Sequences and series of functions
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Let A be a set, and (M, d) be a metric space. We denote by F (A, M) the space of functions from A to
M, and by B(A, M) the space of bounded functions from A to M. Instead of a metric space, we may also
consider a vector spaces W over K = R or C, so that we have the + operation. This vector space is equipped

with a norm that we denote by ||||.

In this chapter, we are interested in sequences and series of functions, which can also be seen as sequences
and series with terms in F (A, M) or F(A, W).
8.1 Notions of convergence

We discuss different notions of convergence for sequences of functions, then for series of functions.

8.1.1 Sequences of functions

For a sequence of functions, we have different notions of convergence. Below we are going to discuss the
pointwise convergence (Definition 8.1.1), and a stronger notion of convergence, called uniform convergence

(Definition 8.1.4).

Definition 8.1.1:Let (f,,),>1 be a sequence of functions from A to M, that is, they are elements of

F(A,M).

. Let f € F(A, M). We say that the sequence (f,),>1 converges pointwise (ZEEWEN) to f if

for every x € A, we have f,(x) — f(z)in (M, d).

« We say that the sequence (f,,),>1 converges pointwise if there exists f € F(A, M) such that

(fn)n>1 converges pointwise to f.

« Let B C Abe asubset. We say that (f;,)n>1 converges pointwise on B if ((f»)|5)n>1 converges

pointwise.
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Chapter 8 Sequences and series of functions

Example 8.1.2: Let us consider the sequence of functions (f,),>1 defined by

VYn>=1, fo: [0,1] — R

x — "

The sequence of functions (f,)n>1 converges pointwise to the indicator function f = 1y on [0, 1].

Remark 8.1.3:
(1) If a sequence (fy,)n>1 converges pointwise, then its limit function f is unique.

(2) Let (fn)n>1 be a pointwise convergent sequence of functions. Suppose that these functions take values

in a finite dimensional vector space (W, ||-||), then the limit does not depend on the norm, because all

the norms are equivalent in .

(3) Properties such as linearity, product, inequality, monotonicity, etc., are preserved for the pointwise

convergence of functions.

(4) We see that in Example 8.1.2, the continuity at 1 is not preserved in the limit. Indeed, for all n € N, the
function f,, is continuous, but the limit function f is not continuous at 1. In other words, the following
two iterated limits are different,

lim lim f,(x) = il_)H?i flz)=0#1= Jim 1= lim lim fn(x).

r—1n—00 n—oo r—1

We have already encountered a similar example in Example 6.7.2.

(5) Analytic properties such as continuity and differentiability are not preserved for the pointwise con-
vergence. We will define the notion of uniform convergence below (Definition 8.1.4), and will see that

analytic properties can be preserved if this convergence occurs (Proposition 8.2.1).

Definition 8.1.4 : Let (f,,),>1 be a sequence of functions from A to M.

. Let f € F(A, M). We say that the sequence (f,,),>1 converges uniformly (3ZUWE) to f if

Ve>0,3dN >1,Vn> N, Ve e A, d(fu(x),f(z)) <e. (8.1)

« We say that the sequence (fy)n>1 converges uniformly if there exists f € F (A, M) such that

(fn)n>1 converges uniformly to f.
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Chapter 8 Sequences and series of functions

« Let B C Abe asubset. We say that (f;,)n>1 converges uniformly on B if ((f5)|5)n>1 converges

uniformly.

Remark 8.1.5 : We may rewrite the definition of pointwise convergence using quantifiers. We say that

(fn)n>1 converges pointwise to f if

Vee A, Ve>0,3IN =1, Vn> N, d(fn(z), f(z)) <e. (8.2)

If we compare Eq. (8.1) and Eq. (8.2), we see that the choice of N depends on = € A in the case of pointwise
convergence, but does not depend on x € A in the case of uniform convergence. This is the reason why the
convergence characterized by the condition Eq. (8.1) is called uniform convergence. This remark easily leads

to the following corollary.

Corollary 8.1.6 : If the sequence of functions ( f,)n>1 converges uniformly to f, then it converges point-

wise to f.

Remark 8.1.7 : Due to the uniqueness of the pointwise limit (Remark 8.1.3), we deduce the uniqueness
of the uniform limit of a sequence of functions. To show that a sequence of functions (f;,),>1 converges

uniformly, we may start by computing its pointwise limit f, then show that ( f,,),>1 converges uniformly to

f

Proposition 8.1.8 (Cauchy’s criterion for uniform convergence) : Suppose that (M, d) is a complete
metric space. Let (f)n>1 be a sequence of functions in F(A, M). Then, (fn)n>1 converges uniformly if

and only if it satisfies the uniform Cauchy condition, that is

Ve > 0,IN > 1,Vm,n > N,Vx € A, d(fn(x), fm(x)) <e.
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Chapter 8 Sequences and series of functions

Proof : Given € > 0. Let N > 1 such that the uniform Cauchy condition holds, that is

Vm,n > NVe € A, d(fu(), fu(2)) <. (8.3)

For each z € A, we see that (f,(x)),>1 is a Cauchy sequence, so it converges to some limit that we

denote by f(x). By taking the limit m — oo in Eq. (8.3), we find

Vn > N,Vo e A, d(fu(x), f(z)) <e,

which is the characterization of (f;,),>1 uniformly converging to f from Eq. (8.1). O

BNE  REBIESIERE

EEA I HRE c > 0° | N > 1 S9N FEAERRKI - RSN
Vm,n > N,Vz € A, d(fn(z), fm(z)) <e. (8.3)
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Definition 8.1.9 : The notion of uniform convergence can be described using a distance (or a norm).

« Let (M, d) be a metric space and B(A, M) be the set of bounded functions from A to M. We
may equip B(A, M) with the following distance

VigeB(A M), du(f 9)=dsalf,g):= Sup d(f(zx),g(x)), (8.4)

called the distance of uniform convergence. A sequence of bounded functions (f;,),>1 converges

uniformly to f is equivalent to the convergence of (f,),>1 to f with respect to the distance do..

« Let (W, ||-]|) be a normed vector space and B(A, W) be the set of bounded functions from A to
W. We may equip B(A, W) with the following norm

Vf € BAW), = flle,a = sup /@) 63

called the norm of uniform convergence. A sequence of bounded functions (fy,),>1 converges

uniformly to f is equivalent to the convergence of ( f,),>1 to f with respect to the norm ||| ..
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Proposition 8.1.10: Let (W, ||-||) be a Banach space. Then, the following properties hold.

(1) The space of bounded functions B(A, W) equipped with the norm ||-|| ., defined in Eq. (8.5), is a

Banach space.
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Chapter 8 Sequences and series of functions

(2) A sequence (fn)n>1 of B(A, W) converges uniformly to f € B(A, W) if and only if (fu)n>1
converges to f under the norm ||-|| ., given in Eq. (8.5), that is || fr, — fl|

”I’L—}OO

Proof :

(1) It is not hard to check that [|-|| defines a norm on the vector space B(A, W). To check that
it is complete, let us be given a sequence (fy,)n>1 in B(A, W), which is Cauchy with respect to
the norm ||-|| . For every x € A, we know that (f,,(¢)),>1 is a Cauchy sequence in the Banach
space (W, ||-||), so it converges to some limit f(z) := lim, o fn(2). Since (f)n>1 is Cauchy in
(B(A, W), |||l o), there exists M > 0 such that || ||, < M for all n > 1. Therefore, for every
x € A, we have || f(x)]| = lim, o0 || fr(2)]] < M, s0 | f]l,, < M, thatis f € B(A,W). In the
end, it is not hard to check that || f,, — f]| — = 0, so we conclude that (B(A, W), |I-lo) is

complete.

(2) Tt is exactly a rewriting of Eq. (8.1) in the normed vector space (W, ||-||) with help of the new
norm defined in Eq. (8.5). O
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Example 8.1.11: Consider the sequence of functions ( fy,),>1 defined by

VneN, Vrel0l], fu(z)=2"(1-u2x).

It is not hard to see that (f,)n>1 converges pointwise to the zero function. For every n € N, the

function f,, is of class C*°, so we may take its derivative to find its extrema on [0, 1]. We have

1
).

Ve e [0,1], fl(z)=na""" (1 -

| and decreasing on [, 1] with maximum at z;,, =

Therefore, the function f,, is increasing on [0 i

_n_
' n+1

T+1 that is

1 NG 1
vz € [0,1], f”(m)gf”(x”):n—kl(n—i—l) <n+1 n—00

Therefore, the sequence (f,,)n>1 converges uniformly to the zero function on [0, 1].
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Chapter 8 Sequences and series of functions

Remark 8.1.12 :If a sequence of functions (f,),>1 converges pointwise to f, in order to show that this

convergence is not uniform, we may look at the negation of Eq. (8.1), which writes
>0, VN2>1, In>N3dr e A d(fn(z), f(z)) > e

In other words, we need to find a sequence (x,,),>1 with values in A and an extraction ¢ : N — N such that

the sequence (d(fy(n)(Zn), f(¥n)))n>1 is bounded away from 0.

Example 8.1.13 : Let us consider the following sequence of functions,

x+/n

VneN, V>0, fo(z)= e

It is easy to see that the sequence of functions (f,,),>1 converges pointwise to the zero function. To
show that it does not converge uniformly, we follow Remark 8.1.12. Let x,, = n for n > 1. Then, we

have

n+\f 7#0

n-+mn mn—oo 2

VneN, fu(r,)—0=

We conclude that the convergence f,, — f is pointwise but not uniform.
n—oo

The following theorem tells us which additional assumptions we may add to upgrade a pointwise conver-

gence to a uniform convergence.

Theorem 8.1.14 (Dini’s theorem) : Let (K, d) be a compact space, and ( f,,)n>1 be a sequence of con-

tinuous functions from K to R. Suppose that
(i) the sequence is increasing, that is for every x € K andn € N, we have f,,(x) < fny1(x);
(ii) the sequence (fy)n>1 converges pointwise to a continuous function f : K — R.

Then, the sequence ( fy,)n>1 converges uniformly to f.
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Chapter 8 Sequences and series of functions

Proof : For every n € N, let us define the continuous function g, = f — f,, > 0. By the assumption (i),
the sequence of functions (g, )n>1 is decreasing. Given ¢ > 0, we define E,, = {z € K : g,(x) < ¢}
for n € N. For every n € N, since g, is continuous, the set F,, is open; since the sequence (g, )n>1 is
decreasing, the sequence (E,,),>1 is increasing. Due to the assumption (ii), we find that U,,»; F, = K.
Since K is compact, by the Borel-Lebesgue property (Definition 3.1.3), there exists N > 1 such that
Ex =UY_, E, = K. This means that for any n > N and = € K, we have |f,,(z) — f(z)] <e. O

Remark 8.1.15 : There is another version of Dini’s theorem, stated as below. Let I = [a, b] be a segment

and (f,,)n>1 be a sequence of (not necessarily continuous) functions from I to R. Suppose that
(i) for each n > 1, the function f, is increasing on I;
(ii) the sequence (f,)n>1 converges pointwise to a continuous function f : I — R.

Then, the sequence ( f,,)n>1 converges uniformly to f. See Exercise 8.7 for a proof.

8.1.2 Series of functions

In this section, let (uy,),>1 be a sequence of functions from A to W, where (W, ||-||) is a Banach space.

Definition 8.1.16:

« We say that the series of functions ) u,, converges pointwise if for every x € A, the series

> up(z) converges. We write

DonsiUn: A — w

T = Zn>1un(x).

« The function defined by S,,(z) = > ;_; ug(z) for x € A is called the n-th partial sum of the

series of functions > uy,.

« Ifthe series of functions ) u,, converges pointwise, then the n-th remainderis given by R,,(z) =

S22 i1 uk () for z € A.
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Chapter 8 Sequences and series of functions

« We say that the series of functions ) u,, converges uniformly if the partial sums (S, ),>0 con-

verges uniformly.

BNE  REBIBF LRI

« SNREMH (Sn)nz0 GIHTWER - BIFKFIRREBIRE X, T -

Proposition 8.1.17 : The series of functions ) u,, converges uniformly if and only if
(i) the series Y u, converges pointwise, and

(ii) the sequence of remainders (R,,),>0 converges uniformly to the zero function.

Proof : Let ) u,, be a series of functions, (S, ),>0 be its partial sums, and (R;,),>0 be its remainders.

« Suppose that Y u,, converges uniformly to u, which means that (S),),,>¢ converges uniformly to
u, and it follows from Corollary 8.1.6 that this convergence takes place pointwise. The uniform
convergence means that ||S,, — /| — 0, since u — Sp = R,, we see that it is equivalent to

n—,oo

[Bnlloe = O

« Suppose that (i) and (ii) holds, and denote by u the pointwise limit of }_ wu,. Since R,, = v —

Sy, from its uniform convergence to zero, we find ||.S,, — u||,, —— 0, which is the uniform
n—o0

[ee]

convergence of (Sy,),>0 to u. O

Bl 8.1.17 @ RBHRE X u, FIIWEREBHES
(i) BRBHRE Y u, EZFRWE - TH

(i) BRIERFS (R,)n>0 SHEBEREITRE o

Example 8.1.18 : Let us consider the series of functions > #x” where each term is a function

defined on [0, 1]. We are going to show that this series of functions converges uniformly. For every

x € [0, 1], the sequence (%)791 is non-increasing with limit zero. It follows from Theorem 6.4.2 that

the series ) | (7:0) San converges, and the remainder R, () satisfies

n+1 1
<
+1 n+1

X

Vo €[0.1), |Ru(w)| <

9

3

which does not depend on = € [0, 1]. This implies that the convergence of the series of functions is

uniform.

B D )y AERBIRE 0 (Sn)nz0 WIBEIERAH @ BE (R,)n=0 #IBRIRRIE

o REX Y- u, FIWHE u > EARE (Sn)nzo HIWHE v > WRE 8.1.0 ZFIFRIEEK
BMEERERE - HIWHAR (S, —ul, —— 0 HR v - S, = R, > HFAFHEHN

1Rl = 0O 5B -

« RE& (1) #0 (i) ARIL » WIE 3w, FEWHBIBREEE v e HRN R, = v — S, * BE&HIK

(|
HER » BIUFE S, — ull., —— 0+ BIFEEE (5,)020 IRBEE u -

6 8.1.18 : EEMASEREHE > Vo HhSBEHMEEEE [0, 1) LHIRE - HRFIEE
EEREEREREAGIIERR - BREE 2 € [0,1] 0 FF (L), FFEEEBRRE - NE

n

B 6,42 RASRE ¥ o GUesl - MEKE R, () B2

n+1 1
< )
+1 n+1

X

Vo € [0,1], |Ru(z)| <

3

>
N

BAGEURR = € [0,1] °» BAREBRBBRBVBHRETIN -

Remark 8.1.19 : We note that saying that a sequence of functions ( f,),>1 converges uniformly is equivalent

to saying that the series of functions Y (f,+1 — fn) converges uniformly.
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Chapter 8 Sequences and series of functions
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Proposition 8.1.20 (Cauchy’s condition) : A series of functions > u,, converges uniformly if and only

if for every € > 0, there exists N > 1 such that
Vn > N,Vk>1, |upy1+- + Ungrll <e

This is the Cauchy’s condition in the case of a series of functions.

Proof : This is very similar to Corollary 6.1.11. From Proposition 8.1.10 (1), we know that

(B(A,W),||-l,) is a Banach space, in which a sequence converges if and only if it is Cauchy. O

foed 8.1.20 [MAEMGRMA] @ RERE Y w, EFIRBEAMREHREE >0 FEN > 1
&5

VYn > N, Vk > 1, ”un+1—|—"'+un+k‘|oo<€.

1B 2 7E R BB SRR AT: -

(i

FEHE  EERRIE o111 IEFEER - WaEs.1.10 (1) 0 FPIENE (B(A, W), ||||,.) =8 Banach
=M MEEEZERET - F7ERHSEBHEMEEMTEEFES) - 0

Definition 8.1.21:Let u, € B(A, W) for every n > 1. We say that the series of functions ) uy,
converges normally (IEFRMIEY) on A if the series Y ||uy ||, 4 converges.

EH 8121 1 BRASEL > 1 D u, € BA W) » MREH Y. [, W - BIRFIREH
B> u, BT A FIEBIEL (normal convergence) ©

Proposition 8.1.22: Suppose that (W, ||-||) is a Banach space. Lety_ u,, be a series of bounded functions
from A to W that converges normally on A. Then, the following properties hold.

(1) For everya € A, the series > uy(a) converges absolutely.

(2) The series of functions ) u,, converges uniformly.

Proof :

(1) Let a € A. For every n > 1, we have ||up(a)| < ||un||o. Since - ||uy||, is convergent, we

deduce that >~ uy,(a) converges absolutely.

(2) Foreveryn,k > 1and x € A, we have
[un(@) + - 4 tngr ()| < un(@)| + -+ [Jtnr (@) ] < unllog + -+ lunsrllo -

Therefore, the Cauchy’s condition for the series ) ||uy|| ., implies the Cauchy’s condition for the
series Y uy, (), uniformly for all z € A. This means that the series of functions > u,, converges

uniformly. 0
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@8 8122 1 &R (W, |||) 28 Banach 2203 & 3 u,, ZE A MRS W 15 REBBRR
2> BB A FERKE - BBETHIMEERT

o

(1) BREEac A BRE Y u, (o) SIBEURE

(2) BRIEREX > u, IR

B:

(1) BacA-HREBE > 1 BHFIB [ua(a)] < lunllo © BR Y [lunll,, EWE - HFIHER
> un(a) SHEHUREL -

) HREEnkt>1 UKk ec A FFIE
Jun(z) + -+ unyr (@) | < lun(@)]| + - + [Juprr (@) < llunllgo + - + ltnrkllo -

I - FREX Y (|unll o IFIPRRMRESIREL Y un () BIMERIRMY - MEHRABE 2z c AR
(]
B8 - EBARZRERE > v, FIIUEL -
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Chapter 8 Sequences and series of functions

Remark 8.1.23 : Let us assume that (I, ||-||) is a Banach space, and u,, € B(A, W) for all n > 1. A series
of functions )~ u,, can also be seen as a series with terms in the Banach space (B(A, W), ||-||.,), meaning
that the normal convergence of the series of functions ) u,, is the same as the absolute convergence of the
series Y u,, with terms u,, € B(A, W). This allows us to find an alternative proof to (2), by noting that from
Theorem 6.1.16, we deduce that the series ) u,, converges in B(A, W), that is the series of functions > u,

converges uniformly.

Example 8.1.24 : Let us define a sequence of functions ( f,,),>1 on [0, 1] as below,

1+2/ FulD)

fi=1 and Vn>1,Vz €[0,1], fori(x

For any n > 1 and z € [0, 1], we have

’/ (frg1(t) ())dt‘
<§/0 st = Jallog
< 3wt = Fullo.

’fn-‘rQ( ) fn-i—l

implying || fnt2 — fat1lleo < 3 Ilfat1 — fullo. Therefore, by induction, we find

1
V=1, |for1 = falle < o1 [ f2 = fillo

It follows that the series Y (fn+1 — fn) converges normally, so uniformly, and the sequence (fy,)n>1

converges also uniformly.

Example 8.1.25 : Let us consider the series of functions Z EL 2n defined on [0, 1]. We have seen

that this series of functions converges uniformly on [0, 1] (Example 8.1.18).

- However, it does not converge normally on [0, 1], because ||uy ||, = £ for n > 1, and the series

> % diverges.

« It does converge normally on [0, a] for any a € [0, 1), because H(“”)I[Oﬂ]

. n
and the series ) % converges.

Last modified: 20:41 on Tuesday 20" May, 2025
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51f% 8.1.23 : FEIMMERER (W, |-||) B8 Banach ZEfE » MBHREIE n > 1 BFIB u, € B(A, W) °
B BUR B > w, BT AR B (FEUETE Banach ZZf (B(A, W), ||-||) BIRE - BRLZEER @ REIRE
S uy, BIERIEME S E R PIBREPHIBEE u, € B(A,W) B > 3 u, FIBEIKRIMEEE - 5EHK
MIREISE —EHERFER (2) 1 RARTLCEEREE 6.1.16 » RAIBEHSRE X u, 7 B(A,W)
W SERRBREIRE Y u, BITWH -

gl 8.1.24 : EHRMEEBERT([0,1] ENREBFY (f)n 00T -
1 xT
=1 UKR VYn>1,Vzel0,1], fon(z)=1+ 5/0 fa(t)dt
HREEn> 1 UKk c[0,1] > HME

| frt2(2) = faga(z ‘/ (frt1(2) ())dt‘
<§/0 s — Fall oo

1
< B | frr1 — frlloo s

o At - BBHBENE - HFISE

BB | frr2 — frrilloo < 3 st — falloo
1
Vn =1, an+1—anoo<2ni_1Hf2—f1Hoo

& &SR FFIREX X (frgr — fr) GIERKE - FRAEEEIRE - MEFT (fo)n1 LES
SR

0l 8.1.25  BRMEBEERE 0,1) LORSEHE > V0 - BMEEBESERBREE
£ [0,1] L5sR (&8Hls1.18) -
« AT - ARETE [0,1] EIERBEE - BAER 0 > 1 FFIE [Juall,  TERE > L

TEE ©

- WRMER o € [0,1)  #BTE 0,0] LERREL - AR n > 10 BIVE | (wa)jon| =
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Chapter 8 Sequences and series of functions

8.2 Properties of the uniform limit

In this section, we are going to discuss some analytic properties of the limit of a convergent sequence of
functions. We are going to consider metric spaces (X, dx ) and (M, d;y), and a sequence of functions (fy, )n>1

in B(X, M).

8.2.1 Continuity

Proposition 8.2.1: Suppose that (fy,)n>1 is a sequence of functions from X to M and converges uni-

formly to f. If f,, is continuous at a for everymn > 1, then f is continuous at a.

Proof : Let ¢ > 0. Due to the uniform convergence of (fy,),>1 to f, we may find NV > 1 such that
Yn > N,Vx € X, dy(fu(x), f(z)) <e.
Since fy is continuous at a, we may find § > 0 such that
Vye X, dx(z,y)<é = du(fn(),[n(y)) <e

Therefore, for any y € X such that dx (z,y) < 0, we have

dy(f (), f(y)) < dp(f(2), fn(@)) + dp (), I () + du (v (), fy)) < 3e.

This shows that f is continuous at a. (I

Corollary 8.2.2: Let (fy,)n>1 be a sequence of continuous functions from X to M. If (fn)n>1 converges

uniformly to f on X, then f is continuous on X.

Last modified: 20:41 on Tuesday 20" May, 2025 11
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o, TERE Y B -

SE 99mRMNEE

FEMEEHP  RMEAREUBREFINBENSTEE - EMEERMEZEM (X, dy) #
(M, dyy) » URTE B(X, M) FREREBFES (f)ns1 ©

B—hEh EEN

el 8.2.1 : B&% (fn)n>1 =EH X BEE) M BREFS - MEEHIKEE f o tREHRER
Bn>1 f,EaZEE > BBE f £ a B °

AT e > 0° B (fo)ne1 EHFWEE] f - HFIEESREI N > 1 #17

Vn > N,Ve € X, dy(fu(z), f(z)) <e.

B fv 7E o A8 > TeFIREHE] 6 > 0 1R

Vy € X, dx(x,y) <6 = dM(fN(a:)7fN(y)) <L e

Hitt > HIRER y € X WE dx(z,y) <6 > HMB

dy (f(x), f(y)) < dar(f(2), fn (@) + dar(fn (), () + du(Fn(y), fy)) < 3e.

BEERT fEaEE - O

STERHE] [ - FRE [ 1E X LA -
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Chapter 8 Sequences and series of functions

Proof : It is a direct consequence of Proposition 8.2.1. (]

Corollary 8.2.3: Let Y u,, be a series of continuous functions from [a, b] to a Banach space (W, ||-||). If

the series Y uy,, converges uniformly on [a, b], then the limit function ) w,, is continuous on |a, b].

Proof : It is a direct consequence of Corollary 8.2.2 by taking (X,dx) = ([a,b],| - |) and (M, dys) =
(WA 1D- .

Example 8.2.4 : Let us consider the series of functions ) _, - u, defined on R as below,
Ve >0, uy(x)=

« For each z > 0, the series - un(7) converges, and we denote the limit by u(z).
« The convergence of the series Zn>0 Uy, to u is not uniform. In fact, for every N > 1, we have

=N
+00.

N-1
S ale) = Y- e
n=0

n=0

—
Nl T—00

« For any M > 0, the convergence of the series ., - uy to u on [0, M] is uniform. To see this,

we write, for any x € [0, M],

N-1
Z Up () — Z u
n=0

n=0

which gives us a uniform upper bound of the remainder which does not depend on x.

« In consequence, the limit function u is continuous on [0, M] for every M > 0, so it is also

continuous on R ..

This examples illustrates that to get the continuity of the limit function, we do not necessarily need

the uniform convergence on the whole domain of definition. Since the continuity is a local regularity,

it is sufficient to show the uniform convergence on, for example, all the segments.
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i

SGER : EEAEE 2.1 HIEIEER o O

RiE8.23 1 Y u, #H [a, b] BETE Banach ZE[E (W, ||-||) BYERER BFRIBRAIREL o 2NRR
Y up BTE [a, 0] EIFURER - FBEMIRREL - v, BFE [, 0] LERE -

F8EA  FMIALUER (X, dx) = ([a,b], |- |) BE (M, dy) = (W, ||-]|) > BBEEEERIE s.2.2 WEIE
R O

g0 8.24  BEHEMEBERT R, LRIRBBE Y, ou, WITF :

« BREE 2 > 0 BREC, 0 un (o) W > FHPHBMBIBRIREEIF u(x) ©

- BB oun FEHIERHR v FEL  WHREBEN > 1 BB

N

—F — T0Q.

N-1
> un(w) = 3 un(x
n=0

n=0

cHREE M >0 BRE Y, ou, BTE [0, M] EFOKHE v BEEHIERE  HREE
€ [0, M] » FfM5E

N-1
Z Up(z) — Z u
n=0

n=0

n>N

SRR PIEREREBURR « B399 LR -
- EHIk - WREE M > 0 WRREY w 7E [0, M] EEEE > FIEEE R, LEE -

EEEA SHAMNREFDBRRBLEFN - AT —EFECEREERE LTI

- AREEMERERARIRENE - RFIRFERR - AINERERERL - SF99KAED
E_[O

12
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Chapter 8 Sequences and series of functions

8.2.2 Integation

Let I C R be an interval such that [ # . Consider a sequence ( f,,)n>1 of functions from I to a Banach
space (W, [[-])-

Proposition 8.2.5: Let (f,,)n>1 be a sequence of continuous functions that converges uniformly to f on

every segment of I. Let a € I, and define the following primitives,

:/:f(t)dt and  pals /fn Vi > 1.

Then, the sequence (y,)n>1 converges uniformly to @ on every segment of I.

Remark 8.2.6 : The conclusion of Proposition 8.2.5 menas that we may interchange the order of the limit

and integration,

lim /xfn(t) dt:/xnlggofn(t)dt

n—oo

Proof : Let [c,d] C I be a segment of I containing a. Since ( f,,),>1 converges uniformly on [c, d] to
f, it follows from Corollary 8.2.2 that f is also continuous on [c, d]. Therefore, the primitives ¢ and

¢©n, with n > 1 are well defined on [c, d]. For every n > 1 and = € [c, d], we have

len(z) — @(x)]| =

" (hutt) - 50

<z = alllfn = flloofea) < 1d = el 1fn = Fllog o) 752 0-

n—o0

The convergence to 0 in the above bound does not depend on = € ¢, d], so we have established the

uniform convergence of (¢, )n>1 to ¢ on [c, d]. O

Example 8.2.7 : Let (f,)n>1 be a sequence of real-valued continuous functions on [0, 1] that con-

verges uniformly to f. This means that (f,,),>1 is bounded in 5([0, 1], R), so we may find M > 0
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BNE  REBIESIERE
B RS

SICRARMMEE I + o - EEM 1 BEIE Banach 22/ (W, ||-||) BIREFS (f1)ns1

iR 8.25 I W (fu)n>1 AEIEREVBRNFY) > MEEESE I FIRREGIREE fo 5
acl WESRTFEARERE :

/f t)ydt AR on(z /fn Vn > 1.

BB > T (on)n>1 BESE 1 BURRER EETRHE] ¢ ©

B 526 | HE 525 NERERRMTUSIERNE WIES - hHER
Jim [ paydt= [ g fate)ae
EH: S [ C 1A NRE TIEES a- BR ([ BT [od FHORKE [ 7

822 FMIEA f WETE [c,d) EEE - AL RRB o BEHR n > 1 BERH ¢, 1 (¢, d]
HEBRBERRIFH - HREBE n > 188 « € [c.d » B

len(z) — @)l =

" (1) - 1)t

< ’x - a‘ an - fHoo,[c,d] < ’d B C‘ an fH s[e,d] 0.

n—o0

FEEWRER) 0 W ERFECRR = € [¢,d] » FIATKRFIEERRT (on)n>1 BTE (¢, d] LT ERHE

@ e U

856 8.2.7 1 B (fu)us1 BEE 0,1 ENEBEBERBFABRNFEY] > MEGIIWRHEE [ -
ERRE (f)ns1 T B(0,1,R) FER » FIUATKMEERE M > 068 1. < M BRFAE
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Chapter 8 Sequences and series of functions BNE REBHTEREH

such that || ||, < M for all n > 1. Then, we have n>1°PERMGE

Vo €10,1],  |fa(2)? = f(2)?| < 2M|fa(z) = f(2)]. Ve e [0,1], |fu(2)? — F(2)?] < 2M|fa(z) — f(z)|.

This means that (f2),,>1 converges uniformly to f2, so we have

BAK (f2)n=1 BEIWHE 2 FIUEFIE

IRy | [ 8 [

Example 8.2.8 : Let us consider the sequence of functions ( f,),>1 on [0, 1], defined by &l 8.2.8 : ERMEBRERTE [0,1] ERIREFES (fo)n1 WO -

Ve e [0,1], fao(z)=2a". Ve € [0,1], folz) = 2"

This sequence of functions converges pointwise to the indicator function f = 1; (Example 8.1.2)

EEREBFTEFRBHEIERRE [ =1, @Fs12) - ESEBRFTZEERE - FALGE
EWRHAZITTIN (B s.2.1) ° FAT @ MO HIFTIEURER

o — = [ 1y(z)da.
/ fn —|—1 n—>oo / 11 / f —|—1 n—)oo oe 0= / 1

This shows that the notion of uniform convergence is much stronger than the convergence of integrals. EFEATHI KRB R LB NKECEERGEN - BEE L HERESE 5 &P > HME

Actually, later in Section 8.5, we will see in a more general context, how to obtain the convergence of EDEE—BNIERT » tETEEE SRS R - B3RS IS o

integrals without having the uniform convergence.

which is not continuous, so this convergence is not uniform (Proposition 8.2.1). However, the sequence

of integrals converges,

Corollary 8.2.9: Let Y u,, be a series of continuous functions from [a, b] to a Banach space (W, ||-||). If RiE 829 ! > u, AH [a,b] BRESIZE Banach ZEfE (W, ||-||) BY BRIBUREL - BNRIREL > u,,
the series Y uy,, converges normally on [a, b], then, for z € [a, b], we have B7E [o, 0] LIERKER  RESR « € [a, 0] » BB
n = $untdt>:lim n( o tdt), x = @
| (;“ (o) at n;(/ Bat) = lm > [ w A (Z:lun (t)d _2(/ un(t)dt>=r}ggol;(/a un(t)dt).
where the limit on the right side is uniform on [a, b]. E 75 BORERRTE [0, LRSS -
Remark 8.2.10 : Corollary 8.2.9 gives us conditions under which we are allowed to interchange the order SIR 8.2.10 © RRIE 320 ERFFM » TEHFFEREMIEML LT » BT HESHIREMIER - S8/

of integration and series. In such a circumstance, sometimes we also say that “we may integrate the series . . _ .
BERT  HAERMEHLER HATUERE—E—EES -

term by term”.
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Chapter 8 Sequences and series of functions

We also have a more general statement for the behavior of a uniformly convergent sequence of functions
in the context of Riemann-Stieltjes integration. The following theorem states that (1) the Riemann-Stieltjes
integrability is preserved by the uniform convergence, and (2) the sequence of primitives also converges

uniformly.

Theorem 8.2.11: Let o € BY([a,b]). Let (fn)n>1 be a sequence of bounded functions from [a, b] to
R such that f,, € R(a;a,b) for alln > 1. Suppose that (fy,)n>1 converges uniformly to a function
f :[a,b] — R, and define

g@0=§éxfﬁ)da@) and @xx>=3éxﬁxwdaa» V> 1.

Then, the following properties hold.

(1) f € R(a;a,b).

(2) The sequence (gn)n>1 converges uniformly to g on [a, b].

Proof : By the decomposition theorem of functions with bounded variation, see Theorem 5.1.17 and
Corollary 5.3.16, it is enough to show the statement for a strictly increasing function . We have seen

a similar argument in the proof of Theorem 5.3.21.

(1) Let us prove that f satisfies Riemann’s condition with resepct to « on [a, b] (Definition 5.3.8).

Let &€ > 0. The uniform convergence of (f,,)n>1 to f allows us to find N > 1 such that

<
a(b) —afa)’

1f (@) = fr(2)]l < Vz € [a,b],Vn = N.
This means that for any partition P € P([a, b]), we have

Up(f = fn,a)l<e and |Lp(f = fy,0)[<e (8.6)
Since fy € R(a;a,b), we may find a partition P. € P([a, b]) such that

VP D P, Up(fn.a)— Lp(fn,a) <e. (8.7)

Last modified: 20:41 on Tuesday 20" May, 2025
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THEHEEE—MRRL - KBTI RERIIER T FERIB Riemann-Stieltjes 853 < FEE

EEHRFFI (1) Riemann-Stieltjes WA MEEHRITIRHARTT » UK 2) RRBVFIIHEETIEREK

FE8211 ¢ D acBV(ab]) D (fu)uor BE (o, 5] BEE R 895 RREFAEREIFS » T
ESREE n > 1 BIFE £, € Rlasa,b) o B (fu)s1 BHIDWSEIRE /- [a,0) - R > I
BESE

g(z) = ff(t)da(t) B ga(z) = /jfn@)da(t), Vn > 1.
R TSI E BRI -
(1) f € R(o;a,b) °

(2) r¥_§u (gn)n>1 @T:E [a, b] J:i';]":jl&fﬂﬂ] g°

iGHA  BREREERBNIEEIE BEFIE.1.17 MRE 5316 > RAIRFEHBRREERN
BB o FERARNE] o FEEHE 5.3.21 RURREAH - Pt B ER|LNGE -

(1) FBHMIZKER fE (0,0 LEREHNR o WREBKHE (E&E538)  He>00 AR
(fo)n>1 EEIWEE F - HATLUERE N > 1 18

1f(z) = fu(@)] < Vo € [a,b],¥n > N.

a(b) — ala)’
EARBHNEEZSE P c P((0,b) » BFE
Up(f = fn,a)l <e BUR |Lp(f = fy, o) <€ (8.6)

B fv € R(o;a,b) » FPIREHEIDE] P. € P([a,b]) £

VP D F,, Up(fN,a) — Lp(fN,a) <e. (8.7)
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Chapter 8 Sequences and series of functions

BNE RIS LR
Therefore, for any P O P, we have

At - HRERE PO P> HEME
UP(f7a) —Lp(f,Oé) < UP(f_fN,Oé)

_LP(f_fNaa)+UP(fN7a)

~ Le(fy. @) Up(f,a) = Lp(f.a) < Up(f — fv.a) = Lp(f — fx,a) + Up(fx,a) — Lp(fx, )
<|Up(f — fn, )|+ |Lp(f — fv. )| + [Up(fn,a) — Lp(fn, )] Un(F = fa )l + |Lp(f — Frr )| + [Up(fws @) — Lo, )]
< 3e
from Eq. (8.6) and Eq. (8.7). This shows that f € R(«a;a,b)

< 3¢
(2) Forn > N and z € [a, b], we have

B A AR (8.6) FZK (8.7) FR1FRIRAY -

iEFEAT f € R(a;a,b) °
@ Bl n>NUK e ab]» BB
|gn(z)—g(x)| < / [fu(®)=f () da(t) < [|fn = fllo [a(z)—ala)] < |[fn = fllo [(b)—ala)],
where the upper bound does not depend on z, and converges to 0 when n — co O lgn (= )l < / () =F O da(t) < [lfn = fl la(@)—al@] < I fn = fllo [a(b)=ala)l
([
Hp FRRECRR 2> MEE n — co RFGWHEI 0 -
Corollary 8.2.12: Let o € BV([a, b]). Let Y uy, be a series of bounded functions from [a,b] to R such RIE8.2.12 1 D acBV(a,b]) B Y u, BH [a, 0] REE R WERREBPTEAESE - BY
that u, € R(a;a,b) foralln > 1. Suppose that the series ., u,, converges uniformly on [a,b]. Then RFB n > 1 B8 w, € R(o:a,b) ° BRBE S u, BT [a,0] LITTKRK - BEETFIEE
the following properties hold
R
(1) Zn un E R(O[, CL, b)

(2) Forx € [a,b], we have

[ (Sm) aa

’ & z 2) Bz € [a,b] » BFIE
5 n0) do() = 3 ([ wa@ddet) = Jin 3 ([ w0000,

[ (o) et

= =2 (/ “"dea(t)) = ,}Lngoé ( / x w(t)dda(t)),
HAGRIBEHR « € [0, 0] BTTH ©

(1) X, un € R(a;a,b) °

where the convergence on the right side is uniform in x € [a, b]

8.2.3 Derivatives

B=INE e
Let I C R be an interval such that i # . Consider a sequence ( f,,)n>1 of functions from I to a Banach STCRAER
space (W, [|-]).

B [ + o o ZEH I MEYE Banach ZEf4 (W, |11 BYERIERFFY (fr)n>1
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Chapter 8 Sequences and series of functions

Theorem 8.2.13 : Let us make the following assumptions.
(i) For everyn > 1, the function f, : I — W is of class C*.
(ii) The sequence ( f)n>1 converges pointwise to f € F (I, W).
(iii) The sequence (f),)n>1 converges uniformly to g € F(I, W) on every segment of I.
Then, the following properties hold.
(1) The function f is of class C' and f' = g.

(2) The sequence ( fn)n>1 converges uniformly on every segment of 1.

BNE  REBIBF LRI

Proof : Let a € I. From (ii), we know that f,(a) — f(a).

(1) First, we note that since (f},)n>1 converges uniformly to g on every segment of 1, it follows from

Corollary 8.2.2 that g is continuous on I. By Proposition 8.2.5, for z € I, we have

/az = lim / I (t hm (fa(x) = fa(a)) = f(z) — f(a).

n— oo

This shows that
Vol f@)=f@+ [ glt)at

Since g is continuous, we deduce that f is of class C! and f’ = g.

(2) To show the uniform convergence of (fy,),>1 to f, let us proceed as follows. For every n > 1

and x € I, the fundamental theorem of calculus gives us

/.

The first term on the right side converges uniformly to 0 by Proposition 8.2.5, and the second

[fn(2) = f(2)] <

fu®) = FO) &) + 5@ - @)

term converges to 0 due to the assumption (ii). Therefore, the above rate of convergence does

not depend on = € I, so (fy,)n>1 converges uniformly to f. O
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EIE 8.2.13 1 EEMB TR o
() HRBEr>1 KB f,: [ > WRC EN-
(i) FH (fo)n>1 EBRBHEE f e FUI,W) °
(iii) 5 (f)ns1 BTESE I BUIRER BIGBEE g € FILW) ©
ABEE > FHIMEERIL ©
(1) KB fRCTEN -MAEf=g°

) FF (fn)n>1 BTEEE I BIRER LWL -

BEEA T ac Lo HE (i) 0 BAIHNE fo(a) —— fla)°

(1) B HPERRER (f)n=1 SESE I FRER EEIREE ¢ RIE 8.2.2 TG
gTE 1 LRERN - RigmE 825 - Rz e 1 FME

/j JE%O/ fa)dt = lim (fo(2) = fu(a)) = f(z) — f(a).

{a
Ulﬂ
N
N

Veel, f@)=f@+ [ gt
AR g BEEN > BMES fEC BN -MA ff=g-°

(2) BREFIZER (fu)n1 GEHIRHE - HEAT - HREBE 0 > 1 UK e e 1> FER
BEAREIBIATM

[fn(z) = f(@)]] <

|
RS s0s » BEENE—TERORNE o BIBESD () EEEKEE 0
B BRI REBCRR & € T BB (f,)oer BEISIELE /- -

Fu®) = F©) dt]| + o) - F(@)
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Chapter 8 Sequences and series of functions

Remark 8.2.14 : From the above proof, we see that the assumption (ii) can be softened to

(ii’) there exists @ € I such that f,,(a) — f(a).

Corollary 8.2.15:Let p > 1 be an integer, and (f,)n>1 be a sequence of CP functions from I to W.
Suppose that

(i) forevery0 < k < p — 1, the sequence ( fék))n% converges pointwise;
(ii) the sequence (f,Sp))@l converges uniformly on every segment of I.

Then, the pointwise limit f := lim,_,o f is of class CP, and for 0 < k < p, we have

veel, f®(z)= lim ;¥ ().

n— o0

ENE RBENBSREH

sHF 8.2.14 1 L LERAVFERARMITTIAB R » {RER (i) ATAFE AL

(i) FE a € IR fula) —— fla)°

RIE82.15 1 > 1 BB B (fu)n1 #H TBSFEE W BY CP EREFIERBIFS © R

() WREEo<k<p—1 B (f)o BFLEKE
i) R (f)no1 BTEEHE T BISRES FI9SURRK

AR > FEEURBAIIBIR [ = lim,,_,oo [, BB CP MRS MEAYWR <k <p BME

veel, f®(z)= lim f® ().

n—o0

Proof : This can be shown by induction using Theorem 8.2.13. O

Corollary 8.2.16 : Let (uy,),>1 be a sequence of C* functions from I to W. Suppose that
(i) the series )  u,, converges pointwise;
(ii) the series > ul, converges uniformly on every segment of I.

Then, the function ), uy, is of class C! and

(; un)/ = Z ul,. (8.3)

Example 8.2.17 : We claim that the Riemann zeta function s + ((s) is of class C*, and

Vs>1, ('(s)=— fj 1“8”. (8.9)
n=1 n
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F80E : PR LUEREIE 8.2.13 FNBRERHNIEIREERA - O
RIE8.2.16 : T (un)n>1 2H T MEE W B C! REFAERRRIFS © RER
(i) B w, EFEEUEL
(i) B> o, BESE [ BIRER LI WER -
TREE - WY, v, B CL B - TIE
(Sw) =S (58)
n>1 n>1
gl 8.2.17 : FHMEEFPARE ( KB s — ((s) 2 C W > MA
Vs>1, (/(s)=— i Inn (8.9)

Pl
n=1 n
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Chapter 8 Sequences and series of functions BNE REBHTEREH

For every n > 1, let u,, : s — n~%, which is a C! function with derivative given by HREER> 1 Du,:s—n* 0 E2MEC EHNXRE - MEMAMIEMH
Inn
Vs > 1 r(s) = ———. ~ Inn

s>1, u,(s) e Vs >1, u,(s)=-— e
The series of functions ) u,, converges pointwise to ¢. Fixb > a > 1, let us show that > u/, converges BREREL > v, EXRHMBBE CoBE b > a > 1 BHMETE S o/, BTE [a, 0] EIERURL - F7
normally on [a, b], so also uniformly. Let us choose ¢ € (1, a). We have .

g a 8 - ZFIE c e (1,q) - FIE
Inn 1
fiton] =22 = o) e
o], = T = 0
Since ) n~° converges (Proposition 6.2.6), we deduce that > u,, converges normally on [a, b]. There-
fore, Eq. (8.8) gives us Eq. (5.9). R Y WK (@B 626)  BPER u, BIE [o,b] LIERMRE » Btk - 3 (s.5) AR
=R (8.9) °
Corollary 8.2.18 : Let p > 1 be an integer, and (uy,)n>1 be a sequence of CP functions from I to W. RIE8.2.18 : ©p>1AEE  MA (u.)n>1 BHETREE W B CP REFT © R
Suppose that
() BRSME0<k<p-1 RE S ul EBBUH ;
(i) foreveryO < k < p — 1, the series Zugk) converges pointwise;
i) RE Y ul) FESME I BIRER B9 DIKR -
(ii) the series u(p ) converges uniformly on every segment of I. (1) 2 ~
Then, the function ), - Uy, is of class CP and for 0 < k < p, we have ARRE > KK > n>1Un FRCPEN > MEHR <Lk <p HfE
(k) (k) (k)
( > un) = ul). (8.10) ( > un) => up. (8.10)
n>1 n=1 o2l o
Example 8.2.19 : We follow the same notations as in Example 8.2.17, we find, for every n,p > 1, g 8.2.19 @ FEFIEFEER 8.2.17 PRVECEHE » HRE@E n,p > 1 » RFIEEE)
that
(Inn)P Inn)?

Vs > 1, wm@):<_nﬂ

ns : n

Vs> 1, ulP)(s)=(=1)

n

nS

Let us fix b > a > 1. We show in the same way that > u%p ) converges normally on [a, b] for all p > 0,

BHMEE b > o > 1 ° ROEHEERSERBERNRFE p > 0> L ul) B [o,0] LERK
2 I G BB RN - FFIERARIE 8.2.18 BRHEHE s — ((s) = CP 18Ry » BHIRPR
Bp>0 FRXERE C~ 1Y - 5 20 (8.10) #5 T

so also converges uniformly and pointwise. We apply Corollary 8.2.18 to conclude that s — ((s) is

of class C? for all p > 0, so it is of class C*°. Moreover, Eq. (8.10) gives us

(Inn)P

Vs> 1vp 21, (P(s) =D (-1

n=1 1 )
) Vs > 1,Vp > 1, C(p)(S)IZ(—l)p(nn>
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Chapter 8 Sequences and series of functions BNE REBHTEREH

Example 8.2.20: Let (W, ||-||;;;) be a Banach space. We have seen in Theorem 3.2.18 that L£.(W) := #if 8.2.20 : & (W,||l;y-) % Banach ZEfH ° FEEIE 3.2.18 A » HPIFE L. (W) := L (W, W)
L.(W, W) equipped with the operator norm |||-|| is a Banach space, and is also a normed algebra BT B T8 ||| & 218 Banach Z2R3 - MELSERERE (EFoo1) - WRERHETF

(Definition 6.6.1), that is the operator norm satisfies the submultiplicative property. Givenu € L.(W), , . R .
EBURME L TN - F6E v e L.(W) » BPIRTAEZR T ERE

we may define the following function

n>=0 n=0
n THA ’ > M E _t",no
We may denote u,,(t) = Lu" foralln > 0andt € R. HESFR n > 0/t € R » BFIRINGE un(t) = Fyu
« It is straightforward to check that &, (t) is well defined for all t € R, because - BT EEREERAEtc R &,() BEERREFN - B%
ver, Yy < 3 t il 4"
€R, >l < 3o T llull™ = exp () vteR, Y ol < Do llull™ = exp (¢llull)-
n>0 ! n>0 ! n>0 n! n>0 n!
+ A similar argument as in Example 8.2.4 shows that for any M > 0, the series of functions . {EFEATEEEM) 8.2.4 FAMLIAVTS » RAITLEERBNER M > 0 RERE S, oou, BT

> n>0 Un converges uniformly on [—M, M] to &,.

[-M, M) B39 88E &, o

« We have uy(t) = 1 for all ¢ € R. For every n € N, we have
- BB tc R BB w(t) =1 ° BHREEn c N> HfE
tnfl

VteR, wu,(t)= = 1)!u” = U Up—1(t).

tnfl
(n—1)!

VteR, u,(t)=

n
u" =u - up—1(t).
n n
This shows that the series of functions Y~ u;, = >,,51 Uy, = >_,,50 U- Uy cONverges pointwise

to u - £,(t). This convergence is also uniform on every [—M, M] for M > 0. ERERAT REBURE Y 0w, = Y1 Uh = Yopso - un SEREE] u - £,(2) - HREE

 SE(EELTE [— @ 2iaaH o
« Let us fix M > 0 and apply the uniform convergence of 3, - un and y°,, - uy, on [=M, M] to M >0 - EEKETE (- M, M] LERITIH

conclude that &, is of class C* on [~ M, M| and &/,(t) = u - E,(t) for t € (—M, M). This allows

CEBERE M > 0 B Y, un F1 Y, o, 1 [0, M] EHISEIRERM - BSAILL
us to conclude that &, is of class C! on R and &/, (t) = u - £,(t) for all t € R.

[REE[-M, M) LR CERN MBE() =u-E,(t) HR t € (—M, M) < ErTAEHK
« From the relation £, = u - £,, we deduce that if £, is of class C* for some k > 1, then so is £/,
e E, ER LR CTER > MAE(t) =u-Eu(t) HIRFAIBteR e

meaning that £, needs to be of class C k+1 Asa consequence, &, is of class C*.

c WRIRR E = u- &, BRPHEBNRENEBL> 16, B2CHEN  BES, hER 7 8
RRE C, G2 CH N - FIUEMBEHET &, B C Y -
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Chapter 8 Sequences and series of functions

8.3 Power series

In this section, we are going to study a particular form of series of functions, called power series. We
restrict ourselves to real-valued and complexed-valued power series, but you need to keep in mind that all

the notions are still valid if we replace (R, |- |) or (C, | -|) by a normed algebra.

8.3.1 Definitions and radius of convergence

We define a few topological notions in (C, | - |). An open ball centered at ¢ with radius r > 0 is also called
an open disk centered at ¢ with the same radius r, denoted D(c,r) := B(c,r). We also define the notion of

closed disks in the same way.

Definition 8.3.1:Let (ay)n>0 be a sequence of complex numbers and ¢ € C.

« A series of functions of the form Y, . an(z — ¢)" is called a power series (AR EX) centered at

¢, where z € C is the variable of the functions.

« If the sequence (ay, )n>0 is real-valued and ¢ € R, we may use = € R as the variable of the power

series, and write ), - an(x — ¢)". Then, this power series takes values in R.

We are going to develop some theories for power series centered at ¢ = 0. For a general power series
centered at ¢ € C, all the corresponding notions and properties can be obtained by a shift z +— z + ¢. The
properties and theorems are stated in terms of complex-valued power series, but you should also know that

the exact same proofs apply to the real-valued power series.

Proposition 8.3.2 (Abel’slemma) : Let > a,, 2" be a power series and zy € C be such that the sequence

(anz{)n>0 is bounded. Then, the following properties hold.

(1) Forevery z € C with |z| < |29

, the series Y, a, 2™ is absolutely convergent.

(2) For everyr € (0, |z
D(0,r) := B(0,r).

), the series of functions Y anz" is normally convergent in the closed disk
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ENE RBOBIIRAH
B=H BRE

EEEREY  HAIERIBBRHOES - BEERY - RAIEREETNESERIEHNE
RE - (BEEEHIRE - BERFIPETROBER » FHFHE R, |- |) 3 (C, |- |) HAHEBARKE - hiE

EERIIA °

B—hE ERRBEFE

HPIEERTE (C, |- |) PR—EHRERZ - HZFHEROD ¢ FER r > 0 NFAKBERLS c FED
r BIBAEIHR » 521F D(c,r) := B(c,r) - ZFIEAERA A REZRHEE -

E&ES3.1 I T (an)nso MEEFTIURK ceCo

- BIHEEL 20 an(z — o) FERRYRBIRBFBIERIOIE ¢ FIBREX (power series) » HAP

z € C ZREAVEEL -

« NBRFEH (ap)ns0 EEBEFY)  MA cc R » HFITUA 2 € R RRKREEHEE - 1
BEE Ym0 an(z — o) o EERE - BERBEREER R -

BZERMIEFRPOE ¢ = 0 WERBFEBARTIER - H—MRPIOTE c € CIRERE - FAEHES
BBLSA L EE A LEB T 2 — 2 + ¢ KiFE - TENEENEEEHEHRERBORRGL - BIRE
MENZ - HREREHRNERERBZHY

fhied 8.3.2 [Abel 51IE] : © Y a,2" BERE > MEB 2 € CHERFEF (anzd)nz0 BFR © AE
THIMERLIL ©

(1) HREME 2 € CRRE |2| < |20] * BB Y a,,2" EHEEUEK o

(2) BIREME r € (0, |20]) * FREIREL S 02" 1EEIEE D(0,r) == B(0,r) B ERURER o
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Chapter 8 Sequences and series of functions

Proof : Let M > 0 be such that |ay||20|™ < M for every n > 0. For z € C such that |z| < |2

, we
have
n z n n z n
W >0, |anz"| = | = Janlzo" < M|=
20 20

)

where the right-hand side is a convergent series (geometric series with ratio strictly smaller than 1). J

Definition 8.3.3:Let ) a,2" be a power series. The following quantity

R=R()_an2") :=sup{r = 0: (|an|r")n>0 is bounded} € [0, +oc]

is called the radius of convergence (WHIFTE) of 3 a, 2™

Remark 8.3.4 : We note that if we add phases to the sequence (a,,),>0 defining the power series > a,,2",

its radius of convergence remains unchanged.

Proposition 8.3.5: Let Y a,2" be a power series and R be its radius of convergence. Then, we have the

following properties.
(1) For z € C with |z| < R, the series > a,z" converges absolutely.
(2) For z € C with |z| > R, the series > a,,z" diverges.

(3) Forr € [0, R), the series Y_ a, 2" converges normally on the closed disk D(0, ).

And the open disk D(0, R) is called the disk of convergence (WBXIEIHR) of the power series 3" a,2".

Remark 8.3.6:

(1) When R = +o0, the power series Y a,2" converges for every z € C, so it defines a function from C

to C. Such a function is called an entire function (EK£§).

(2) When R < +o0, on the boundary of the disk of convergence, that is when z € 9D(0, R), the power

series may have any possible behavior, see Example 8.3.9.
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2B L T M > 0 fEF |an||z" < M ERFABE n > 0> HIR 2 € CRE |2| < |20| » FefFIE

V>0, |anz"| = ’Z—Z‘n|an||zo|" <m|=["
H AKX S EWSRE (REEE&/ IR 1 R ERE) o a

EES833 ! © Y a," BABERE - HFIERE

R=R() anz") :=sup{r > 0: (Jan|r")nz0 BR} € [0, +o0]

TBIE X an 2™ IR (radius of convergence) ©

MR 834 1 BFIIEE  MBERFHFES (0,)0s0 MEARS - ELFERBERY X a,2" KR

M 835 I B a,2" BEMRE > B R BMAIKEFE - BEKRMETIMEE -
(1) R 2 c CRRE |z| < R BE Y a,2" SHEEUIEK o
2 BR 2 c CMRE |z| > R RE Y a,2" FEEEK °

3) W r € [0,R) » #RE S a,2" ETEEAEE D(0,r) LIERUREL

HIEFEERE D(0, R) BIEREREL Y a,2" BIWBHIEIR (disk of convergence) ©

5% 8.3.6 :

(1) B R=+oo B> BIREL Y a,,2" HEE » € C #HUWR > FRAIESR T C MRETE) C BIREL - &
FREV R EFE EEE PRI 2] (entire function) ©

2) B R < +oo ERHEENZR L UHMEE 2 € 0D(0, R) i » BRBEAUBZETTRERTT
7 REEf 839 o
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Chapter 8 Sequences and series of functions

Proof :
(1) It is a direct consequence of Proposition 8.3.2 (1).

(2) For z € C\D(0, R), since (|ay||2|™)n>0 is not bounded, we do not have a,, 2" —— 0, so the
series ) apz" diverges.

(3) Itis a direct consequence of Proposition 8.3.2 (2).

Proposition 8.3.7 (D’Alembert’s criterion, ratio test) : Let Y a, 2" be a power series, and R be its radius

of convergence. Suppose that the following limit exists,

{:= lim il

n—00

‘6 , +00].

Then, R = ¢~

Proof : It is a direct consequence of Theorem 6.3.1.

Proposition 8.3.8 (Cauchy’s criterion, root test) : Let > a,2" be a power series, and R be its radius of
convergence. Let

A := limsup |a,|Y/™ € [0, 409].

n—0o0

Then, R = 5

Proof : It is a direct consequence of Corollary 6.3.8.

Example 8.3.9: The following three series have the same radius of convergence 1, that can be obtained

by either the ratio test or the root test. However, they have totally different behaviors on the boundary
of the disk of convergence.

(1) The series > 2" has radius of convergence 1. For z € C with |z| = 1, the series ) 2" never
converges.
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BNE  REBIESIERE
s B

=

(1) SE2ME 832 (1) WEERER -

l]

(2) HIR 2 € C\D(0, R) » AR (|an||2]")nz0 FRBEFH » HMAFER ane” —— 0 FILR
2

S an 2" BEER o
O
(3) SERMEE 832 (2 WEERR -

iR 8.3.7 [D’Alembert ZEBI| » FF#%81%)

DY an2" BERE - B R BHEIRERFE - R
R THIBIRIFTE
v om0 el
MEER = ¢

B ERTEE 031 WEEER -

(|
ol 8.3.8 [MIFEZER]  IRANE] @ § Y a,2" ABHRE - B R BIOAIMEHFE -
A := limsup |a,|'/" € [0, +00].
MER= o
FHEA : ERRE 0.3.8 WEERR o O
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84839 : TEANZERBEHEBEHERBFE 1 EFUNEBERAEHZREAEKS
B o 7AM - MFIERHEENEBR £ BREFENITE -
(1) ME Y " RBHFER 1 - BN 2 c CRE [2| =1 BB Y 2" KEFFUEK -

2 REY 2, MKHFEER 1 HR 2 e CRRE 2| = 1 BRE Y. 2, FIERURE > FIUUK
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Chapter 8 Sequences and series of functions

(2) The series Y fL—Z has radius of convergence 1. For z € C with |z| = 1, the series ) Z—Z converges

normally, so converges.

(3) The series ) =~ " has radius of convergence 1. For z = 1, the series > %~ dlverges For z € C

such that |z| = 1 and z # 1, the series ) 2 7 converges by Example 6.4.9.

8.3.2 Operations on power series

Proposition 8.3.10: Let f(z) = Y an2" and g(z) = Y b, 2" be power series with radius of convergence
Ry and Ry. Let R be the radius of convergence of > (arn + b, )2". Then,

R > min(Ry¢, Ry).

Moreover, if Ry # R,, we have R = min(Ry, Ry). For any z € C with |z| < min(Ry, Ry), we also

have

Z(an +by)2" = Z anz" + Z bn2". (8.11)

n=0 n=0 n=0

Proof : Let z € C such that |z| < min(Ry, Ry). It follows from Proposition 8.3.5 that both )~ a,,2"
and )" b, 2" converges absolutely, so the series Y (a, + b,)z" also converges absolutely. This means
that Eq. (8.11) holds. Moreover, this also implies that R > min(Ry, Ry).

Suppose that Ry # Ry, for example, Ry < Ry. Let z € Csuchthat Ry < |z| < Ry. Since (b,2"),>1

is bounded and (a,2™),>1 is unbounded, we deduce that ((a,, + by, )z" is unbounded, so |z| > R

)n>1
By taking infimum over z € C satisfying Ry < |z| < Ry, we find that Ry > R. O

Definition 8.3.11:Let ) a,z" and ) b,2" be power series. Their Cauchy product is the power series

3" ¢y 2", where the coefficients (¢, ),,>1 are given by

Vn = 0, Cp — Z akbn,k.
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oo
i ]
M

(3) B Y 2 BT A 1o MR 2 = 1 BEY 2 BEH - MR - c CRE |2/ =18
2410 ARYREEH 040 - RIS 2 BUKRRA -

ZINE BREEER

ﬁEE 8.3.10 - % f(z) - Zanzn *ﬂ g( ) anz ﬁ_’”&;ﬂﬂﬁ'f«(% Rf *n Rg E"J%%&%& . % R%
S (an + by ) 2" BIYRBIHEAE o ARE

R > min(Ry, Ry).

45 - 20R Ry # Ry » FFIBE R = min(Ry, Ry) e HIRER 2 € CWE |2| < min(Ry, Ry) * K
s

Z(an +by)2" = Z anz™ + Z bn2™. (8.11)

n=0 n=0 n=0

B Sz c CMR 2| < min(Ry, Ry) ° WfnRE 835 » FHMIFE Y a,2" M Y b,2" HEHE
IR - FRLUREL > (an + by) 2" LEBEIRE - EAKRERN 3.11) EHIL - IS - EWLRES
R > min(Ry, R,) °

BER Ry BIMAR < Rye B2 CRME Ry < |2| < Rge B (02" BRE
(@n2")nz1 BB R > BPIHER (a0 +00)2"),., REF L[| > R-BHH : c CHRE

Ry <|z| < Ry BMmA TR » HFFEI R > R ° 0

EE 8311 1 D a2 W Db, BERY o MO RERE Y ¢, FHEEN » 5
RERE (Cn)n>1 EZRWTF :

Vn = 0, Cp — Z akbn_k.
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Proposition 8.3.12: Let f(2) = . ap2™ and g(z) = Y b, 2™ be power series with radius of convergence

Ry and Ry. Let Y ¢, 2™ be their Cauchy product. For every z € C with |z| < min(Ry¢, R,), we have

f(2)g(z) = (Z anz") <Z bnz"> = Z (lczn%akbna e Z @2 (8.12)

n=0 n=0 n=0 n=0

In particular, if R is the radius of convergence of > ¢, 2", then we have

R > min(Ry, Ry).

BNE  REBIESIERE

RE8.3.12 I D f(2) =X an2" M g(z) = X by2" BUFEESR R M1 R, NEIREL - 53 ¢,2"
#AtFIAIETE - BHREME - ¢ CIWRE |2| < min(Ry, Ry) * &ME

f(2)g(z) = (Z anz") (Z bnz"> = Z (,ﬁ%akbno Z° = Z @™ (8.12)

n=0 n=0 n=0 = n=0

SNRBAHE 3 ¢, 2" BIMEIFIEECIE R - BREEFFIE

R > min(Ry¢, Ry).

Proof : Let z € C such that |z| < min(Ry, Ry). From Proposition 8.3.5, we know that both 3~ a,, 2"
and ) b, 2" converges absolutely, then by Theorem 6.6.3, we know that their Cauchy product ) ¢, 2™
converges absolutely, and satisfies Eq. (8.12). Additionally, this implies that R > min(Ry, Ry). |

8.3.3 Regularity

Here, let f := )" a, 2" be a power series with radius of convegence R > 0. We have seen in Proposition

8.3.5 that f is well defined on D(0, R).

Theorem 8.3.13 : The function f : z +— Y~ a, 2" is continuous on the disk of convergence D(0, R).

Proof : Fix 2 € D(0, R). Let us consider a closed disk D(z,r) centered at z with radius » < R — |z|.
Then, for any w € D(z,r), we have |w| < |w — z| + |2| < |2| + r < R, which means that D(z,r) C
D(0, R). It follows Proposition 8.3.5 (3) that the power series > a,,2" converges normally on D(z, ).
Since the partial sums defining f are continuous (polynomial functions), we use Proposition 8.2.1 to

conclude that the limit f is continuous at z. ([

Theorem 8.3.14 (Abel’s theorem) : Let Y a, 2" be a power series with radius of convergence R > 0.

Suppose that the series Y a, R" converges. Then, the function x — Y, -qanz" defined on [0, R] is
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FE S 2 e CMR |2| < min(Ry, Ry) ° R 835 » HFIFNE Y a,2" 1 3 b,2" MEEEIE
s o BEBRTEIE 6.6.3 » HAFEMPIBNIPETRE X ¢, 2" REWE - MEREDR (8.12) o Itk

5\ + SEHET R > min(Ry, Ry) ° )

SN ReEtt

EBE D= a2 BWHEESR R > 0 NEHRE - énE 835 » HMIEHM f £ DO, R) L2
EEREFH o

EIE83.13 1 BB f:2— Y ,500,2" TRHER D(0, R) EZEER -

BB EE 2 € D(O,R) °c BEMEEFOE 2 » FRBr < R— |2| WEAER D(2,r) - BREH
REZE w e D(z,r) » BFIE |w| < Jw—z|+ |2| < |z| +7 < R EREKZE D(2,7) C D(O,R) ° 1
il 8.3.5 (3) MMIEHBHRE Y a,2" BTE D(z,r) LIEFRIE - ANE R f NEAMERZEE
B (ZIEARE) - HFIRIAEREMRE 8.2.1 KIBEWIR f 7 » EEERN o 0

EIHE 83.14 [Abel EE] ' T Y an2" BWHFES R > 0 NERH - BRFRBHE Y a, R K
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Chapter 8 Sequences and series of functions

continuous. In other words, we have

Z anxt" ——— Z a, R".
n>0 = R= 130

Proof : For every n € Ny, let u,, : [0, R] — C be defined by

Ve € [0,R], up(z)=ayz", and R, = Z anRE.
k>n+1
By the assumption, the series of functions Y u,, converges pointwise on [0, R]. We want to show
that this covnergence is uniform, then we can conclude by Proposition 8.2.1. By rewriting each u,, as
Up = anR”(%)n, we may assume that R = 1.
Let € > 0. Since ) a,, is convergent, we may find N > 1 such that |R,| < e foralln > N. For
m,n € Nwithm >n > N, and = € [0, 1], we establish the Abel’s transform using the remainders of

the convergent series > ay,

m m m—1 m
Z apa’ = Z (Rg—1 — Rk)xk = Z RpzFt! — Z Riz”
k=n+1 k=n+1 k=n k=n+1
m—1
— Rnxn+1 —Rmxm‘i‘ Z R (karl _xk)
k=n-+1

m—0o0
| Ry (zF+1 — 2F)| < e(2¥ — 2%*1), and the series " (2F — 2F*1) converges, so 3 Ry (2! — 2F)

Since R,, —= 0 and (%, )m>0 is bounded, we have R,,z™ —— 0. Moreover, we have
m o0

converges absolutely. Thus, for n € N and x € [0, 1], the remainder of the power series writes

Pala) = Ry Y Rt o),
k>n+1

Forn > N and x € [0, 1], we have

|Rn$n+1| < |Ry| <,

Z \Rk(ﬂﬁkﬂ — )| < Z €(xk — xk“) = egg"t! <e.
k>n+1 k>n+1

So |rp(z)] < 2¢forallm > N and z € [0,1]. This means that r, —— 0 uniformly. By

Proposition 8.1.17, we have shown that ) u,, converges uniformly on [0, R]. g
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B o BBIE - EHRTE [0, R] LRRB 2 — Y, ana” BEEN - BAFER - HMB

Z antt —— Z anR".
n=0 Cadi n=0

5HER : HREME n e No» B u, : [0, R] — C E&M
Vo € [0,R], un(z)=a,2", UK R,= > aR"
kemtl

RIRIRES » RBIRE Y v, BTE [0, R] LFBE - IRBMITAEREEBHBEETTH - FBE
IR BT IAGE A RE 8.2.1 2RAEHE o BIFEAILUEE—1E u, B u, = a, R(%)" » EHE—K
BRMRIURER R=1"

Fe>00BHR Ya, BREL > HFBERBIN > 1 E8 R, < cHRFAE > No HR
m,n € NTRE m >n> N MUKk z € [0,1] » HPIBBEIREL X ), BIERIEZRE T Abel B4 :

m m m—1 m
Z akxk = Z (Rk,1 — Rk){L’k = Z kak—H — Z kak
k=n-+1 k=n-+1 k=n k=n-+1
m—1

= R,z — Rypa™ + Z Ry (z*+ — 2.
k=n+1

EEBQ Rm m) 0 E. ($m)m>0 Eﬁ ’ ﬁ'fFﬂﬁ Rmfll'm m 0-° JHZS'* ’ ﬁﬁ'ﬂﬁ |Rk(l’k+1 — a?k)| <
e(zF — b1y TEMREL L (28 — 281 BUREL > FIL 3 Ri (24! — 2F) SIBHIE - Btk > ¥
MneNMUKzc(0,1] BREMVERIBEEM
ra(z) = Rpa™ ™+ ) Ry(aMt —2F).
k>n+1

HRn>NUK2e[0,1] r THME

IR,z < |R,| <,

Z |Rk(:ck+1 _«Tk')| < Z €(xk _karl) — 5‘,L,nJrl <e.
k>n+1 k>2n+1

FRA |rn(@)| < 2e HRFTE n > N Mz € [0,1] - ERKRFWHK r, —— 0 BT - RiRWD
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Chapter 8 Sequences and series of functions

The following Tauber’s theorem gives a converse of the above Abel’s theorem.

Theorem 8.3.15 (Tauber’s theorem) : Let f(2) = >_ a, 2™ be a power series with radius of convergence

R > 0. Suppose that f(x) —— £ and na,, —— 0. Then, the series > a,, R" converges to (.
r—R— n—00

Proof : Without loss of generality, we may assume that R = 1. Let us denote by (S,,)n>0 the partials

sums of the series Y a,,. For any n € Ny and z € (—1, 1), we have

Sp — fx) = iak(l —zF) — Z apat.

k=1 k>n+1

For z € (0,1), we have
l-af =1 -2)Q+a+-+2"1) <kl -2).

Therefore, for any n € Ny and = € (0, 1), we have

1S, — f (1—x) Zk\ak\+ > Jaglat

k>n+1

Given £ > 0 and choose N > 1 such that n|a,| < e for alln > N. For any n > N, we have

Z \ak\x € Z — < = Z z* (1—90)

k>n+1 k>n+1 k>n+1

Forn > N, let us choose z,, = 1 — l Then, we find

|Sn — zz:kﬂak|+-€

Since n|a,| — 0, it follows from Exercise 6.1 that the first term'on the right side converges to 0.
n—o0o

Therefore,

limsup |S, — f(zn)] < e.
n—oo
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72 8.1.17 » FMITLUERE > u, BTE [0, R] E¥E9UKREL - a

TERY Tauber EIRFEFKIM Abel EIEH—EF fneg o

EIE 83.15 [Tauber FIE] : & f(2) = DNa " BWHFERAB R > ONERY - RK
f(z )—>€Enann—>0 BBEE > AREN >, R BIRE ¢ ©

r—R—

S8R ¢ AR - BPITLUBRER R = 1  SBEPIHERE Y a, FIEBMDFIEEIE (S,)ns0 © HRE
BneNyMUkze(-1,1) &ME

S, — f(z) = Xn:ak(l —a") = Y apat
=
Hz < (0,1) » HME
l—ah=(1-2)1+z+-+21) <kl —2).
B » BHRMER n € No MR @ € (0,1) » 3G
50— f(2)] < <1x>kz:k\ak\+ S Jaglet.

k>n+1

M € > 0 MFE N > 1 813 nja,| <c HRFAIBE n > N - HREEn > N » HFIE

Z\aﬂx 82 k\ Zxkgm

k>n+1 k>n+1 k>n+1

3\“

B 0> N BB 2, — 1 L o B3 - BAYEE
1Sn— flan)l < D Hlag| +<.
k=1
IR nlan| ——> 0 U 01 RKBEETHEE—E BIKHE 0 - Bl

limsup |S, — f(z,)| < e.

n—oo
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Chapter 8 Sequences and series of functions

Since € > 0 can be made arbitrarily small, we find
nh_{go |Sn — f(wn)] = 0.

That is, lim, o0 S,y = limy, 00 f(2,) = limy1— f(z) = /.

The following is a generalization of Theorem 6.6.3 and Exercise 6.24.

Corollary 8.3.16 : Let > a,, and Y_ b, be convergent series. Forn € Ny, let ¢, = > }'_o arbn—k.

Suppose that ) ¢, is convergent. Then,

S (zan><zbn>.

n=0

Proof: Let > a,2", > b,2", and ) ¢, 2" be power series. Their radii of convergence are at least 1, be-
cause both (a,|z|™)n>0 and (b, |2|™)n>0 are bounded for z € D(0, 1). It follows from Proposition 8.3.12
that the radius of convergence of the power series ) ¢, 2" is greater or equal to 1. By Theorem 8.3.14,
we know that

Z anpx™ m) Z (s Z b,x™ ﬁ Z b,, and Z cnx” F Z Cn.-

n=>0 n=>0 n=>0 n=0 n=0 n=>0

Moreover, Proposition 8.3.12 gives the following identity,

Vo e (—1,1), chx” = <Z anac"> (Zam:")

n=0 n=0 n=>0

By taking the limit x — 1— in the above identity, we establish the identity we want. O

Let us also introduce the notion of differentiability in a complex variable.

Definition 8.3.17 :Let A C Cand f : A — C. We say that f is C-differentiable (or simply differen-

'"The sum % ZZ:I kag is called the Cesard sum of (nan)n>1.
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B e > 0 AIUERD TSR
nh—>Hc}o ‘Sn - f($n)| =0.

WIMEER limy, o0 Sy = limy oo f(2) = limg_y1— f(z) =4 ° O

TEHIRTEE 6.6.3 178 6.24 BIHEEE

RIE83.16 1 X a, MY b, ABRBIRE - R neNy» Ben =20 garbpr °BE Y ¢, B
W - FBE > FAMIE

SHEA D 0,2 N Db 2" MY 2" BABERE o PINKBEREDSE 1 BB (an]2]")nso
(bn)2|") =0 HIR 2z € D(0,1) BR o 83.12 BRFIEH » BRE Y c.2" BREHEEANSE
R 1o BT 83.14 » &FIER

Z anr"t —— Z n, Z bz — Z b,, UK Z cpr” — Z Cn.-

r—1—
n>0 n=0 n>0 n>0 n>0 n>0

ItESY - anE 8.3.12 FHRRFEFITIIRIMFRI ¢

Vo € (—1,1), chaz" = (Z amc") (Zan:c">

n=>0 n=0 n=0

FEHEH LR 2 — 1- BUBR - FISEIFESERRGRI - O

FFIBRME | AR EBEE I RIS

'F e % 22:1 kay, TBIE (nan)n>1 BY Cesard Hl °
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Chapter 8 Sequences and series of functions

tiable) at 2o € A if the following limit exists,

d d B
dﬁ (20) = —F(z0) = f'(z0) = 1%2 W cC.

which is also called the C-derivative of f at zg.

Remark 8.3.18 : We may identify C as a two-dimensional real vector space. If we compare the notion of
differential from Definition 4.1.1, we may notice that the C-derivative introduced here is much stronger.
In fact, if a function f : A — C is differentiable at zy in the sense of Definition 4.1.1, its differential is a
continuous linear map. However, if the same function is C-differentiable at 2, its C-derivative is given by
a complex number, which, seen as a differential, is a composition between a rotation and a dilation (in RQ).
It is not hard to see that a composition between a rotation and a dilation is a continuous linear map, but the
converse fails to hold in general. In Complex Analysis, you will see that if a function is C-differentiable in an
open subset A C C, then it can be differentiated as many times as we want in A. Such functions are called

holomorphic functions.

A power series contains only polynomials functions, and it is not hard to check that the C-derivative of a
polynomial function is the same as its usual R-derivative. In other words, we have
d(z")

Vn € Np, Eiz =n""L

Theorem 8.3.19 : The function f : D(0,R) — C, z — 3,50 anz" is of class C*. The power series

Yon>1 nanz" "1 has the same radius of convergence as Y n>0 n2", that is

R( Z nanz”_l) = R( Z anz”).

n>1 n=0
We also have
Vze D(0,R), f/( Z napz" . (8.13)
n>1
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EES317 I SACCUR[f:A— C#8TF 2 € A - IR TEIBRIZTE :

d d -
o) = G o = ') = i T

BUFRFITEMhAS [ 1E 2o RARVIREINSY - B3R f 7E C PRIy (Siisfsarsy) -

e C,

53f% 8.3.18 ¢ HMALUE CEFRHMNEHREZME - IRFEFICESR 411 EFMPHIBIZE
RLLE » HFPERREESENERMO R LLEBGER - B L NRRHB f: A > CHEER
411 BERT * 1E 2 RAAIHY - FBEMBEYIN D  2EEBR MRS - 2R - NRBERIRHBTE 20 B2
BEEIMBY » BEMHNERMD ER—EEBATEE - BRARRMBAMS ERH) - SHEH
MFERFR SR ° BFIFHE LK - BN S R B EEEIR LR - EE R E K
REAHD - TEDWHIRIED - FEFINRRBERFES A C C hERBAIAY - ABEMTE
A PRI MERIZ R - SRR R BABE AL -

BRBAEPHEZEARE  RAFTHBESAANNEH Mo LB 2HERR - RAFER -
#Hfigs :

d(z")
dz

n—1

Vn € Ny,

=nz

EIE8319 ! KBS : DOO,R) = C, z— Y, 0an2" & C W - BREY,,o 1 napz"" ! A
>ons0 an 2" BHEBNREFE - UERLER

R( Z nanz"A) = R( Z anz”).

n=>1 n=>0
xMtbes
Vze D(0,R), f'(z)= Z napz""1'. (8.13)
n=1
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Remark 8.3.20 : This theorem is of particular interest. It means that we can always differentiate term by
term a power series, which is not the case of a general series of functions, where additional assumptions are

needed (Corollary 8.2.16).

Proof : Let R’ be the radius of convergence of > na,z""!.

For any r € [0,R’), we know from
Definition 8.3.3 that (na,r™ !),>1 is bounded, so (a,7™),>0 is also bounded, which implies that r <
R. By taking the limit » — R’'—, we find R’ < R. For the converse, let 7 € (0, R) and r¢g € (r, R).

Again by Definition 8.3.3, we know that (a,,7(})n>0 is bounded. We have

n—1 __ n—1 T\l 0
na,r" " = nlayry™) - — 0,

so we also know that (nanr"_l)n>1 is bounded, that is r < R’. When we take r — R—, we find R <

R’. Now, we can deduce Eq. (8.13) as a direct consequence of Corollary 8.2.16 and Proposition 8.3.5.

0

Corollary 8.3.21: The power series f(z) = >_,~0an2" is of class C* on D(0, R). For every p € N,

the p-th derivative of the power series has the same radius of convergence and writes

Vze D(0,R), f@(z)= Z nn—1)---(n—p+1)apz"? = Z (Z)p!anz"_p.

nzp nzp

In particular, this gives

® (0
VPGN(], ap:fp'( ),
and o
f(0)
Vz€ D(0,R), f(z)=)_ o 2P.
p=0 ’
Proof : It is a direct consequence of Theorem 8.3.19 with an induction. O
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Vze D(0,R), fP(z)= Z nn—1)---(n—p+1)az" P = Z (Z)p!anz”p.
nzp

nzp
et E5 4 I EE]
(p)
Vo eNo, ap— f’;ﬂ(o)7
il
(p)
Vz € D(0,R), f(z)= Z /7 '(O)zp.
p=0 p:
2 - B LBBRERWAR - BT 83.19 WEERER - O
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Example 8.3.22 : We have the following identity,

Vz € D(0,1), i = 2"

Theorem 8.3.19 allows us to differentiate the identity, giving us

Vz € D(0,1), L __ Z n"l = Z(n +1)2". (8.14)

_ 2
(1 Z) n>1 n=0

By taking higher-order derivatives, for every p € N, by Corollary 8.3.21, we find

1

n+p\ ,
<1—z>p+1:2< p )

n=0

P! n
Vz e D(0,1), mzzm—i—l)...(n—i—p)z or
n=0

If we multiply Eq. (8.14) by z then differentiate again, we find

L+= 2_n—1 2
v D(0,1 = "= 1)°2".
z € D(0,1), i=2)p n§>1n z n§>o(n+ )z

In particular, when z = %, we find the following identity,

Corollary 8.3.21 gives us following direct consequences, which are very useful when we deal with power

series.

Corollary 8.3.23 : The power series

F: D(0,R) — C

An  pt1
: ~ Zn—i—lz

n=>1

has the same radius of convergence as > a,2". Moreover, we have F' = f on D(0, R).

8.3.4 Coefficients of power series
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Vz € D(0,1), o 7;)2”.
EIE 8.3.19 BRI UEEERRIMS - 72
Vz € D(0,1), ! s =y _nz"t=>"(n+1)2" (8.14)
(1 B Z> n=1 n=0

BERIE 8321 » OB UEESENMY - BRE8E pc N HME

1

n+p\ ,
s ():

n=>0

|
VZED(O,I), JW:Z(n—Fl)(n—‘rp)z" EE
n=0

NRIFLFHER (8.14) T L = BYHD—R - &FIFE

1+Z 2 —1 2
Vz € D(0,1 = E = E 1)“2".
z ( ) )7 (1_2)3 n>1n z n>0(n+ ) z

ERMEUFINGE - = § > BMEI TEESERBERR

RE 8321 MMAFITEHEEEEER - BHERBKRREEIFEEAN -

RIE 8.3.23 | B

F: D(O,R) — C
a

2 — Z n_ntl
n>1n+1

MY a2 BHERNKEFE - N - EDOR) £ FEFABF =1

SBMET EREEIIRE
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BNE  REBIBF LRI

Corollary 8.3.24 (Uniqueness of power series) : Let f(2) = 3,50 an2" and g(z) = 3,50 bn2" be

two power series with radius of convergence

Ry := R(Z anzn) >0, and R, := R(Z bnz") > 0.

n=0 n>0

Suppose that there exists v > 0 and r < min(Ry, Ry) such that f = g on (—r,r) C R. Then, we have
an, = by, foralln € Ny.

Proof : Let R = min(Ry, Ry) and consider the following functions defined on (- R, R),

Vze (—R,R), f(z2)= Z apz", and g(z)= Z bpz".

n=0 n>0

It follows from Corollary 8.3.21 that both f and g are C* functions, and their coefficients are given by

9™(0)
nl

Yn €Ny, a,= , and b, =

By the assumption that f = g on (—r,7) for some r € (0, R], we deduce that £ (0) = ¢(")(0) for all

n > 0, so we also have a,, = b,, for all n > 0. O

RIE 8.3.24 [ERBEIHE—M] D f(2) = Xosoanz" B g(2) = 3,50 bn2" RERE > 1
B 1B AE -
Ry := R( Z anzn) >0, UK Ry:= R( Z bnz"> > 0.
n>0 n>0
BREEFEEr >0 UK r < min(Ry, Ry) FEBE (—r,r) CR EEME f =g BEHNRAE
neNy FME a, =05, °

$BEA : © R = min(Ry, R,) LEETFHIERAE (R, R) LR :

Vze (—R,R), f(z)= Z anz", MUK g(z) = Z bp2".

n>0 n>0

RIE 8.3.21 HFIRE » [ g #E C>° KB MEMPIRHRER THIRMGRIVERE :

0 g g 97O

VYn €Ny, ap= |
mn.

HRTEE r € (0,R] 18 f = g 7 (—r,r) LAEHMRER - TS 1) (0) = ¢ (0) HIRFRE
n>0:FAURMABEE o, =b, BREAIBn >0-° H

Example 8.3.25:Let f : D(0,R) — C, z = 3,5 a,2" be a power series with R > 0. Suppose
that f is an even function, thatis f(z) = f(—z) for z € (—R, R). In other words,

Vz € (—R, R), Z an(—2)" = Z anz".

n=0 n=>0

This implies that
Vn € Nog, (—=1)"a, = an.

In other words, a,, = 0 if n is an odd integer.
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Theorem 8.3.26 (Cauchy’s formula) : Let f(z) = Y an 2™ be a power series with radius of convergence

R > 0. Then, for anyr € (0, R) and n € Ny, we have

n 1 o i0y\ _ —inf
ran = o f(ret®e dé.
T Jo

Proof : Let us fix r € (0, R) and n € Ny. We have

27 . . 27 .
f(r€19)e—1n0 do = / (Z CLpT’pel(p_n)0> d6.
0

0 p>0

Since Y |a,|r? converges, the series of functions 6 — 3" a,rPe!P~™? converges normally on [0, 27].

We deduce from Corollary 8.2.9 that we may interchange the order between integration and summa-

tion. As a consequence,

2 . . 2m
/ f(ret?)ein? dg = Z aprp/ P9 4 = Z apr? (2m)1p—y, = 271" A,
0 >0 0 >0 O

Remark 8.3.27 : This provides another proof of Corollary 8.3.24 if, using its notations, f = g on D(0,r)

for some r € (0, R).

8.3.5 Expansion in power series

In the previous subsections, we were given power series and discussed their properties. In this subsection,

we are going to see when and which functions can be written (or exapnded) as a power series.

Definition 8.3.28 : Let A C C be an open set and a function f: A — C.

« Let R > 0. If 0 € A and there exists a power series Y a, 2" such that

Vz€ D(0,R), f(z)=)_ anz", (8.15)

n=0

then we say that f can be written (or expanded) as a power series around 0, or on D(0, R). In

BNE  REBIESIERE

EIE 8326 [(MARR] : B f(2) =3 an2" BBEFES R > 0 NERS - B3E - HNER
re (0,R) Uk n e Ny &FMBE
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2 X . 27 .
f(r619)e— inf do = / (Z aprel(p_n)9> d6.
0

0 p=0

B S |ap|rP WRBK » BREHIRER 0 — 3 a,rPelP—)0 1F [0, 27] LR IERWER o (R 8.2.0 TP
R BB HNNNNIERF » FAAEHE
2 . R 2,
/ f(ret®e "0 dg = Z aprp/ im0 4 = Z apr? (2m)1p—y, = 271" Ay, O
0 0

p=0 p=>0

53ff 8.3.27 : [FRRIE 8.3.24 BIECHE » WIREFEE r € (0,R) F18 f = g £ D(0,7) £ - FREEEEEE
RS —ERHE f 2 ¢ MEERBEPNRBHERNAR -

SRE BEREER

ERER/NETR - P ERRE - LAFGRMFANMEE - EEE/NESF - RAETERHERE
EEMERBAIURES EER) AFERH -

EFE8328 : DACCARAE - Bf: A-CARE-

c BR>0°R0c AMEFEERERHE Y a,2" &7

V2 € D(0,R), f(z)=)_ anz", (8.15)

ARFEFRAIER £ BT ATE 0 i3 » 3072 D(0, R) £ B (BRI BRE - 1F5IKER © &
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Chapter 8 Sequences and series of functions

particular, such a function needs to be C*° at 0, which is a direct consequence of Corollary 8.3.21.

« Let zg € A. We say that f can be written (or expanded) as a power series around zj if z +—

f(z + 29) can be written as a power series around 0.

Proposition 8.3.29 : Let A C C be an open set containing 0 and a function f : A — C. Then, the

following properties are equivalent.
(1) f can be written as a power series around 0.

(2) There existsr > 0 such that the series of remainders (R,,)n>0 converges pointwise to 0 on D(0, 1),

where

n_ k)
Vn € No,Vz € D(0,r), Ru(z)= f(z)— Z ) 2F. (8.16)

When (2) holds, it means that the power series ) f ) 2" has radius of convergence R satisfying R >

and f is equal to the series on D(0, ).

Remark 8.3.30:

(1) To check Proposition 8.3.29 (2), we use Taylor-Lagrange or Taylor integral formula (Section 4.3.1) to

write the remainder as

Zn—f—l

Baz) = 5

1-1¢
@z, 01, o Roz) = [T gz
0 n!
(2) We note that to check Proposition 8.3.29 (2), it is not sufficient to check that the radius of convergence
of ) f is strictly positive. Actually, there are functions such that this power series has a strictly
positive radlus of convergence without Eq. (8.15) holds, see Example 8.3.32 for an example. However,

if this radius of convergence is 0, it tells us that f cannot be written as a power series around 0.

Proof : There is nothing to show for (1) = (2). Suppose that (2) holds, let us show (1). Let » > 0 sat-

isfying Eq. (8.16). Let z € D(0, 7). The condition R, (2) —=0 implies that f(2) = >_,> f“;)!(O) 2"

Therefore, the sequence (fi,() ")n>0 tends to 0, so is bounded, so the radius of convergence R of the
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c B A MR 2 f(z+ 20) AIMTE 0 REMBERAERE - BIFFIER f ATLUE 2 A
B (R BRE -

R 8329 : DACCABE0MMHEE  URRE f: A - C PETIMERFEN -
(1) f AUTE 0 BEMH A S N ERE -

(2) F1E r > 0 FEFERERE (R,),>0 B7E D(0,r) EZFEWBE 0 HAp

n_ (k)
Vn € No,Vz € D(0,7), Ru(z)=f(2) =) ) 2F. (8.16)

B (2) R ERREEKH Y L0 IRHEEE RME R > 0 B f 7 D(0,r) LREH
1%

53f% 8.3.30 :

(1) FMIBILAER Taylor-Lagrange 5§ Taylor AR (55 4.3.1 /)\Ei) RigEMmE 8329 (2) > BRI
LGERIHEERIER Y

Zn-i-l 1 (1 _ t)n

Rn(Z) = mf(7z+l)(0,z)7 0 e (07 1)’ gy Rn(z) _ Z7L+1/0

(2) FIERE - ARE Y f<n ) IR SRR AEN  BREAE 329 2 EFAN -5
B FERBESHAHEINERBEBRRASENBREFE - B 8.15) AIRERIL - £
g6 8.3.32 PRI UBR)—EEHRBIPIF o AT - INREEERBBEFESR 00 BEHFK
3 f 7£ 0 FEMBOEE R AERE -

(1) = (2 EAFERER - REK (2) RIL BRFIRER 1) S r > 0mEI 8.16)° B
&

2 € D(0,7) ° B#F Ru(z) —— 0 B [(2) = S0 Lo en o Btk - FF5Y (L)

)Zn)@o
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Chapter 8 Sequences and series of functions

corresponding power series satisfies R > |z| (Definition 8.3.3). By taking supremum over z € D(0, r),

wefind R > r. O

Example 8.3.31 : The following functions can be written as a power series around 0.

(1) The exponential function z — exp(z),
Zn
z _
Vz € C, e = Z ﬁ
n=0

In fact, for any z € C and n > 0, the n-th remainder writes

’Z‘n—I—l

o]

69 Re(z) 0.

(n+1) — =

(2) The function z — 2 is defined on C\{1}, and we have

1
Vz € D(0,1), => 2"

In fact, for any z € D(0,1) and n > 0, the n-th remainder writes

Ba2)] = || <

= |1—Z| n—oo

(3) Any polynomial function P € C[X] satisfies

VzeC, P(z)= Z

n=0

Actually, the above power series contains only finitely many terms.

Example 8.3.32: Let us consider the function f defined as below,

f+r R — R
e e ifx >0,

0 ifz <0.
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WHEE 0 - FRUBER - RUEHEERBEBFERERE R > 2| (E&E833) - FEHY

z€ D0,r) BE&NLER » HFIERIR > ° O

g0l 8.3.31 : TERAIRERILIE 0 BHHAE A EREL -
(1) IEERE 2 — exp(z) -
T e
VzeC, €= n%%) oy

BFIATMRE - HRES 2 c CEB n >0 5 n ERERM

_ ’Z‘n—’—l (n+1) _ |Z|n+1 0 Re(z)
(2) BRE » — 1 BREHTE C\{1} L8y - BFAF -
1
Vz € D(0,1), = "
2€D(0,1), — %%Z

BFRIURE - BWRERE 2 € D(0,1) 8B n > 0+ 5 n EERERM :

|Rn(2)] = ‘12_:‘ o =

= |1—Z| n—oo

o
ot
W

ERX R P e C[X] R :

VzeC, P(z)= Z

n>0

BRI LRE - LENERBTREEERSER -

8 8.3.32 : BRFIEEERMFHIREK -
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Chapter 8 Sequences and series of functions

For k € Ny, we may compute the k-th derivative of f on (0, +00),

1
vz >0, f®(z)= Pk<§)e_1/m, (8.17)

where P, is a polynomial satisfying deg(P},) < 2k. Therefore, for each k > 0, we may extend f*) con-

(n)
tinuously to 0 by the value 0, so f is a C* function on R. Therefore, the power series ) _, - ! (0) z"

is the zero function. Its radius of convergence is +00, and is not equal to f on (0, ) for any r > 0.

Proposition 8.3.33 : If f can be written as a power series in D(0, R) for some R > 0, then for any

20 € D(0, R), f can also be written as a power series around z.

Proof : Let f be a function, R > 0, and a power series > a,,2" such that
Vze D(0,R), f(z)= Z anz"
n=0

Let zg € D(0, R) and r = R — |zg|. It is not hard to see that D(0,7) C D(0, R). Let z € D(z, ), we

write

S 0" = 3 an (o + (= — 20)" zanio Bz — o)

n=0 n=0 n>0 k=0

We may check that for every n > 0, the series Y~ anLyzk(}) zgfk(z — 20)¥ converges absolutely

(finite series). Additionally, we have

n _
o> lanllysk <k> 20" F|z = 20" = D lanl(|20] + |2 = 20])"

n>=0 k>0 n=0

which converges because (29| + |z — 20| < |20| + 7 = R. Therefore, Theorem 6.7.4 allows us to

interchange the order of summations. We find,

5 00 = 2 ot ) e 20 = (S (1)

n=0 k>0n=0 k>0 \n>k

Last modified: 20:41 on Tuesday 20" May, 2025

BNE RKEBVET ) ERE
B/ ke Ny BPAILUGTRE f 7 (0, +o00) ERIEE k FEMS -

1
vz >0, f®(z)= Pk(g)e_l/x, (8.17)

Heh p, 2EZER » WE deg(P) < 2k ° EItk - HRESME £ > 0 FAFTLUE B LLo BWE
EREEIRT) 0 BTl F £ R 218 ™ KB - Bl » BRE Zn>o 0. SEBRE - A
WHRHEIER 400 ERNERr >0 7 (0,r) LFAEE f48Z -

el 8333 I MIRHWNEMBER > 0 B f £ DO,R) LAIUBHERE > WHERER
z0 € D(0,R) » BRER [ 7E 2 MBI AR B EBREN -
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G S F ARE R > 0 URERE Y a,.2" WE
Vz € D(0,R), f(z)= Z anz".

B 20 € D(0O,R) AR r = R — |2| - MPIFRE#BEHRK D(0,r) C D(0,R) ° | 2 € D(z0,7) » B

n
Zanz Zanzo—l— z— 20)) Z%Z()” z—zo)k
n=>0 n>0 nz20 k=0
- ot )5 te 0

n=0 k>0

HEPIPTLUREBREME n > 0 BE X ioo anlnsn (D20 (2 — 20)* BREKE (BRKRH) -
s - ZAfIE

n _
|an|Lpsk (k:) |z0|™ k|Z - Zo\k = Z \an!(|zo| + |z — Zo|)n
>0

n>0k n>0

EEWE B 20| + |2 — 20| < [20| +7 = R~ EUt » B 6.7.4 SFFHFIIREANIERT © 3K
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Chapter 8 Sequences and series of functions

which is a power series centered at zg. ]

8.3.6 Applications to ODEs

Power series can be used to solve linear ordinary differential equations with polynomial coefficients. We

have two cases.

+ We know that the solution can be written as a power series, and we look for recurrence relations
between coefficients of the power series. Then, the uniqueness of the cofficients (Corollary 8.3.24)

allows us to find this unique solution. See Example 8.3.34.

+ We do not know whether the solution can be written as a power series and want to show that there
exists such a solution. We apply the same method as in the previous point, and show that the corre-
sponding power series has a strictly positive radius of convergence. This gives us the unique solution
that can be written as a power series, see Example 8.3.35. Note that this does not prove any result

about the uniqueness of the solution.

Example 8.3.34 : We want to look for a power series expansion of the following function around 0,

fi R — R

2 2
x — € Owe_t dt.

The function f can be written as a power series centered at 0 with radius of convergence equal to 400,
because it consists of multiplication and integration of such functions. Additionally, by the fundamen-

tal theorem of calculus, we have
Ve eR, f'(z)=2xf(x)+1, and f(0)=0.
Suppose that f(z) = 3,5 anz™. Then, we have

Ve eR, f'(z)= Z nap,z" ', and zf(x)= Z anz™t = Z an_ox™ L.

n>1 n=0 n=2
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Z A= Z Z anly>g <Z> zg_k(z — zo)k = Z < Z an <Z> zg_k> (z — zo)k,

n=>0 k>0n>0 k>0 \n>k

BEMERHOE 20 WERE - O

$7vMEd £ ODE ERIFEA

BRI UZERBRBRE A ZELNRIEEM D HE - RABEMERR :
- BRPRERTTURREREY > ALEMTUSHERBREBC BREERR o #E  REAH
—4 (RIE 83.24) BEMATLUKBEEME—ME - REH) 8334 ©
- RAEANERESTURHRERY » TMEBEFRBEFEE—EERNAE - NFEFIE » FHFIER
HENAI - LERAMYEINERBNVEBFEEERABLE - SHRHMIESHR BRI
—#% > REEf 8335 < ZEH - BIRBHRIFHERINRRME—IERIRER -

8 8.3.34 1 FFIEEH TR - 7 0 WEEMEREBER

fr R — R

2 2
z = e et dt

RE f TR OE 0 NERE  WHFER +oo» ARMEEEEERNHHIFREEZEE
73 o IhY - IRBMRD EAERE - BffiF -

Ve eR, f(z)=2xf(z)+1, MUK [f(0)=0.
B f(2) = Xy ana” © TREERAVE

Ve eR, fl(z) =) naa"', BMR zf(z)=> ana" = anoz" .

n=1 n=>0 n>2
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Chapter 8 Sequences and series of functions

Therefore,
VreR, f'(z)-2xf(x —al—l—z Nay — 2a4p-2) "L

n=2

The initial condition f(0) = 0 gives ap = 0. By Corollary 8.3.24, we know that

2

ap =1, and Vn>2, ap,= —an_s.
n

Thus, by induction, we find that

4"p)

Vn 2 0, agn — 0, and ao2n+1 = m

We check again (even though not necessary in this example) that the power series define by this

sequence of (ay,)n>0 indeed has radius of convergence equal to 400, so

4™n!
Ve eR, f(z)= Z g%t
50 (2n+1)!

Note that this solution can also be expanded around every a € R as a power series.

Example 8.3.35:Let a € C. We want to look for a power series expansion of the following function

around 0,
f: (-L,1) — C
x = (14 2).

This function f satisfies the following first-order linear ordinary differential equation,

Ve e (-1,1), (1+z)f'(z)=af(z), and [f(0)=

Such a differential equation has a unique solution (Theorem 8.4.17). Suppose that f(z) = >_, - a2

with radius of convergence R > 0. Then, we have

Vz € (-R,R), f(z)= Z na,z" = Z(n + 1Dapt12", and zf'(x Z nanz"

n>1 n=0 n>1
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Ve eR, f'(z)—2xf(x —al—i—z (na, — 2ap_2)x 2L

n=2

FIBIEE £(0) = 0 #5FffT ap = 0 ° RIFRIE 8.3.24 » FFIXNE

ar=1, UKk VYn>2

Ap = —Ap—2.
n

Ft - 5EBERINE - FfIHSE

4™n/!

Vn >0, ag =0, Y953 a2n+1 = m

BFATUBRRE EMEEEREEAF - ERBUAER) » BBFY (an)n=0 EERHKRER
R FEEEFR +0o » EHItE

4"p)
220+l

Ve e R, f(a”):go@nﬂ)!

AREE AR UTEER o € R MBEEERFRERE -

8 8.3.35 : © o € C o HFEEHH THIREE 0 HHEEHNBEREER :

f: (-L,1) — C

x = (1+x).

EERE [ mE TEEE—ERERMS HIE -
Vo e (=1,1), (1+x)f'(z)=af(x), Uk [f(0)=

BRI HEEH—NE (B 8.4.17) R f(z) = 2,50 ana" BIRBFHER R > 0 ° BB
EFFIE

V€ (-R,R), f'(z)= Z napz" "t = Z(n + Dapr12™, Uk xf'(z Z napx"

n=1 n=0 n>1
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Chapter 8 Sequences and series of functions

Therefore,

Vz e (-R,R), (1+2z)f(z)—af(z)= Z (n+ 1)ant1 + nap, — aay)x™.

n=0
From the initial condition f(0) = 1, we have ag = 1. By the uniqueness of the coefficients
(Corollary 8.3.24), we find

a—n
Vn € No, apy1 = oy 1an.
By induction, we deduce that
—1...(a— 1
¥neNy, a, = A2V '(O‘ ntl) _ <O‘> (8.18)

n! n

By d’Alembert’s criterion, we have

‘anH’_‘a—n

an n+11 n—=oo

Therefore, the power series Y a,z" defined by the cofficients in Eq. (8.18) has radius of convergence

equal to 1, and we conclude that

Vz € (—1,1)7 (1+x)a _ Z <Oé>xn: Z a(a—l)...(a—n+1)$n.

|
n>0 \"* n>0 n:

This generalizes the binomial expansion to the case with a complex-valued exponent.

8.4 Advanced theorems on uniform convergence

8.4.1 Arzela-Ascoli theorem

Arzela-Ascoli theorem is an important theorem in functional analysis, and it allows us to characterize
when a subset of continuous functions is compact. In particular, it turns out to be useful to show the exis-
tence of solution for some differential equations, see Theorem 8.4.14. First, let us introduce the notion of

equicontinuity.
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Chapter 8 Sequences and series of functions

Definition 8.4.1:Let (K, d) be a metric space. In addition, if K is a compact space, the space of
continuous functions C(K, R) is a subset of B(K,R). We have equipped B(K, R) with the supremum
norm in Definition 8.1.9, which we may induce on the subspace C(K,R). A subset F C C(K,R) is

said to be equicontinuous (FEELE) if

Ve >0,V € M,35 >0,VfeF, yeBxd) = |flx)—flyl<e (8.19)

Remark 8.4.2 : We note that the definition in Eq. (8.19) is much stronger than just requiring that all the
functions f € F are continuous. Once ¢ > 0 and x € M are fixed, this condition needs the choice of § > 0

to be uniformin f € F.

Example 8.4.3:
(1) A subset of finitely many continuous functions is equicontinuous.

(2) For every L > 0, the set of all the L-Lipschitz continuous functions is equicontinuous.

Theorem 8.4.4 (Arzela-Ascoli theorem) : Let (K, d) be a compact metric space and F C C(K,R) be

a subset. Then, we have the following properties.
(1) F is compact if and only if F is bounded, closed, and equicontinuous.

(2) F is precompact if and only if F is bounded and equicontinuous.

Remark 8.4.5:

(1) We recall that a compact space is necessarily bounded and closed (Proposition 3.1.6), and a bounded
and closed set may not be compact (Remark 3.1.34), except that we are in a finite-dimensional normed
vector space (Corollary 3.2.24). If the compact metric space K is consisted of a finite number of points,
it is clear that C(K, R) is isomorphic to R" for n = Card(K), which is a finite-dimensional normed

vector space, and the theorem becomes trivial. However, for a generic compact metric space K, the
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(2) HIXEME L > 0 » BFE L-Lipschitz EiERHBHNE S EFEERER o

EIE 8.4.4 [Arzela-Ascoli EIE)
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(1) BPIFESE  RREH—TCe2EEREE (d&s16) @ BRE—EERHAE  tFA—
EERFHA GEfEs3134) - RIFRBEAT—ERREENRERNEZHP (R s.224) o
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Chapter 8 Sequences and series of functions

space of continuous functions C(K, R) is not of finite-dimensional.

(2) FromExercise 3.21, we know that a metric space is compact if and only if it is precompact and complete.
Moreover, in Exercise 8.30, we can check that if F is equicontinuous, then so is F. Moreover, since

C(K,R) is a Banach space, we see that (2) is a direct consequence of (1).

(3) We also note that R can be replaced by any Banach space, and the following proof can be adapted

accordingly.

Proof :

« Suppose that F is compact. We already know that it is bounded and closed, so we only need
to show that it is equicontinuous. A compact set is also relatively compact (or precompact), see
Lemma 3.1.22. Lete > 0. Wemay find N > 1 and f1,..., fy € F suchthat F C Uf\il B(fi,e).

Additionally, the finite set of functions { f1, ..., fv } is equicontinuous.

Let x € M. We may find § > 0 such that
Vi=1,...,N, yeB(d) = |[filz)-fily)<e

For any given f € F, we may find 1 < ¢ < N such that f € B(f;,¢). Then, forany y € B(z,J),

we have

[f (@) = FW)l < [f(2) = fi(2)| + [filz) = fi)| + [fily) = f(y)] < 3e.

This allows us to conclude that F is equicontinuous.

« Suppose that F is bounded, closed, and equicontinuous. In order to show that F is compact,
it is sufficient to show that it satisfies the Bolzano-Weierstrafl property (Definition 3.1.19), see
Theorem 3.1.20.

Let (fn)n>1 be a sequence in F. Since K is compact, we may find a dense sequence in K, that
we denote by (x,,),>1°. We are going to use a diagonal argument to extract a subsequence of

(fn)n>1 which converges at every xj, for k > 1.

— The sequence (fn(z1))n>1 is bounded in R, so by the Bolzano-Weierstraf} theorem

(Theorem 2.2.5), we may find a convergent subsequence, that we denote by (f,,, (n)(21))n>1,
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Chapter 8 Sequences and series of functions

where 1 : N = N is an extraction.

— Let m > 1. Suppose that we have already constructed extractions ¢, ..., @, such that
(S (n) (Tk) )n>1 converges for all 1 < k < m, where ¢, := 1 0 -+ 0 y,. Then, the
sequence (fy,.(n)(Tm+1))n>1 is bounded, so we may find an extraction ¢y, 11 : N — N
such that (fy, 0,1 (n) (Tm+1))n>1 converges. It is clear that for 1 < k < m, the sequence
(fmopms1(n) (Tk))n>1 still converges, being a subsequence of a convergent sequence.

= Forn > 1, let (n) := p10---0pp(n) and g, = fypn). Then, (gn)n>1 is a subse-
quence of (f;,)n>1. From above, for every k > 1, the sequence (g, (zx) = fy(n)(Tk))n>k is

a subsequence of the convergent sequence (fy, (n)(Zk))n>1, so the sequence (g, (7k))n>1

converges. We may denote by f(xy) for the above limit for every k > 1.

Now, we need to show that this convergence can be extended to every z € K, and that this

convergence is uniform, so the limit is still in C(K, R).
Let us fix e > 0.

— For every kK > 1, from the convergence of the sequence (g,(xg))n>1, we may find

N(e,x) > 1 such that
Vm,n > N(e,xr), |gm(xr) — gn(zk)| < €. (8.20)

— By the equicontinuity of F, for every z € K, we may find 6, > 0 such that for every n > 1,

we have

Yy € B(Za 52) = |gn(2) - gn(y)‘ <e. (8-21)

The open balls B(z,d,) form an open covering of K, and by the compacity of K, we may
find L > 1and 2z, ..., 25, € K such that

L

U B(zi,62,).

=1

K

For every 1 < i < L, we may also find n; > 1 such that z,,, € B(z;,05,).

— We may take N := max{N(e,xy,),..., N(g,zy,)}. This implies that we have a uniform

*We use the precompactness of K. For every n > 1, we may find finitely many balls with radius % that cover K. The union of the

centers of these balls over all the integers n > 1 is a countable dense set in K.
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Chapter 8 Sequences and series of functions

Cauchy condition (Proposition 8.1.8) on p,, ..., Zn,,

Vi=1,...,L,Ym,n > N, |gm(zn,) — gn(zn,)| < €.

- Letz € K and 1 < i < L such that x € B(z;,0,,). For m,n > N, we have

|gm () = gn(2)] < |gm(x) = gm(20)[ + |9m(2i) = gm(@n,)| + [gm(2n;) = gn(zn,)]
+ |gn(xm) - gn(zi)| + |gn(zi) - gn(I)’

< 9¢,

where for the middle (thrid) term, we use Eq. (8.20); and for the other terms, we use Eq. (8.21)
and the fact that x, z,,, € B(z;,05,).

Therefore, for every x € K, the sequence (g, ()),>1 is Cauchy, and we saw from above that the
choice of N is independent from the choice of # € K. From this we can deduce that (g, (x))n>1

converges for every x € K, and this convergence is uniform, so the limit function is still an

element of C(K, R). 0

8.4.2 Stone—Weierstrafd theorem

The following Stone-Weierstrafy theorem allows us to find sets of functions that can approximate contin-

uous functions uniformly on compact spaces.

Theorem 8.4.6 (Stone-Weierstrafl theorem) : Let X be a compact metric space and K = R or C. The
space of continuous functions C(X, K) equipped with the supremum norm ||-|| . is a normed vector space

and a normed algebra. Let A C C(X,K) be a subalgebra of C(X,K). Suppose that
cle A
« A separates points, that is for any x # y € X, there exists f € A such that f(z) # f(y);

o (inthecase K = C) f € Aifand only if f € A.

Then, A is dense in C(X, K).
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Chapter 8 Sequences and series of functions

Example 8.4.7 : Below are some examples for which the Stone-Weierstrafl theorem applies.

(1) Let I = [a,b] be a segment with K = R. The set of polynomials K[X] viewed as functions
defined on I is dense in C(I, R).

(2) Let I = [a,b] be a segment with K = R or C. The set of all the Lipschitz continuous functions
is dense in C(I, K).

(3) Let Cper(R, C) be the set of 2m-periodic continuous functions on R. The set of trigonometric

functions, which is spanned by the set {z — €!"* : n € Z}, is dense in Cper(R, C).

The proof of the Stone-Weierstrafl theorem is quite involved. We are going to state a particular example of
this theorem, called Weierstraf3 approximation theorem, and prove it using a more elementary approach. After

this, we need a few lemmas (Lemma 8.4.11 and Lemma 8.4.12) that allow us to prove the Stone-Weierstraf3

theorem.

Theorem 8.4.8 (Weierstrafl approximation theorem) : Let I = [a,b] be a segment and C(I,R) be
equipped with the supremum norm ||-|| . Let P be the set of all polynomial functions. Then, P is dense
in C(I,R). In other words, for any f € C(I,R), we may find a sequence of polynomials (P,,),>1 such
that

1P = flloo 75557 O-

Remark 8.4.9:

(1) It is not hard to check that the set of all polynomials P is a subalgebra of C(I,R) and it satisfies the

conditions in Theorem 8.4.6. Thus, the Weierstrafl approximation theorem can be seen as a special

case of the Stone-Weierstraf} theorem.

(2) It is important to take I = [a, b] to be a segment. For example, in Exercise 8.6 we have seen that this

theorem does not hold if I = R.
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Chapter 8 Sequences and series of functions

The original proof from Weierstrafl uses convolution, that we do not discuss in this class. The proof we
give below is from Bernstein, which can be reformulated using a probabilistic language, in terms of the law

of large numbers for Bernoulli random variables.

Proof : Without loss of generality, we may assume that I = [0, 1]. For every integer 0 < k < n, let us

define

bn,k I = R
x (n) (1 — z)"k,
k
and for n € Ny, define
B,: C(I,LR) — R[]

“ k
f — ,;)f(Tl)bnk(x)

We are going to show that B,,(f) converges to f uniformly.

Given ¢ > 0. Since f is continuous on the segment I, it is bounded. Let us take M > 0 such that
|f(z)| < M for all z € I. By the Heine—Cantor theorem (Theorem 3.1.17), we may find n > 0 such
that

Ve,yel, lz—yl<n = [f(z)-fly)l<e

Then, for any n € Ny and « € I, we have

Bu()(@) — F@)] = Balf)@) - I g 7(5) - 1@ st
kZK‘f )—f@)]bn,k + 3 7(2) = 1@pnso)
where
Klz{()gkgn:’i—x 217}, and ng{Oék‘gn:‘i—x <77}.

Using the uniform continuity, the second sum involving indices in K can be bounded from above,

n

bop(x) < D ebpp(x) <Y ebyp(a) =e.

keKo k=0

= [o(£) -

keK>
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Chapter 8 Sequences and series of functions

For the sum involving indices in K7, we are going to use the following square trick,

2
ke% ‘f (i) — f(@)[ba () < 2M kez;; () < kez}; (7’2 - x) b (1)

_2M

7 [Bula?) = 20Ba (@) +2®Ba(1)].

Consider the following identity,

F(a,b) =[a+ (1 -0)]" = i (Z) a®(1 —b)"F,

k=0

Then, we may compute By, (1), By, (z), and B, (z?) as follow,

k=0
Ny T ny\ e
lgn(x):: 2{:7lbnk(x)’_’n/j{:k7<k£)xk 1<1 —-$) g
k=0 k=1
x 0 T e
= E%F(x,x) = En[m%— (1—2)" ' =2,
" kN2 " k(k—1)  k
2 r _ LA
lgn(x )-— 2;% (71) bnk(aﬁ < n2 + HQ)ZLLk(w)
z? 0? 0
2
x ne n—
= S — D@+ (1 —2)" ) + Snle+ (1 -2)"!
a2 z(1—x)
n
Therefore, we find
k 2M z(1 — x) M
S () - s@fbusta) < 25 <
keKl‘ (n ’ n? n 2nmn?2

Putting all the inequalities together, we obtain

|Bo(f)(@) — f(2)] < = + Qj‘é

By taking the supremum norm then lim sup over n, we find

lizn_)sgp |Bn(f) = flloo < e
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Chapter 8 Sequences and series of functions

Since the above holds for any arbitrary ¢ > 0, we deduce that limsup,, . ||Bn(f) — fll,, =0. O

We need to introduce the notion of lattice, and state the lattice version of the Stone—Weierstrafy theorem.

This will allow us to recover the original version in Theorem 8.4.6.

Definition 8.4.10 : Let X be a compact metric space and £ C C(X, R) be a subset. We say that L is

a lattice if
Vf,g € L, max{f, g}, min{f, g} € L.

Lemma 8.4.11 : For any a > 0, there exists a sequence of polynomials that converges uniformly on

[—a, a] to the function x — |z|.

Proof : There are two ways to prove this lemma. It can either be seen as a direct consequence of the
Weierstrafl approximation theorem (Theorem 8.4.8), or be proven by construction.

By scaling, we may assume that @ = 1. We note that for z € [~1,1],and u = 1 — 22 € [0, 1], we

lz| = Va2 =/1-(1—-22)=V1—u

have

If |u| < 1, we have

Vi—u= Z an(—u)", wherea, = <1/2), (8.22)

n=0 n
where the power series comes from Example 8.3.35, and it has radius of convergence equal to 1. We
want to show that this power series converges uniformly for u € [0, 1]. We may check that it converges

normally, then the uniform convergence follows, see Proposition 8.1.22. For this, it suffices to check
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Chapter 8 Sequences and series of functions

that ) a,, converges absolutely. For n € Ny, we have

. 5(=3)...(3—n+1) (-1 (@2n-3)
" n! oo n!
(—D)" 1 2n=3)N2n—-2)I!  (—=1)"! (2n — 2)!

2n n!(2n —2)11 221 pl(n — 1)

and the Stirling’s formula gives us |a,| ~ cst - n~3/2. This means that 3" a,, converges absolutely. []

BNE  REBIESIERE

Ruel01] FHTKH - HFTUREMETERKE  BEREEERFITIRY - R
78 8.1.22 ° Ak MAARTERE Y o, FREKH - B n e Ny » HME

(-3 ...G-n+1) (=) (2n-3)

tn = n! T on n!
(=Dt @n =32 —2)t (=)™t (20— 2)!
2n n!(2n—2)!1! 22n=1 pl(n — 1)
BEA stirling AT » HIEEE |a,| ~ cst-n 32 c ERARE X a, FBEHIH - O

Lemma 8.4.12: Any closed subalgebra A C C(X,R) is a lattice.

5|38 8.4.12 1 ERFAFHRE A C C(X,R) E2(EMEH -

Proof : Let A C C(X,R) be a subalgebra. Given f, g € A, we have

f+g |f—4
2 2

f+g+|f—9|

max{f,g} =

Therefore, it is sufficient to show that for h € A, we also have |h| € A to conclude. Let h € A.
Due to the continuity of h and the compacity of X, we can define a := max,cx |h(z)| < oo, see
Proposition 3.1.12. By Lemma 8.4.11, we may find a sequence of polynomials (P,),>1 that converges
uniformly to the absolute value function on [—a,a]. For every n > 1, define h,, = P,(h) € A.
Therefore, (hy,)n>1 is a sequence of functions that converges uniformly to |h| on X. Since A is closed,

we conclude that |h| € A. O

HEA: B ACCX,R) ABTFRE-HETE f,9c A BB

max{f,g}—f;ng'f;g, MR min{fjg}_f;g_fgg\'

Hit > RFRBEBREER b c A BIBES hc A0 RIMURET S he A EH 1
HEEERE X REM - BFIEIUES o = maxeex h(2)] < oo » BAE3.112 o 3]
B 5411 > REEIURISERES (P,)osr  EEMTE [—a,a] LB DRKTIBLERS -
HWREME 0 > 10 FF hy = Po(h) € Ao B (h)o SEREFS - MASE X L9
BB (1| © IR A IERBSE - BPURIE |h) c Ao 0

Theorem 8.4.13 : Let X be a compact metric space with at least two points and L C C(X,R) be a
lattice. Suppose that for any x # y € X and a,b € R, there exists f € L with f(x) = a and f(y) = b.
Then, L is dense in C(X, R).

Proof : Let £ C C(X,R) be a lattice. Let g € C(X,R) and € > 0. We want to construct a function
f € Lsuchthat | f — g, <e.

For any a,b € X, we may find f,;, € L such that f,,(a) = g(a) and f,5(b) = g(b). By the
continuity of f,; and g, we know that there exists an open set U, containing b such that f,; >

g — e on U,p. Since (Ugyp)pex is an open covering of the compact space X, by the Borel-Lebesgue
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Chapter 8 Sequences and series of functions

property (Definition 3.1.3), we may find by, ..., b, € X such that (U, p,)1<i<m covers X. Let f, :=
SUP1<ij<m fab; € L. Then, we have f,(a) = aand f, > g — € on X. Similarly, by the continuity of
fa and g, there exists an open set V, containing a such that f, < g + ¢ on V. Since (V,)qex is an
open covering of the compact space X, again by the Borel-Lebesgue property (Definition 3.1.3), we
may find ay, ..., a, € X such that (V, ')1§j<n covers X. Let f := infi1<j<n fa.. Then, we may easily
checkthatg —e < f <g+eon X, so|f — gl < e This concludes that £ is dense in C(X,R). [

Proof of Proof of Theorem 8.4.6: Let A C C(X,R) be a subalgebra satisfying the assumptions
in Theorem 8.4.6. We write £ = A, which is still a subalgebra, because addition, multiplication, and
scalar multiplication are continuous. It follows from Lemma 8.4.12 that L is a lattice. Now, let us check
that the assumptions in Theorem 8.4.13 are satisfied.

Letz # y € X and a,b € R. By the assumptions in Theorem 8.4.6, we may find p € A such that
p(z) # p(y). Since 1 € A, we may also add ¢ x 1 € A to p, to make p(z) + ¢ # 0 and p(y) + ¢ # 0.
Without loss of generality, let us assume that p(z) # p(y), p(z) # 0, and p(y) # 0 for some p € A.
Then, we may look for f € Ain the form f = ap+ 3p?, where o, 8 € R can be chosen properly so that
f(x) = aand f(y) = b. Therefore, Theorem 8.4.13 tells us that £ = C(X, R), thatis A = C(X, R).

For the complex version of the theorem, we proceed as follows. Let A C C(X,C) be a subalgebra
satisfying the assumptions in Theorem 8.4.6. Let Ay C A be the set of real-valued functions in A,
which is a R-subalgebra of C(X,R). We want to check that Ay = C(X,R). First, it is not hard to
check that 1 € Ag. Then, for any f € A, since f € A, we deduce that Re(f),Im(f) € Ap. For any
x # y € X, there exists f € A such that f(x) # f(y), so we need to have Re(f)(z) # Re(f)(y) or

m(f)(z) # Im(f)(y). This means that .4 separates points. By the real version of the theorem, we
conclude that Ag = C(X, R). For any function f € C(X,C) and £ > 0, we may find g1, g2 € Ag such
that

IRe(f) = g1l <& and  [[Im(f) — g2, <e.

Since A is a C-algebra, we know that g; +1g2 € A. Moreover,

1f = (91 +192)lloe < Re(f) = g1lloe + ITm(f) — g2ll oo < 2¢

This shows that A is dense in C(X, C). O
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FIMZEME X RIBHEE  ARYR Borel-Lebesgue M8 (E& 3.13) - FHPIBEHE] b1,... 0, € X £
18 (Unp:)1<icm BE X © B fo := sUpicicm fab; € L ° BE > KFE fola) =aBE fu >

X E-FEEE A Mg NEELE  FREES HRAEV, 1 fu<g+eE Vo £ BHR
(Va)aex EEHHZER X BIBIEE - BX(ER Borel-Lebesgue 8 (E& 3.1.3) - FHFIEEIRE
a1, an € X 18 (Vo )1<jcn BE X 0 & f 1= infiejen fu, ° B RETUERBRERE X
BB g—e<f<g+e IS — gl <e° EBRPITLUER L 7E C(X,R) FERE
By o O

T 846 MEANERA: DACCX,R) AREEE 46 EFREFZNFRE - M
L=A BEEGEBEFAE  RANE - FEMAEFEH ZEAEER o 5132 8412 K
FIHFH £ 2EHEHE - IWE > BROVREBETEIE 8.4.13 PHBREREMIL ©
[Br#yeX&EHabeR - RIBEE s.4.6 PRIREE > HMIEEHE] p € AEE p(zx) £ p(y) ©
AR 1e A BARILUB e x 1 € AME p - BERMESE p(x) + c #05&F p(y) + ¢ £ 0 ° K
—h&M  BEMABREpc A ME p(2) £ ply) ~ p(z) # 03ZE p(y) # 0 ° B » FMIFHATU
B =ap+ P RN fc A RBBIEBAScREE f) = BB f(y) =b- AL E
Ba13 HRIHM L =C(X,R) » HELR A=C(X,R) °
BREMABEEFEREHRANTIE - 5 A CCX,C) AMEEE 846 EFRFHNFH
HoBACABATHNERBABRIES  EE2E C(X,R) IR FHRB - HABER
BA=CX,R) - B BMFTHEEET 1l c A -BR HREE fc A HR fec A EM
HB Re(f),Im(f) e A e BREB o Ay e X " BFEfc ARMR f(2) # fly) > FIAEM—FE
8 Re(f)(z) # Re(f)(y) 3 Im(f)(z) # Im(f)(y) ° FrLA » FPIEE Ay O BEER: - EREH
AR ABEE » FPIHERE Ao = C(X,R) - HMNERRE f € C(X,C) BH ¢ > 0 RMIRTLUILE

91,92 € Ao 15

IRe(f) —gi1lle <& AR |Im(f) — g2 <e.
B A RME C K - B g1 +ig2 € Ao LS - HFBER

1f = (g1 +1g2)lloo < [Re(f) = g1lloc + IIm(f) — g2l oo < 2¢
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Chapter 8 Sequences and series of functions

8.4.3 Peano existence theorem

As an application of the Arzela—Ascoli theorem and the Stone—Weierstrafy theorem, we have the following

Peano existence theorem, which gives us the existence of solution for differential equations.

Theorem 8.4.14 (Peano existence theorem) : Fix an integern > 1. Let 2 C R x R" be a non-empty
open subset, and F' : Q) — R™ be a continuous function. Let ty € R and yo € R"™ such that (to,yo) € 2.
Let a,b > 0 such that

R:={(t,y) : [t —to| < a,[ly —yol <0} SO

Let M > 0 and suppose that || F'(t,y)|| < M for (t,y) € R. Then, the following differential equation

y'(t) = F(t,y(1), Viel,

y(to) = yo,

has a solution t — y(t) defined on I := [ty — a', to + a'] witha' = min{a, 1 }.

Remark 8.4.15 : It is important to note that the Peano existence theorem does not guarantee uniqueness,
see Example 8.4.16. In order to have a unique solution, the function F' needs to satisfy stronger properties,

as stated in the Picard-Lindel6f theorem, also known as the Cauchy-Lipschitz theorem, see Theorem 8.4.17.

Proof : The proof consists of three parts: (1) We reformulate the solution to the differential equation
as a fixed-point problem; (2) we show the existence of the solution in the case that F’ is a Lipschitz
continuous function; (3) we show the existence in the general setting.

Without loss of generality, we may assume that t = 0 and yp = 0 € R" by a translation in time and

in space.

(1) First, let us reformulate this as a solution to some fixed-point problem. Let us write X =
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BT AEC(X,C) EHEERAEN - O

FE=/E Peano FTEMETEIR

BRIFEMEEIER T ER Peano FEMEIE & 8= Arzela-Ascoli EIEH] Stone-Weierstrafy & FE R FE
B tEiaiMmo A EXNENEEN -

EHE 8414 [Peano FHEMTEE] : BIEEBH n > 1°-HQCRxR"BFZERE ' UK

F:Q— R ZEBRE - 5ty e RUK yo € R 15 (to, yo) € L ° T a,b > 0 iWE
B M >0 MRERER (t,y) e R HMIE ||F(t,y)| < M ° BBEE - TEEEMD HEX

y(t) = F(t,y(t), Vtel,
y(to) = Yo,

ZEEEEEI = [to = a’, to + a’] ER9ER ¢t — y(t) = == R mjn{a’ %} o

2f#E8.4.15 1 BEEMNRE - HFPIEEXEET Peano FEMEIEN R B REAMNME—1E - REMF s.4.16 ©
MREGHEHE—S > R F RERCEENME » REIE 8.4.17 EFH Picard-Lindelsf EIE >
#B1E Cauchy-Lipschitz FEIE ©

2R MFEFRO =8RG - (1) RFEMS AIENEENELAEEREE 5 2 BT F
T2 {8 Lipschitz EEAEREAERT - FFAMNEEN 5 0) T—RNKRET - HFIFERBNEE
I o

Rt » FFIRT AR RN ZERME TR - MRt =0EB y=0cR"°

(1) 8% - EHFHEREEPNEFRGLAEERMBE - FHFIEKE X = C(I, B(0,b) - ZETEH
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Chapter 8 Sequences and series of functions

C(I,B(0,b)). Consider the following operator,

T X x
fom JoF(s, f(s)ds.

Let us check that for f € X, the image T'(f) is well defined. We first note that (s, f(s)) € R for

any s € I, so for any ¢t € I, we have

Il =| [

In other words, T'(f) is a function from I to B(0, b). Moreover, it follows from the fundamental

< |t|M < b

theorem of calculus that T'(f) is of class C!, so we do have T'(f) € X. As a consequence, if y
is a fixed point of 7', that is T'(y) = y, we deduce that y is of class C*°. Moreover, if y is a fixed
point, by taking the derivative at ¢ € I, we find

y' () = (T(y)'(t) = F(t,y(t).

We may also check easily that y(0) = T'(y)(0) = 0. Therefore, the conclusion of Theorem 8.4.14

is equivalent to showing that T has at least one fixed point.

Let us assume that F' is an L-Lipschitz continuous function on R. In this case, we can easily

check that T is an (La')-Lipschitz continuous function, so it is continuous.

We are going to define a sequence of functions (yy,),>1 which are elements of X. First, let y; be

the constant zero function, which is indeed in X'. For n > 1, we define y,,41 = T'(yy), which is
in X from (1). By induction, we establish a sequence (y;,),>1 in X. Moreover, for any ¢,t' € I

and n > 1, we have

t
Jon(® =€) = | [} Fs.aa(s)) | < e =21, (5.23)

This means that (y,),>1 is a sequence of equicontinuous functions. The Arzela-Ascoli theo-
rem’allows us to find a convergent subsequence (Yp(n) )n=1 With limit y € X'. We want to check

that T'(y) =

Let us denote I, = I NR; = [0,d’]. For every n > 1 and t € I, let us define

My (t) := sup [[T(yn)(s) = yn(s)| = sup [lynt1(s) —yn(s)l-

0<s<t 0<s<t
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T: X — X
fom JsF(s, f(s))ds.

BMEFIRBRE - BN f e X > T(f) WREREZRRIFA - IR HRES s e I XK
o BB (s, f(s) e R FRMERER te I FfIHE

Il = | [ P

BAEER - T(f) 2EB 1 BREZE B(0,b0) FIRKER - b5 - RIMEDBEXREE » FFIRE
T(f) B C 8/ FIUFFIB T(f) € X - EHIt - IR y BE T NEER: - LERE W
RTy) =y KISy GFC 8| - b R y SEEER:  BEY t c I D
x5

< |t|M < b

Y () = (T(y)'(t) = F(t,y(t)).

HFEAIURE y(0) =
R FER °

T(y)(0) = 0 o Fitt » FIE 8.4.14 IEREFRA 7 ELVE—EEE

EHFIRE F 2E7E R £B L-Lipschitz EiERE - TREERBR T » KFIRIUERZWE T
=B (La')-Lipschitz 3EAERZ - FrA &E4E o

BPIBREEERHB X PRTEMBRNERBFS) (yo)n1 ° FR > Dy REHSRE
EHERE X PR - B n > 1 BPIER yor = Tya) W (1) BIFTER - HPIFEM
X EF - EHEEREWE > ROUTUERT X FRFET (yn)ns1 © 15 HREER
tt'eIBBn>1> &M

t
lyn(t) — ya(t)]| = H/t F(s, yn1(s)) ds|| < Mt —t']. (8.23)

BERRE (yn)n>1 2BEEEERBFAERIES © Arzela-Ascoli EIE*FEFFI AT AL E]
WELF 5 (Yp(n))n=1 * BIRECIEy € X HFPIBEBE T(y) =y ©
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BNE  REBIBF LRI

Forn > 2and s € I, we have

EEME L =INR, =[0,d] HREBEn> 18 tc [, > BEMESE

1T (yn)(8) = yn (S = [T (yn)(s) = T (yn-1)(s)]| Mn(t) := sup [[T(yn)(s) = yn(s)[l = sup [[ynt1(s) —yn(s)]l -

0<s<t <s<

| [ ) = P s ()
HMn>288Gscl, &ME

</LMHWN%
0
hich impies that IT()(s) = vn(s)] = IT () (s) = T 1))
t s
Viel., My(t)<L /0 M1 (u) du. (8.24) = | [ Py 0) = Py () au

We may compute M; as below,

</ LM, —1(u)du
0

Vte I, M(t)= sup |ly2(s)|| = sup

0<s<t 0<s<t

/FuOdu

X

t
Then, for My, we apply Eq. (8.24) and find Viely, My(t)< L/ M, —1(u) du. (8.24)
0

Vel <L / M (u —LM. HEE LUK THI S A M,

By induction, we find, for every n > 1, Vte I, M(t)= sup |lya(s)|| = sup

X
0<s<t 0<s<t

/FuOdu

t" !
anilMg(a) - 1M 0.

n! n! n—00 B HWI M, - FIERR (8.29) » ARIEH -
Therefore, this allows us to conclude that (7'(y,(»))

VeI, Myt <

~Y(n))n>1 uniformly converges to 0 on 1.

t t2
< = — .
Then, a similar argument allows us to get the uniform convergence to 0 on I_ := I NR_, so Vel My(t) <L /0 M (u) du 2 LM
this convergence is uniform on /. Since y,,(,,) uniformly converges to y and 7" is continuous, we
35 =

deduce that T'(y,,(,,)) uniformly converges to T'(y), giving us T'(y) = y. BREE > HISn > 1 RAIEH

" n—1 (aq n—1

Viely, My(t)<—=L"M<~——L""M ——0.
n! n! n—>00

B » B (T (o)) — o))t BIFE Lo HITIUENT 0 - 5  EAABLIEOS %
HPTATLSEIEEKEE 07 I = IR LRI - FIERIE I L8R -
By, () BHIDERE y o TIE T REEN - BOWES T(y, () BIIDREE T(y) - 3B
BB T(y) =

3 Hspgp PN . = £ o,
>Theorem 8.4.4 (2) tells us that the set {y, : n > 1} is a precompact subset. It can be shown that there exists a subsequence of B 844 ) SHRHEMRE {y. : n > 1) REBRENTRE © KAATUEBFS (4u). BEAREFFS > 28
(Yn)n>1 which is a Cauchy sequence, see Exercise 8.31. Then, this subsequence converges by the completeness of X'. 78831 o ARRE - BB X WEHM  EEFFIIMEWR -
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(3) If F is only continuous, by the Stone-Weierstrafy theorem (Theorem 8.4.6), we may find a se- (3) S0R r FZELER » 1BIF Stone-Weierstral I (FIE 8.4.6) -+ FFIBEIEIA Lipschitz
quence of Lipschitz continuous functions (F},),,>1 that converges uniformly to F' on R. For every EERBFERNET (F)e BER FHIRBEF- HREBL > 10 Sy, 5

n > 1, let y, be the corresponding solution to the differential equation with F' replaced by F,.

EMADHRER B F R F, RSEIHENRE - EHR—K > (o)) EBEE X EF

Then, (yn)n>1 is a sequence in X. Since (F,),>1 converges to F uniformly on R, we know that

(Fy)n>1 can be uniformly bounded by a constant M’ > 0. This implies that the sequence of BFS] e AR (F)u1 8E R LHIEEE F BARE (F,)1 TR —EEH
functions (y,,)n>1 is equicontinuous due to the same Eq. (8.23), with M replaced by M. There- M > 09 HFE - BBIEX 8.23) Y M B M HMMEEEBGRIRATIULE
fore, the Arzela-Ascoli theorem gives us a subsequence (Y, (,))n>1 that converges uniformly to R RBED ()o) BRZEBEN o EI - Arzela-Ascoli B HNF F 5

y € X, and we need to check that 7'(y) = y. To achieve this, we start by checking that the
(Yp(n))n=1 * EEFTRHE y € X - BREFBRE T'(y) =y > BARFTBERHFY

(S = Ftp(n) (Svyap(n) (5)))7121 %%rg%fém °

functions in the sequence (s — Fi,(,)(S, Yp(n)(S)))n>1 are equicontinuous.

Lete > 0. Forn > 1 and s,t € I, we write

EEe>0 8RB n>18Fs,tel HME
[ Fn (8, yn(s)) — Fu(t, yn(t))]|

< (s, yn(s)) = F (s, yn () + 1 (8, yn(s)) = Fs,y(s))l + [ F (s, 9(s)) = F (&, y(0)) ] 1 (8, yn(8)) = Fu(t, yn(t))]]

FIEEy(O) = F O+ I 5a0) = Fult gD < IFa(5,9m(5)) = F(s,pn() + 1 F (5, 9m(5)) — s u())| + | F (s, 9(s)) — F(t, u(8)]

Since s — F'(s,y(s)) is continuous on the segment I, it is uniformly continuous. Similarly, the +|F(t,y(t) — F(t,yn(t))|| + |1 F(t, yn(t)) — Fult, yn(t)]]
map (t,y) — F(t,y) is also uniformly continuous on R. We may take 1 > 0 such that

R s o F(s,y(s) EREE T FEBE - FUBEYEE B2 B (t,y) —

e F(t.y) 7 R RIS - BT 1 > 0 18
)= ol <n = 1Fy) - Fls,0)l <

t—sl<n = |F(s,y(s) - Ft,y®) <e,
Since y,(,) —— y uniformly and F|,(,,) —— F uniformly, there exists N > 1 such that
n—oo n—o0

H(t,y>—(8,.%')” <= HF(t,y)—F(S,I‘)H <e
L I e
BR yom) —— y BN > B F,(,) —— FRIIN FEN > 1 ER
Therefore, for n > N, and s,t € I such that |s — t| < 7, we find

> N, Syl <n, MUE .
H&wﬁwm@%ﬂmﬁ%mwwé% =N W“>yk<” H w(n) ﬂ

Fit - Wk n > N BE s, t € I ME |s — t| < n» HFIHSFE

This means that (s — F(,)(S,Yp(n)(5)))n>1 is equicontinuous, so has a convergent subse-

quence, and we denote the corresponding extraction by . Therefore, for ¢t € I, we have

[ (5001 (99) = oty (810 80| < 52

t
T (Ypou(n / (8, Ypoy(n) (8)) ds —— | F(s,y(s))ds = T(y)(t), s o .
0 SEREE (5 Fyo (5,00 () o1 REETBIRS - FIAREWATED - ROVEBAATE
which is uniform in ¢ € I by Proposition 8.2.5. We conclude that T'(y) = v. 0

Last modified: 20:41 on Tuesday 20" May, 2025 53 BABIE @ 20254F 5 A 20 H 20:41



Chapter 8 Sequences and series of functions

Example 8.4.16 : Let us take n = 1, and F'(¢,y) = +/|y| with initial condition (¢, yo) = (0,0). In

other words, the differential equation we are looking at is

y'(t) =/ly(t)| and y(0)=0. (8.25)

We have many different solutions to Eq. (8.25),
e y(t)=0fort € R;
e y(t) = % fort € R;

. foranya>(),y(t):%fort>aandy(t)20fort<a.

Indeed, the function z — /|| is not locally Lipschitz continuous at 0, so does not satisfy the assump-

tions of the Picard-Lindel6f theorem (Theorem 8.4.17).

The following Picard-Lindel6f theorem, also known as Cauchy-Lipschitz theorem, gives sufficient condi-

tions for the solution to an ordinary differential equation to be unique.

Theorem 8.4.17 (Picard-Lindelof theorem or Cauchy-Lipschitz theorem) : Let us fix the same nota-
tions as in the statement of Theorem 8.4.14. In addition, suppose that F' is L-Lipschitz continuous in the
second variable in R. Then, apart from the existence provided in Theorem 8.4.14, we also have uniqueness

of the solution, in the sense that if J is an interval containing to and ¢ : J — R" is a solution, then y

and @ conincide on I N J.
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FEEIRYZERURBRECE o Bt - Wt e 1 - F&AFIE

T(yapodz(n))(t) = /Ot Fapodz(n) (Sv Yporp(n) (8)) ds —— t F(S7 y(S)) ds = T(y) (t)v

n—o0 0

EEWEIRRE 8.25 » WXt e I PRI - RFWERE T(y) =y ° =

WPl 8.4.16 + B = 1 LR F(t,y) = /Iy FIAIEEIER (10,00) = (0,0)  #REDEERR - effd
BEEBOMA HI0T

(1) =\/ly()] MUK y(0)=0. (8.25)
I (8.25) BIRZRERIAE
cyt)=0HMteR;
cy(t) = MRt e R
CHREE 0> 00 y(t) = CL R > a0 R y() = 0Bt <ao

EEL KBz — /o] F 0 MBI 2B EB Lipschitz B » FIUAREME Picard-Lindelof

FIE (FIEs4.17) EHAERE -

T EIE(E Picard-Lindelof FIE » HFE{E Cauchy-Lipschitz IR » ¥8 7 R MEHFEEFEEMO HEXR

fREEME—RY

TEIE 8.4.17 [Picard-Lindelsf ¥ » Cauchy-Lipschitz EI2) : EHRFIEHAEETE 8414 K9
RO PMEERIECSE o W - RFR FER P HREZEEBZE L-Lipschitz EHER - BE > IR
TEE 8414 FIREMINEFEMERZH  BIEEH—HAER - SEE—MENERNT :
MR JIREEStNER > Be:J >R Z2ER  BEyMeEINJ LEZTEHEEFN -
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Proof : We keep the notations from the proof of Theorem 8.4.14. In particular, we want to show that B BRMERETEIE 8414 FBEHEPHEHRBEIAEESE - B EFZHAMNE » IBERTEZRAVIRST

the map 7' defined therein has a unique fixed point. More precisely, we want to show that there exists T SEH—NETL BRUKSE  RFAESBESEEY L c N B8 T &2 EBEER

59 > SRREFAERE 3.4 JRABHE o
Let f,g € X. We proceed in a similar way as in (2) in the proof of Theorem 8.4.14. For n > 1 and = B
t € It let us define B fge X  BRMERAETIE 414 (2) BHELUNSEREBEB - R > 1 UBtel, » &

Kn(t) := sup [[(T"f)(s) = (T"g)(s)]| - HMIEE

0<s<t

an integer m € N such that 7™ is a contraction, then we may conclude by Exercise 3.24.

Forn > 2and s € I, we have Kn(t) = sup [(T"f)(s) = (T"g)(s)] -

0<s<t

I17(1)(s) = T (@) = | [Pl TP w) = Pl T (g) )

B n>288scl, » &ME

< isL TN (w) — T Hg)(w)|| du .
</°S It el 7 (7)(6) = T )6)] = | [P T () )~ P T ) w) du
é/ LK, 1(u)du 0

< [ Lt -1 ) w) | du

which implies that

¢ S
Ve, znxw:<zg/ K1 (u) du. gté LEp—1(u) du
0
We may compute K as below, EERMED
t
Viel,, Kt —ﬁet/ Fuf Fu, g(w)) dul| < Lt ||f — gl Ve L, KﬁﬂgLAlngym
By induction, we find, for every n > 1, M LGGHE K 0 -
t" @)" v
vt el, Kn(t)<ﬁL ||f—9||oo<7L ||f_g”oom07 Vtely, Ki(t)= sup /Fuf F(u,g(uw))du|| < Lt| f — 9l
! ! 0<s<t
which tells us that 7™ is a contraction map for large enough n. g EBBBRINE  REEIHREE > 1 RS
A, 1] 7 ’
Viel, Ki(t)< o1 <@ 0
1, Knlt) < SMf =gl < LS~ gl o O
EHRFFIHRIARET n 2KER - T & S(ERHEIRET O
8.5 Theorems on convergence of integrals SRE BYRSNER
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In Proposition 8.2.5, we saw that the uniform convergence of a sequence of functions implies the uniform
convergence of their primitives. As a consequence, the sequence of integrals also converges. In practice,
however, we are more interested in the convergence of integrals. We have already seen in Example 8.2.8
that a sequence of integrals may converge without the sequence of integrands converges uniformly. Below
we are going to prove the monotone convergence theorem (Theorem 8.5.3) and the dominated convergence

theorem (Theorem 8.5.5), which are consequences of Eq. (8.26).

8.5.1 Monotone convergence theorem

We start with the following key lemma.

Lemma 8.5.1: Let I C R be an interval. Let (uy,)n,>1 be a sequence of piecewise continuous functions

from I to a Banach space (W, ||-||). Suppose that
(i) foreachn > 1, u, is integrable on I;
(ii) the series of functions ) u,, converges pointwise to a piecewise continuous function f : I — W;
(iii) the series Y, [7 ||un|| converges.

Then, f is integrable on I and

S <X il and [ 1= [ un (5:26)

n>1 n>1

Proof : We are going to prove this in three steps: (1)  is a segment and all the functions are continuous;
(2) I is a segment and all the functions are piecewise continuous; (3) / is an interval and all the functions

are piecewise continuous.

(1) If I = [a, b] is a segment, and all the u,,’s and f are continuous functions, the proof is similar to

the Dini’s theorem (Theorem 8.1.14).

Let £ > 0 and define

Vn>1, E,={z¢€lab]:]|f(z H—ZHuk ) <e} (8.27)
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(i) BRIEREL > u, R R EEERE f T - W s
(ili) FREL S, [ |lun EUREK o

AEE - f7E 1 £AIRR - MAKME

Jus <3 [, % 7=

> / Up. (8.26)

n>1

GHA  MAIE D =ESRRFREMES IR 1 (1) I SERER - MEMAREEZEBRIET ; (2)
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Chapter 8 Sequences and series of functions

The continuity implies that F,, is open for every n > 1. The pointwise convergence of > u,, to
[ implies that |J,,~; E, = [a,b]. Since [a,b] is a compact set, by the Borel-Lebesgue property,
we may find N > 1 such that JY_, E,, = [a, b]. Therefore, we have

HfH< (ZIIUk\|+€ Z IIUkH+6 —a) Z Hun||+€ —a).
[a,b] ab

n>1

The above inequality holds for any arbitrary € > 0, so we deduce that

I Y IR

n=1

(2) Next, we suppose that I = [a, b] is a segment, and all the u,,’s and f are piecewise continuous.

Let € > 0. From Lemma 8.5.2, we may find continuous functions g and (v, )»>1 such that

g <|fIl such that /||f” <5+/g,

Vn > 1, ||un| < v, suchthat /vn < —I—/HunH

Define the following subsets as in Eq. (8.27), but for the continuous functions g and (v, )p>1,

Vn > 1, = {x € [a,b] : Z x) < e}

Similarly, we know that there exists N > 1 such that UY_, G,, = [a, b]. Therefore, we find

/IHfH éa—&—/géa—l—/(ivk—i—a):(b—a—&—l)e—f—%/uk

< —a-l—la-i-z 2k+/|]uk|| b—a+25+Z/HukH
< —a+28+2/||un||

n>1

Then we conclude as in the previous point.

Last modified: 20:41 on Tuesday 20" May, 2025

57

BN\E REHBYREK
De>0MEE
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K EBUESHEMAENEE, > 10 E, SHEBE S u, EFEBKHKE 7 7
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B

=

S [ Tl +0 =)
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N N
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AR EEEEASFHAHNRER c > 0 EE2HHN - KT

oM< [l

n>1

(2) BK » HFURER I = [0, 0] BIERER - SARFIEN w, M f BRFEEBN - Be >0 1%
513 8.5.2 » FMIBEIXBIFIERE g F (vn)n>1 MIE

Kwn@%ﬁmmwﬂg
P g
Wn > 1, [un| < vn S /vn < —i—/HunH .
I 2n I

PETER (8.27) F » BAVEHEERE g 1 (v,)n>) EETEELEFES
Vn 21, n—{iUGGb zn: <5}

EE » PIBEFE N > 1 F15 Gy = [a,b] ° ALt » FMHE

N
/||f|| s+/ e+/ ka~l—s _ —a+1)z—:—|—2/vk
—a—l—ls—l—z 2k+/HmH b—a+25+Z/HukH
—a+25+2/||un||
n>1
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Chapter 8 Sequences and series of functions

(3) For any subsegment J C I, from above, we have

SIS [l < 3 [ uall < .

n>1 n>1

Therefore, f is integrable on I and satisfies

J11 < S [ uall < .

n>1

which is the first part of Eq. (8.26).

For the second part of Eq. (8.26), let us apply the first part to the remainder > ;~,, .1 ux = f —
> k=1 Uk, and we find
J

since the right side in the above relation is the remainder of the convergent series >~ [; ||un||.
Then, it follows that

g

which gives us the relation

f=> g
k=1

<Y [lul =0

k>n+1

/I(f—iuk)

k=1

<J
1

f=> g
k=1

—0,
n—oo

fr=mm$ o3 o

n>1

Lemma 8.5.2:Let J = [a,b] be a segment of R and f € PC(J,R). For every e > 0, there exists
continuous functions f_ and fy on J such that

fo<f<f+ and (/Jf+)—s</Jf<(/Jf—)+€-

Proof : If f is continuous, then there is nothing to prove. Suppose that f has discontinuities. Let P =
(k)o<k<n be a partition of [a, b] such that f restricted on (x;_1,x)) can be extended to a continuous

function on [xj_1,xg] for every 1 < k < n. From Proposition 7.1.3, we know that f is bounded on
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k=1
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Chapter 8 Sequences and series of functions

[a, b], so we may take

M >sup f(x) and m < inf f(z).
zeJ zeJ

Let § > O with § < § ||P||, so that we may define disjoint intervals .J; := B(z;,6) N J for 0 < i < n.

We define a continuous function ¢_ on J as below,

m—l—(M—m)% ifx e Jj,
o (z) =
M otherwise.
Then, the function f_ := min(f, ¢_) satisfies f_ < f on J is continuous. In fact, we can see that
« if z # x; for all i, then f is continuous at z, and f_ = (f + ¢_ — |f — ¢_|) is also continuous

at x;

« if x = z; for some 4, then ¢_(z) = m < inf,c; f(x), so we may find ¢ > 0 such that ¢_ stays
strictly below f on B(z, ¢). This means that f_ = ¢_ on B(z, €), so we get the continuity of f_

at x.

Then, let us compute the following integral,

[J(f—f-)—g;[]i(f—f_)<§/Ji<M—m)<26n(M—m),

where the equality is obtained from the fact that when « ¢ J; for all i, ¢_(z) = M > f(x), so

_(z) = f(x). To conclude, for € > 0, we may choose 0 < min{ sr——--, 7 , which will give us
f f lude, f 0 hoose § o7y 1 P11}, which will

/J(f—f—)<6 & /Jfg(/Jf_)+a

For the construction of f;, we proceed in a similar way. We consider the following continuous
function ¢4 on J,

M—(M—m)@ ifx e J;,
Pi(x) =
m otherwise.

Then, we define f := max(f, ). O
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Chapter 8 Sequences and series of functions

Theorem 8.5.3 (Monotone convergence theorem): Let I C R be an interval. Let ( f,)n>1 be a sequence

of non-negative, piecewise continuous, and integrable functions from I to R. Suppose that
(i) foreveryx € I andn > 1, we have fr,(x) < fni1(2);
(ii) (fn)n>1 converges pointwise to a piecewise continuous function f;
(iii) [; fn converges whenn — occ.

Then,
1=l aad [ [

Remark 8.5.4 : We note that this theorem is very similar to Dini’s theorem (Theorem 8.1.14), with the

followins differences.
(1) We make a weaker assumption in Theorem 8.5.3, which is piecewise continuity.

(2) We do not get the uniform convergence of the sequence of functions (fy,),> to deduce the conver-
gence of the integrals. Actually, we do not have the uniform convergence here in general, whereas the

convergence of integrals still holds.

Proof : It is a special case of Eq. (8.26). For every n > 1, let u,, = fn+1 — fi = 0. We may check the

following properties.
(i) Foreveryn > 1, u, is integrable because both f,; and f,, are integrable.

(i) Y up = > (fn+1— fn) converges pointwise to a piecewise continuous function because ( f;,)n>1

converges pointwise to a piecewise continuous function.

/\un\ Z/ frni1— fu) = /fN+1 /f1,

n=1 n=1

(iii) We have

where the right side can be uniformly bounded from above due to the convergence of [; f,,. This

shows that >~ [ |uy| converges.
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Chapter 8 Sequences and series of functions

Therefore, we may apply Eq. (8.26) to conclude that f is integrable on I and EItt - FHPrTIAER T (8.26) 2R4E4E f £ 1 L2AIFEM » LUK
n—J|= Ug| < / U |-
g =i= 1wl < 3 [l g == 1wl < X [t
The right side in the above inequality is the remainder of a convergent series, so goes to 0 when n goes FTERERXHER 0 @2EMBUREBIEIE » FILUE n 8RR co B » ULRKE) 0 o 0
to oo. U
8.5.2 Dominated convergence theorem = \E AR
Theorem 8.5.5 (Dominated convergence theorem) : Let I C R be an interval and W be a Banach TEIE 855 [EHIWHERE] : $TCRAER  BHW 2 Banach Z5f - © (fr)n>1 A/l IR
space. Let (f)n>1 be a sequence of piecewise continuous functions from I to W. Suppose that BT W R EREEREET o B
1 B

(i) There exists a piecewise continuous non-negative integrable function ¢ : I — R such that|| f,|| <

() TAESREH BOEEATRE o 1 - R, EEERFTE n > 1 BV | /. <
@ foreveryn > 1

(i) BB (fr)n>1 EFRWEREI R BGEBRE [T > W o

(ii) The seugnece ( f,)n>1 converges pointwise to a piecewise continuous function f : I — W.

Then, each f,, and f are integrable on I and we have BREE - FREM f, 1 f £ I LERERIFERY - BEFMBE
hm ||fn fll —— 0, and lim fn = f . B . . _

Proof : Suppose that the theorem holds when (W, ||-||) = (R, |-]|), (fn)n>1 are non-negative functions,
and f = 0 is the zero function. For all n > 1, let h,, = || f,, — f||, which is still a piecewise continuous

function on I. Then, h,, < 2¢ and (hy,),>1 converges pointwise to the zero function. So we find

[0 o] < [1ss1= [ [o=0

‘1), (fn)n>1 are non-negative

Now, let us prove the theorem with the assumption that (W, ||-||) = (R,

functions, and f is the zero function. For every n > 1 and p > n, let

fn7p = max{fn,fn+1, .- ‘7fp}7

which is still a piecewise continuous function and satisfies f,, , < ¢.

« Fixn > 1. Since (fy p)p>n is an increasing sequence, the sequence (I, ;)p>n defined by I,, , =
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Chapter 8 Sequences and series of functions

J7 fnp is increasing. Since I, < [; ¢ for all p > n, the sequence (I, p)p>n converges, so it

satisfies Cauchy’s property. We may find p,, > 1 such that
Inp = Ingl <277, Vp,q = pn.

It is possible to make a choice of (p,)n>1 such that it is an extraction (strictly increasing se-

quence).

« Forn > 1, let g, = fnp,. We note that g, converges pointwise to 0 (Cauchy’s criterion at each

point of ). For any n > 1, we have

0 ifgn—i—l —gn <0,
[9n+1 = gnl + (gnt1 — gn) =
2(gn+1 — gn) otherwise.

Additionally, for any n > 1, we also have gn11 — gn = fot1p,i1 — frpn < fapopr — fap, and

0 < fapnsr — frpn- Therefore, we find
o Forn > 1, let up = gn — gn+1. Then, we have

Vn 21, /I‘un’ < 2’In7pn+1 - In,pn| + /Ign - /Ign—&-l < 2t—n + /Ign - /Ign-l-l-

By taking a summation, we find,

p p
Vp=n2>1, Z/I\UkKZ21*k+/]gn—/lgp+1<2+/jgn-
k=n k=n

In the above formula, we see that the upper bound does not depend on p. Since the left side

contains only positive terms in the series, we deduce that the series y;-,, [; |ux| converges.

From what we have shown above, and the fact that g,, converges pointwise to 0, we have > ;- up = gn.

This allows us to apply Eq. (8.26),

Y > 1, 0</Ifn</19n:/1(1§1“’“>:,§/1u’“'

The rightmost term in the above formula is the remainder of an absolutely convergent series, so its limit

when n tends to oo is zero. This shows that [; f, — 0. (]
n—oo

Last modified: 20:41 on Tuesday 20" May, 2025

62

BENE RBEVBGREH

BABIB © 20254F 5 H 20 H 20:41



BNE  REBIBF LRI

Chapter 8 Sequences and series of functions

s8R 1 RERTE (W I1]) = (R, [-]) > (fa)nz1 B

HRFBn> 1 Bhy=|fn— fl| » EERGZEEE I LAIRERERBRE - BE A, < 20 ME

(hn)n>1 GERWHETRE - FIAFFISE

[t [ < [ =11 = [h s [0=0.

RTE - BRATBWEATE W, [|]) = R, |- )~ (fa)n=1 EEIEERE - A f

eIFERE - B f =0 RESRHEBIBERTEMIL °

EERHBNREZ
T - REAEE - WHREBEn > 1 UKk p>n - IS

fn,p = max{fnafn+1v .- 'afp}>

SERREN EEHEY TR fu, <o °

- BlEn>1° @R (frp)pzn =EEEFS > F5 (Inp)p=n E &M Inp = J1 fnp =k
By - HRBRETE p > n o BB L, < [; 00 FH (Lnp)psn BWER » FRUMR BT

B o FFIREE) p, > 1 15

Tnp — Ingl <277, Vp,q = pp.

BPIRTLGEE (p),> BRMMEEZENRE (BREEEFT) -
cHR > 1 By = fap, ° BIERR g, EFRWEE 0 (7 1 ENSERS - fIFEZER]
HEMIL) - BWRER> 1 EME
0 ;E gn+1 — 9n g 07

Int1 — Gn| + (Gnt1 — gn) =
2(gns1 — gn) HMER.

Jﬂ:% ’ %ﬁm'fi%’i n>=1: ﬁ'ﬂaﬁﬂqﬁ In+1 — Gn = fn+1,pn+1 - fn,pn < fn,pn+1 - fn,pn Uk

0< Fapnrs — fupn ° B » VS

Vn>1, |[gnt1—gnl < Q(fn,pn+1 - fn,pn) — (gnt1 — gn)-
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Chapter 8 Sequences and series of functions

Example 8.5.6 : For every n € N, consider the function

fo: (1,400) —» R i In:/oofn(t)dt.
1

We can check the following properties.
« For every n € N, the function f,, is piecewise continuous.

« For every t > 1, we have

14t" 1
— ., whenn — oo.

fa(t) = 14tz T 2

So the sequence f,, converges pointwise to the function ¢ — t%’ which is piecewise continuous

on (1, 400).
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k>n k>n
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Chapter 8 Sequences and series of functions

+ (Domination assumption) For every n € N and ¢ > 1, we have

L+t a2
Ol =12 S e = 2
T2 S iz T g

The function ¢ — t% is integrable on (1, +00), so the domination assumption is satisfied. There-

fore, we may apply the dominated convergence theorem from Theorem 8.5.5, giving us

oo dt
JA—
n—oo  Jq $2

Example 8.5.7 : For every n € N, consider the function

fo: [0,1) — R

t o ninl

and T, — / e
0

For every n € N, the function f,, is continuous and integrable on [0, 1). For every ¢ € [0, 1), we have
fn(t) — 0, which implies that the sequence (f,),>1 converges pointwise on [0, 1) to the zero

function. However, we have

vneN, I,= [nt"](l) =n.

This shows that the order of the limit and the integration procedure cannot be interchanged,

lim/ fult dt;é/ lim f,(t)dt = 0.

n—oo n—oo

The reason is that the domination assumption is not satisfied.

To be more precise, if ¢ is a function that dominates all the f,,’s, then for ¢ € [0, 1), we need to have

[0,
o(t) = fo(t) for all n > 1. In particular, for ¢ € [0, 1), we may choose n = L‘%J then, fort — 1—,

we have the following relation,

Inf,(t)=2lnn+(n—1)Int

2 D
> 21n(|1nt| —1) T (|1nty —1) Int

=—Int—2In|Int| + O(1).
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1 nt2 = gnd2 g2

‘fn(t)’ -

Rt~ 2 7E (1,400) LREIRA » FRXZEGIRREWE - At > HFIETUERE

t2

I 8.5.5 RRYEHREERE - 155

oo dt
—
n—oo Jq 12

&iffl 8.5.7 : HNEBE n c N EERE

nt 10,1 R
Sz 101) = Uk I :/lfn(t)dt
0

t = ninl

HREE n R f, BTE(0,1) BEEBERR - HiEME ¢ € [0,1) 0 HMB fu(t) —2
0 ERBEFEY (fu)n>1 BTE[0,1) EXBHBITRE - AT - HME

YneN, I,= [nt”]é:n.
B2 T RS HIERF R E AR -
hrn / fn(t)dt # / hm fa(t)dt =

FRREZ R IEFIRFR R E ML -

ERYIRR R o REGLLFRE [, BERESBRANWRHE - BEHRtc 0,1) BMEE
o) = fo(t) BIETE n > 1 o $5RIRER » Wikt € [0,1) » HPIATUE n = Lﬁj  E - B
t— 1- B » BPEE TEEERRR

Infp(t) =2lnn+ (n—1)Int

2 2
> 2ln(|1nt| —1) T (|1nt| —1) Int

=—Int—2In|Int| + O(1).
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Chapter 8 Sequences and series of functions

This means that when t — 1—, we have

cst
t) 2 ———75,
falt) t|Int|?

which implies that ¢ is not integrable around 1—.

BNE  REBIESIERE

ERAREZEE - 1- K &ME
cst

n(t) 2 53
falt) t] In ¢|?

N

BB o £ 1- WEARERE -

8.5.3 Applications: integrals with an additional parameter

We give a few important applications of the dominated convergence theorem. Let us consider a general

interval I C R, with endpoints a and b satisfying —0co < a < b < 400, and a Banach space (W, ||-]|).

B=/E FER - FEASENRS

THE—EZFINBEENEZER - BHRMZR—MRNIER 1 C R - MBwRSECIE o o TER

B —00 < a<b< +oo » MUK Banach ZEfE (W, |-||) °

Theorem 8.5.8 (Continuity under integration) : Let (M, d) be a metric space and a map f : M x I —

W satisfying the following conditions.
(i) For everyx € M, the map f(z,-) : t — f(z,t) is piecewise continuous on I.
(ii) Foreveryt € I, the map f(-,t) : x — f(z,t) is continuous on M.

(iii) (Domination assumption) There exists a non-negative, piecewise continuous, and integrable function

@ : I — Ry such that || f(z,t)|| < @(t) forallz € M andt € I.

Then, the map
F: M — w

x /bf(x,t)dt

is well-defined and continuous on M.

Proof : The assumption (iii), the domination assumption, shows that the function f(z,-) is integrable
for every x € M, so the map F' is well defined. For a given x € M, to check that F' is continuous at x,

we need to check that for any sequence (zy,),>1 with values in M,

n—o0

n—oo
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EE 858 [EH THGEEM] @ § (M, d) BMEZEM - B f: M x I - W BRE TS
HYBRET o

() RSB c M > BRE f(z,) : t v flo,t) BT LEHEGESE -
(i) BRE@E t c T BRES f(,t) 2 — fo,t) TE M EEE -

(i) [EHIBRR] FEFEE - FREEATRRH o : I - R, FEHRFABEzc MEE
tel  BFE ||f(z, b)) <o) e
ARFEE » Bf&T

F: M — w
b
x /f(a;,t)dt

BEERIFHY  BE M LEE -

sHEA  RER (i) R RIERIRER - SHFRAFENEE 2 e M > RE f(z,) BHUEN AU F 2
EERIFH - HIOEN » ¢ M RFHR » IREBERE F 7 « EiR - HAIFTEREHNEENER
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Let x € M and (x,,)n>1 be a sequence in M such that x,, n—> x. For every n > 1, we may define M HEF5 (Tn)n>1* #®MB

the function

Jo: 1T — Vv Tn » T = F(xn) >F()

PN f(xn,t). n—r00 n—00
Due to the assumption (ii), we know that f,(t) = f(zp,t) — f(x,t) for every t € I, where Sre MUK (v,)n>1 2 M PHFEIRRE ©, —o e HREEn > 1 HPTUEERRE
t — f(x,t) is a piecewise continuous function by the assumption (i). This means that the assumption
(ii) in Theorem 8.5.5 is satisfied. Then, the assumption (iii) here corresponds to the assumption (i) in fn: I — %
Theorem 8.5.5, so we can apply Theorem 8.5.5 to the sequence of functions (f;,),>1. This shows that t s [ t)
Jim F(e) = lim [ fntdt = [ g0 dt= F), B ) BREAEHREE € 1 BIE u0) = [t —o [(o1)  EPREERR
, (i)t flo,t) BERBREBERE c ERARTIE 8.5.5 PRRER () BRE - BR  EENERHR
which allows us to conclude. (]
(iil) HEBNETIE 8.5.5 BIRER (1) » PIARPIRT B REFS (f)n>1 RIEATIE 8,55 © 558
fIFE
JLH(%OFxn_T}lm/fx”’ t)dt = /f:ct (x),
(K]t FeFIREREHE - 0
Theorem 8.5.9 (Differentiability under integration) : Let M C R be an interval and amap f : M <1 — EIE 859 [BATHAMOMN] : SMCRAER B f: MxI— W &AmeE FIHEERN
W satisfying the following conditions. BRE o

(i) Foreveryx € M, the map f(x,-) : t — f(z,t) is piecewise continuous and integrable on I. N
() RSBz c MBS f(z,): t — fz,t) E ] EEREEBERARE -
(ii) For everyt € I, the map f(-,t) : x — f(x,t) is of class C* on M.
(i) HREM@tc T BRES f(,t) 2 fla,t) TEM L2 CHEE -

(iii) The partial derivative % is well defined and satisfies the assumptions from Theorem 8.5.8.

(iii) 1R 8f &R - BmEEHE 8.5.8 HHIERER -

Then, the map
F: M —
ABMEE - BREY
T = / z,t)d
F: M —

is of class C' on M, and we have x = / f(z,t)d

/ of
Vee M, Fl(x)= [ S=(z,1)dt. (8.28) £ M EERZCE - MAZKFIE
/ bof
Vee M, F'(x)= 8—(:1;,t) dt. (8.28)
a Ox

W
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Chapter 8 Sequences and series of functions

Proof : The proof is similar to that of Theorem 8.5.8. Let z € M and (x,),>1 be a sequence with

values in M\{z} that converges to x. For every n > 1, define

gn: I — W,
f(xn>t) — f(.%',t)

3 )
Tp — X

which is a piecewise continuous function. For each n > 1, gy, is also integrable on I, being a linear
combination of integrable functions.

The sequence (g, )n>1 of functions converges pointwise to 8f (z,-). Moreover, the mean-value the-
orem (Eq. (4.3)) tells us that for every n > 1 and t € I, there exists y,, = y,(¢) between x and x,, such
that

() = LD ZLED By and a0l = | S0 < ot

Tp — X - Oz

where ¢ is the domination function given by the assumption (iii) for % from Theorem 8.5.8. Then, we

may apply Theorem 8.5.5 to conclude that

: _ [9f
lim [ gn(t) dt—/[a—x(as,t) dt,

n—o0 I

and the left side of the above formula rewrite,

lim [ g,(t)dt = lim Flan) = Fz)

n—oo Jr n—oo Ty — &

This shows that F' is differentiable at x and its derivative does satisfy Eq. (8.28). To conclude, we note
that the assumption (iii) guarantees that the right side of Eq. (8.28) is continuous, so F is of class C!. (]

Example 8.5.10 (Gamma function) : We recall the Gamma function defined in Example 7.1.21,
400
Ve >0, I'(x)= / t* et dt.
0

By applying Theorem 8.5.8 and Theorem 8.5.9, we can check that I is a function of class C*°, and its
derivative writes

V€ No,¥o >0, T0)(@) = [ (log et at.
0
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BNE  REBIESIERE

5908 | EEERAEEIE 8.5.8 HFERAMEM c 2 € M UK (2,,)n>1 BEUETE M\ {z} FHIFE -
BEWHE z - HNEEN> 1 &

gn: I — W,

o f(xn,t)—f(x,t),
Ty — X

EEEERBREERE - HREEn > 1 g, £ ] LEEERTREN - ARMEIEREAVRIE

Eo
op

o

o

REFT (90)n>1 BERBBRE 5L (2,-) o LA > PEEEE (X 43) SHHRM > HREE
>1&8Btel FEyp=y(t) TRz H 2, M RWE

n

ity = e D2I0D Oy g a0l = | L om0 < o0,

Ty — T - Oz

Hep o BH Y HEEIE 8.5.8 BHRMIRE (i) FHEER © EF—K » RFIAUERTEE 8.5.5 5
%IL-\%:I:

- _ [9f
Jim [ gyt = [ S0

AR ENELAIUEHREN

lim .gn(t) dt = lim M

n—oo Jr n—00 Ty — T

EEBET FE2OWM BADEHRER 8.28) c TREMNERT » HFETEIRE (i) RF
I (8.28) NAESH BEER - FRL F 2 C 8/ - O

&l 8.5.10 [Gamma RE] : FHFIEIEEEEF] 7.1.21 PEZ T RE :
Ve >0, I'(x)= /+OO t*le~tdt.
0
BBTEIE 858 MIEE 859 » RFIATLRE I 28 ¢ EHNRE » mBMINMoEM :

vn € No,Va >0, I(z) = / (logt)"e~tt"~1 dt.
0
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Chapter 8 Sequences and series of functions

More precisely, let us consider the function
fiREXRY = R, (2,8) >t te ™t

We can check the following properties.

« For any fixed ¢ > 0, the function x — f(x,t) is C*°, and we have

Vk € Ng, Vz,t>0 ﬁ(:p t) = (Int)kt=Le
) ) ) al'k )

k
« For any fixed x > 0 and k € Ny, the function ¢ — a—ﬁ(x, t) is piecewise continuous.
oz

« (Domination assumption) Let & € Ny and [a, b] C (0, +00) be a segment. For all z € [a, b], we

have

ok f

vt € (0,1], ak(w,t)‘ = |Int/* " te=t < |Int|Ft? e,
X

o f kp—1 —t kpb—1 —t

vt € (1,+00), W(m,t) = |Int|"t* e " < |Int|"t" e "
X

Let ¢ be defined on R, by
o(t) = [Int/Ft* te™ 4 |Int|Ftb~te ™,
which is an integrable function on R” . And we clearly have

Vx € [a,b], Vt>0,
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BNE  REBIBF LRI

EREYIRER - HIERRE
fiRL xR = R, (7,t) = 7 e

HPERETENMSEE -
- BRESEERN >0 Kz — f(z,t) B C B > MAZKFIB

ok f

W(x, t) = (Int)kt=le
x

Vk €Ny, Va,t>0,

- WIMEBEEN v > 0588 ke No » BBt — 0f (2, 6) B EGEER -

- [HEHIRER] Bk e No MUK [a,b] C (0, 400) BHRER - BHIRFTBER 2 € [a,0] » FKFIB

8kf kjr—1_—t kia—1 _—t

vt € (0,1], W(a:,t) = |[Int|"" e < |Int]"t* e,
T

akf kyx—1_—t kyb—1 _—t

vVt € (1,4+00), W(Lt) = |Int|"t* e " < |Int|"t" e "
x

Do EHRER, LT
o(t) = [Int/Ft* te™ 4 |Int|Ftb~te ™,

SEE R, LRETHELY - TERMPEREE :

k
M(m)\ < ol(t).

Vo € [a,b], Vt>0, Dk
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