criterion (Proposition 7.2.3) is satisfied, which implies the convergence of∫ b
a f(t)g(t) dt. □

Example 7.2.15 : When α > 0, the following integrals converge,

∫ ∞

1

sin x

xα
dx,

∫ ∞

1

cos x

xα
dx, and

∫ ∞

1

ei x

xα
dx.

This is a direct consequence of Theorem 7.2.14, or by an integration by parts as in Example 7.2.13.

Example 7.2.16 : Let us consider the two following functions defined on [1, +∞),

∀x ∈ [1, +∞), f(x) = ei x

√
x

and g(x) = ei x

√
x

+ 1
x

.

These two functions are equivalent when x → +∞.

• It follows from Example 7.2.15 that
∫∞

1 f(x) dx converges.

•
∫∞

1 g(x) dx cannot converge, because otherwise,
∫∞

1 (g(x) − f(x)) dx =
∫∞

1
1
x dx would con-

verge, which is false.
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7.3 Laplace’s method

To conclude the chapter, we introduce the Laplace’s method, which is very useful when it comes to finding

an asymptotic expression.

Theorem 7.3.1 (Laplace’s method) : Let −∞ ⩽ a < b ⩽ +∞, and two functions g, h : (a, b) → R be

of class C2. Suppose that

(i) The function x 7→ g(x)eh(x) is integrable on (a, b);

(ii) There exists c ∈ (a, b) such that

(a) h is increasing on (a, c) and decreasing on (c, b), with h′′(c) < 0;

(b) g(c) 6= 0.

Then, when λ → +∞, we have

∫ b

a
g(x)eλh(x) dx ∼

√
2π

−λh′′(c)
· g(c)eλh(c). (7.7)

Proof : The rigorous proof of this theorem is more involved, and only give a sketch below to illustrate

the ideas. Additionally, let us take the function g be a constant function g ≡ 1. We write the Taylor

expansion of h around c,

h(c + x) = h(c) + h′(c)︸ ︷︷ ︸
=0

x + h′′(c)x2

2
+ o(x2) when x → 0.

We have the following approximations, which need to be justified carefully,

∫ b

a
eλh(x) dx ≈

∫ ε

−ε
eλh(c+x) dx ≈

∫ ε

−ε
eλh(c)+ λh′′(c)

2 x2 dx

≈ eλh(c)
∫ ∞

−∞
e

λh′′(c)
2 x2 dx =

√
2π

−λh′′(c)
· eλh(x),

where the last equality follows from the Gaussian integral, see Exercise A1.6. □

Example 7.3.2 : Let us consider the Gamma function defined in Example 7.1.21,

∀x > 0, Γ(x) =
∫ +∞

0
tx−1e−t dt.
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We recall the recurrence relation Γ(x+1) = xΓ(x) satisfied by all x > 0. In particular, for any integer

n ⩾ 1, we have Γ(n + 1) = n!. We may apply Laplace’s method to the Gamma function to find an

asymptotic expression for n!, called Stirling’s formula, also see Exercise 6.12.

We have

n! = Γ(n + 1) =
∫ +∞

0
tne−t dt =

∫ +∞

0
en ln t−t dt.

Tomake the integrand in the above formula in the form as in Eq. (7.7), we make the change of variables

t = nx, and we have

n! =
∫ +∞

0
nen ln(nx)−nx dx = nn+1

∫ +∞

0
en(ln x−x) dx.

Let us consider the function h : [0, +∞) → R, x 7→ ln x − x. We have

∀x > 0, h′(x) = 1
x

− 1 and h′′(x) = − 1
x2 < 0.

Therefore, we may take c = 1 and check that h is increasing on (0, 1) and decreasing on (1, +∞). By

applying Laplace’s method, we find

n! ∼ nn+1
√

2π

n
e−n =

√
2πn

(n

e

)n
.
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