Sequences and series of functions
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Let A be a set, and (M, d) be a metric space. We denote by F (A, M) the space of functions from A to
M, and by B(A, M) the space of bounded functions from A to M. Instead of a metric space, we may also
consider a vector spaces W over K = R or C, so that we have the + operation. This vector space is equipped
with a norm that we denote by ||-||.

In this chapter, we are interested in sequences and series of functions, which can also be seen as sequences

and series with terms in F(A, M) or F(A,W).

8.1 Notions of convergence

We discuss different notions of convergence for sequences of functions, then for series of functions.

8.1.1 Sequences of functions

For a sequence of functions, we have different notions of convergence. Below we are going to discuss the
pointwise convergence (Definition 8.1.1), and a stronger notion of convergence, called uniform convergence
(Definition 8.1.4).

Definition 8.1.1:Let (f,,),>1 be a sequence of functions from A to M, that is, they are elements of

F(A, M).

o Let f € F(A, M). We say that the sequence (f,,),>1 converges pointwise (EEFWER) to f if
for every x € A, we have f,(x) — f(z)in (M,d).

« We say that the sequence (f,),>1 converges pointwise if there exists f € F (A, M) such that
(fn)n>1 converges pointwise to f.

« Let B C Abe asubset. We say that (f,,)n>1 converges pointwise on B if ((f5)|5)n>1 converges

pointwise.

Example 8.1.2: Let us consider the sequence of functions ( f;,),>1 defined by

Yn>=1, fo: [0,1] — R
T — ™.

The sequence of functions (f;)n>1 converges pointwise to the indicator function f = 13 on [0, 1].
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Chapter 8 Sequences and series of functions

Remark 8.1.3:
(1) If a sequence (fy,)n>1 converges pointwise, then its limit function f is unique.

(2) Let (fn)n>1 be a pointwise convergent sequence of functions. Suppose that these functions take values
in a finite dimensional vector space (W, ||-||), then the limit does not depend on the norm, because all
the norms are equivalent in W.

(3) Properties such as linearity, product, inequality, monotonicity, etc., are preserved for the pointwise
convergence of functions.

(4) We see that in Example 8.1.2, the continuity at 1 is not preserved in the limit. Indeed, for all n € N, the
function f,, is continuous, but the limit function f is not continuous at 1. In other words, the following
two iterated limits are different,

lim lim f,(x) = iﬂg% flz)y=0#1= Jim 1= lim lim fn(z).

z—1n—00 n—oo x—1

We have already encountered a similar example in Example 6.7.2.

(5) Analytic properties such as continuity and differentiability are not preserved for the pointwise con-
vergence. We will define the notion of uniform convergence below (Definition 8.1.4), and will see that
analytic properties can be preserved if this convergence occurs (Proposition 8.2.1).

Definition 8.1.4 : Let (f,,),>1 be a sequence of functions from A to M.
. Let f € F(A, M). We say that the sequence (f,,)>1 converges uniformly 3R to f if

Ve>0,3IN =1, Vn> N, Ve e A, d(fu(x), f(z)) <e. (8.1)

« We say that the sequence (fy,)n>1 converges uniformly if there exists f € F(A, M) such that
(fn)n>1 converges uniformly to f.

« Let B C Abe asubset. We say that (f,,),>1 converges uniformly on B if ((f»)|5)n>1 converges
uniformly.

Remark 8.1.5 : We may rewrite the definition of pointwise convergence using quantifiers. We say that
(fn)n>1 converges pointwise to f if

Vee A, Ve>0, AN > 1, Vn > N, d(fu(x), f(z)) <e. (8.2)

If we compare Eq. (8.1) and Eq. (8.2), we see that the choice of N depends on x € A in the case of pointwise
convergence, but does not depend on x € A in the case of uniform convergence. This is the reason why the
convergence characterized by the condition Eq. (8.1) is called uniform convergence. This remark easily leads
to the following corollary.
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Chapter 8 Sequences and series of functions

Corollary 8.1.6 : If the sequence of functions (f,,)n>1 converges uniformly to f, then it converges point- ]
wise to f.

Remark 8.1.7 : Due to the uniqueness of the pointwise limit (Remark 8.1.3), we deduce the uniqueness
of the uniform limit of a sequence of functions. To show that a sequence of functions (f;,),>1 converges
uniformly, we may start by computing its pointwise limit f, then show that ( f,,),>1 converges uniformly to

f.

Proposition 8.1.8 (Cauchy’s criterion for uniform convergence) : Suppose that (M, d) is a complete
metric space. Let (f,)n>1 be a sequence of functions in F(A, M). Then, (fn)n>1 converges uniformly if
and only if it satisfies the uniform Cauchy condition, that is

Ve > 0,IN > 1,Vm,n > N,Vx € A, d(fn(x), fm(x)) <e.

Proof : Given € > 0. Let N > 1 such that the uniform Cauchy condition holds, that is
Vm,n > N,Vz € A, d(fn(x), fm(z)) <e. (8.3)

For each © € A, we see that (f,(z))n>1 is a Cauchy sequence, so it converges to some limit that we
denote by f(x). By taking the limit m — oo in Eq. (8.3), we find

Vn > N,Vx € A, d(fu(z), f(x)) <e¢,

which is the characterization of (f;,),>1 uniformly converging to f from Eq. (8.1). O

Definition 8.1.9 : The notion of uniform convergence can be described using a distance (or a norm).

« Let (M, d) be a metric space and B(A, M) be the set of bounded functions from A to M. We
may equip B(A, M) with the following distance

VigeB(A M), ds(f g9)=dsalf.g) = sup d(f(x),g(z)), (8.4)

called the distance of uniform convergence. A sequence of bounded functions ( f,,)n>1 converges
uniformly to f is equivalent to the convergence of (f,,),>1 to f with respect to the distance do..

« Let (W, ]|]|) be a normed vector space and B(A, W) be the set of bounded functions from A to
W. We may equip B(A, W) with the following norm

Ve BAW), fle=I1fle.a= sup 1f (@)1l (8.5)

called the norm of uniform convergence. A sequence of bounded functions (fy,),>1 converges
uniformly to f is equivalent to the convergence of (fy)n>1 to f with respect to the norm ||-|| .
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Chapter 8 Sequences and series of functions

Proposition 8.1.10: Let (W, ||-||) be a Banach space. Then, the following properties hold.

(1) The space of bounded functions B(A, W) equipped with the norm ||-|| ., defined in Eq. (8.5), is a
Banach space.

(2) A sequence (fn)n>1 of B(A, W) converges uniformly to f € B(A, W) if and only if (fn)n>1
converges to f under the norm ||-|| . given in Eq. (8.5), that is || f,, — f||.,, —— 0

Proof :

(1) It is not hard to check that [|-|| defines a norm on the vector space B(A, W). To check that
it is complete, let us be given a sequence (fy,)n>1 in B(A, W), which is Cauchy with respect to
the norm ||-|| . For every x € A, we know that (f,,(z)),>1 is a Cauchy sequence in the Banach
space (W, ||-||), so it converges to some limit f(z) := lim,, o0 fn (). Since (f,)n>1 is Cauchy in
(B(A, W), |||l ), there exists M > 0 such that || ||, < M for all n > 1. Therefore, for every

f(@)]| = limp—oo || fu(2)]] < M, s0||f|l < M, thatis f € B(A,W). In the

end, it is not hard to check that || f,, — f| — 0,50 we conclude that (B(A, W), ||-||,.) is

complete.

(2) It is exactly a rewriting of Eq. (8.1) in the normed vector space (W, ||-||) with help of the new

norm defined in Eq. (8.5). 0

Example 8.1.11: Consider the sequence of functions ( f;,),>1 defined by
VneN, Vrel0l], fu(z)=2"(1-2x).

It is not hard to see that (f,)n>1 converges pointwise to the zero function. For every n € N, the
function f,, is of class C*, so we may take its derivative to find its extrema on [0, 1]. We have

1
"),

Ve €[0,1], fh(z)=na™"" (1 -

Therefore, the function f,, is increasing on [0, -7~ | and decreasing on | 1] with maximum at z,, =

eesl
Tﬂ’ that is

_n_
n+17

1 NG 1
vz € [0,1], f”(m)gf”(xn):n—}—l(n—i-l) <n+1 n—00

Therefore, the sequence (f,,)n>1 converges uniformly to the zero function on [0, 1].

Remark 8.1.12 :If a sequence of functions (f,),>1 converges pointwise to f, in order to show that this
convergence is not uniform, we may look at the negation of Eq. (8.1), which writes

>0, VN=>21,In>NIxr e A d(fn(z), f(x)) > e

In other words, we need to find a sequence (x,,),>1 with values in A and an extraction ¢ : N — N such that
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Chapter 8 Sequences and series of functions

the sequence (d(fy(n)(Zn), f(¥n)))n>1 is bounded away from 0.

Example 8.1.13 : Let us consider the following sequence of functions,

YneN, Ve>0, filz)= xx—:_\:?.

It is easy to see that the sequence of functions (f,,),>1 converges pointwise to the zero function. To
show that it does not converge uniformly, we follow Remark 8.1.12. Let x,, = n for n > 1. Then, we

have
1
Vn €N, fn(xn)—0:n+\/ﬁ—>f7é0.

n—+mn mn—oo 2

We conclude that the convergence f), — f is pointwise but not uniform.
n—oo

The following theorem tells us which additional assumptions we may add to upgrade a pointwise conver-

gence to a uniform convergence.

Theorem 8.1.14 (Dini’s theorem) : Let (K, d) be a compact space, and (f,)n>1 be a sequence of con-
tinuous functions from K to R. Suppose that

(i) the sequence is increasing, that is for every x € K andn € N, we have f,,(x) < fnt1(2);
(ii) the sequence (fy)n>1 converges pointwise to a continuous function f : K — R.

Then, the sequence (fy,)n>1 converges uniformly to f.

Proof : For every n € N, let us define the continuous function g, = f — f,, > 0. By the assumption (i),
the sequence of functions (g, )n>1 is decreasing. Given ¢ > 0, we define E,, = {z € K : g,(x) < ¢}
for n € N. For every n € N, since g, is continuous, the set E,, is open; since the sequence (g, )n>1 is
decreasing, the sequence (E,,),>1 is increasing. Due to the assumption (ii), we find that U~ E, = K.
Since K is compact, by the Borel-Lebesgue property (Definition 3.1.3), there exists N > 1 such that
Enx = UY_, E, = K. This means that for any n > N and = € K, we have |f,,(z) — f(z)] <e. O

Remark 8.1.15 : There is another version of Dini’s theorem, stated as below. Let I = [a, b] be a segment
and (fy,)n>1 be a sequence of (not necessarily continuous) functions from I to R. Suppose that

(i) for each n > 1, the function f, is increasing on I;
(ii) the sequence (f,)n>1 converges pointwise to a continuous function f : I — R.

Then, the sequence ( f,,)n>1 converges uniformly to f. See Exercise 8.7 for a proof.
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Chapter 8 Sequences and series of functions

8.1.2 Series of functions

In this section, let (uy,),>1 be a sequence of functions from A to W, where (W, ||-||) is a Banach space.

Definition 8.1.16:

« We say that the series of functions ) u,, converges pointwise if for every x € A, the series
> un(x) converges. We write

Yops1Un: A — w
T Y os Un(T).

« The function defined by S,,(z) = > ;_; ug(z) for x € A is called the n-th partial sum of the
series of functions > u,,.

« If the series of functions Y u,, converges pointwise, then the n-th remainderis given by R,,(z) =
> heng1 uk(z) forz € A

« We say that the series of functions ) u,, converges uniformly if the partial sums (S),),>0 con-
verges uniformly.

BNE RHEBIETERH

SBIED HBRE

TESEMEEE » 4 (un)oo1 BE A BREIE W BIRBEF)  HeR (W, |-|) 248 Banach 2209 -

EH&H8.1.16 :
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S B IR U ().
cHR e A BAIERRE S, (v) = 0, up(w) » TBIEREIREL Y u,, BISE n EFGF ©
- MRRBERE Y u, FFFUEL > BBESE n MHBREERM R, (2) = 302, w(z) HR

r€Av°

« SNREHF (Sn)nz0 FITWER - BIFKFIRREIRE X w, BT -

Proposition 8.1.17 : The series of functions > u,, converges uniformly if and only if
(i) the series )  u, converges pointwise, and

(ii) the sequence of remainders (Ry,),>0 converges uniformly to the zero function.

Proof : Let Y u,, be a series of functions, (S,,)n>0 be its partial sums, and (R,,),>0 be its remainders.

« Suppose that Y u,, converges uniformly to u, which means that (S, ), >0 converges uniformly to
u, and it follows from Corollary 8.1.6 that this convergence takes place pointwise. The uniform
convergence means that ||S,, — /| — 0, since u — Sp = R, we see that it is equivalent to

n—oo

[Bnlloe = O-

« Suppose that (i) and (ii) holds, and denote by u the pointwise limit of > u,. Since R,, = u —
Sy, from its uniform convergence to zero, we find ||.S,, — u/| —= 0 which is the uniform
n—oo

convergence of (S, )n>0 to u.

O

Example 8.1.18 : Let us consider the series of functions ) %x” where each term is a function
defined on [0, 1]. We are going to show that this series of functions converges uniformly. For every
x € [0, 1], the sequence (%)791 is non-increasing with limit zero. It follows from Theorem 6.4.2 that
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Chapter 8 Sequences and series of functions

the series ) #m" converges, and the remainder R,,(x) satisfies

xn-ﬁ-l 1
vz e[0,1], |R < <——)

which does not depend on = € [0, 1]. This implies that the convergence of the series of functions is
uniform.

Remark 8.1.19 : We note that saying that a sequence of functions ( f;,),>1 converges uniformly is equivalent

to saying that the series of functions Y (f,+1 — fn) converges uniformly.

Proposition 8.1.20 (Cauchy’s condition) : A series of functions > u,, converges uniformly if and only
if for every € > 0, there exists N > 1 such that

Vn>2 N, Vk 21, ||[upt1+ -+ Ungkllo <e

This is the Cauchy’s condition in the case of a series of functions.

Proof : This is very similar to Corollary 6.1.11. From Proposition 8.1.10 (1), we know that

(B(A,W),||-l,) is a Banach space, in which a sequence converges if and only if it is Cauchy. O

BNE RHEBIETERH

BAGEURR = € [0,1] - BRAKEBERBRBNVBHRZTIN -

i 8.1.19 1 HFVERBIREUFS (fo)n1 FIWBRERREIRE > (fni1 — fo) IBEEFER -

fRE 8.1.20 [HIFE1KH)

DORRERE Y v, EHIRBEERERNREE: > 0 FEN > 1
&5

vn}N, Vk>1, ”un+1+"'+un+kuoo<€'

A& BB TE R BUR BB T BRI PE AT o

Definition 8.1.21:Let u, € B(A, W) for every n > 1. We say that the series of functions ) uy,
converges normally (IEFAMIRY) on A if the series 3 ||uy || o0, A CONVErges.

FEHA 1 EEMRIE 6111 IEEAER o WEMRE 8.1.10 (1) 0 FMIFE (B(A, W), || |.) =18 Banach

ZEfE - MEEEZERET - FIRSE B EEEMERS O

FH 5121 HREEN > 1 B, € BAW) © NRBBS [u, |, K - BIRMPRES
RE S u, T A EIEBIIEL (normal convergence) ©

Proposition 8.1.22: Suppose that (W, ||||) is a Banach space. Let Y uy, be a series of bounded functions
from A to W that converges normally on A. Then, the following properties hold.

(1) Foreverya € A, the series Y u,(a) converges absolutely.

(2) The series of functions ) | u,, converges uniformly.

Proof :

(1) Let a € A. For every n > 1, we have ||up(a)| < ||un|y. Since - ||uy||, is convergent, we
deduce that >~ uy,(a) converges absolutely.

(2) Foreveryn,k > 1and x € A, we have

[un (@) + -+ up (@)l < lun(@)] + -+ [Junin @) < unllg + -+ lJtnirllo -

Therefore, the Cauchy’s condition for the series ) ||y, || ., implies the Cauchy’s condition for the
series Y Uy, (), uniformly for all z € A. This means that the series of functions Y u,, converges
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(1) Bac A HREBEn > 1 BFIE [un(a)] < [Junlly © B Y [Junl, SUE - FHFIHERS
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@ HREEnL>1 UKz A BME
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Chapter 8 Sequences and series of functions

uniformly.

Remark 8.1.23 : Let us assume that (W, ||-||) is a Banach space, and u,, € B(A, W) for all n > 1. A series
of functions ) u,, can also be seen as a series with terms in the Banach space (B(A, W), ||-||,), meaning
that the normal convergence of the series of functions ) u,, is the same as the absolute convergence of the
series Y u,, with terms u,, € B(A, W). This allows us to find an alternative proof to (2), by noting that from
Theorem 6.1.16, we deduce that the series ) u,, converges in B(A, W), that is the series of functions > u,
converges uniformly.

Example 8.1.24 : Let us define a sequence of functions ( f,,),>1 on [0, 1] as below,
1 x
fi=1 and Vn>1,Vxe|0,1], fori1(z)=1+ 5/ fn(t) dt.
0

For any n > 1 and z € [0, 1], we have

1 x
@)~ fosa )] = 5| [ (a0 = fute))
1 x
<5 [ Mt = Falld
0
< 5 Wns =l
X 9 n+1 n oo
implying || fo+2 — fat1lloo < & | fat1 — fulloo. Therefore, by induction, we find

1
vzl lfar1 = falleo < Gezp 12 = fillo -

It follows that the series Y (fn+1 — fn) converges normally, so uniformly, and the sequence (fy,)n>1
converges also uniformly.

(=1

Example 8.1.25 : Let us consider the series of functions | Tnx" defined on [0, 1]. We have seen
that this series of functions converges uniformly on [0, 1] (Example 8.1.18).

- However, it does not converge normally on [0, 1], because ||uy, ||, = £ for n > 1, and the series

> % diverges.

« It does converge normally on [0, a] for any a € [0, 1), because H(un)HO’a}

. n
and the series » _ ©- converges.
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51f# 8.1.23 : EFMIRER (W, ||-||) BfE Banach Z=[E » MEHMRFAE n > 1 HMB u, € B(A, W) e
R BB >, BT AEE (EEVETE Banach ZZfE (B(A, W), |-]l.) RS - LR EER @ RBIRE
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BB 8124 1 MEPEREHTE 0,1 LOZBIFD (f,)0or 1T :
fi=1 UKk vYn>1,Vzel0,1], fon(z)=1+ % /Ox fn(t)dt.
HREEr> 1 UKk c(0,1] > EME
@) = fusa ()] = 5| [ (G 0) = fule))
<5 [ Wi = ot
< 5 Inst = fallo
SBR[ fo— foniloe < st — full o Bl + BBRBHE - BHEE

1
V21, |[[far1 — falle < on—1 [ fo = fill o -

EUESRRRE S (fo 1 — fo) BERKH - A ESDRE - AR (/). B8
S -

#8125 | BRMEBESE (0,1 LHNRBERH > V0 - RAEEBEERBRHE
£ [0,1] EH9KER (&6 s1.18) -

. SR » IRETE [0, 1) EIERURRR - AR n > 1 BAE |ju.l,, = L TEHK S L
TR o

C BRMER o € [0,1) » HOBTE (0, o] EIERMRE > BBHR 0 > 10 BFE () o
< AR Y. © B -

o0
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Chapter 8 Sequences and series of functions

8.2 Properties of the uniform limit

In this section, we are going to discuss some analytic properties of the limit of a convergent sequence of
functions. We are going to consider metric spaces (X, dx ) and (M, d;y), and a sequence of functions ( fy, )n>1

in B(X, M).

8.2.1 Continuity

Proposition 8.2.1: Suppose that (f,,)n>1 is a sequence of functions from X to M and converges uni-
formly to f. If f,, is continuous at a for everymn > 1, then f is continuous at a.

Proof : Let ¢ > 0. Due to the uniform convergence of (fy,),>1 to f, we may find NV > 1 such that
Vn > NVre X, dy(fu(z),f(x)) <Le.
Since f is continuous at a, we may find § > 0 such that
Vye X, dx(z,y)<d = du(fn(z), fn(y)) <e.

Therefore, for any y € X such that dx (z,y) < ¢, we have

dy(f (), f(y)) < dp(f(2), fn(@)) + dar(fn(2), I () + du(Fn (), fy)) < 3e.

This shows that f is continuous at a. ([

Corollary 8.2.2: Let (fy,)n>1 be a sequence of continuous functions from X to M. If (fn)n>1 converges
uniformly to f on X, then f is continuous on X.

Proof : It is a direct consequence of Proposition 8.2.1. ]

Corollary 8.2.3: Let Y u,, be a series of continuous functions from [a, b] to a Banach space (W, ||-||). If
the series Y uy, converges uniformly on [a, b], then the limit function ) uy, is continuous on |a, b].

Proof : It is a direct consequence of Corollary 8.2.2 by taking (X,dx) = ([a,b],| - |) and (M, dy) =
(WD) O
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S 99mRNEE

EEEEHS  RASHRRNRBFHERN T - RAGERMERM (X, dy) 7
(M, dyr) + ARAE B(X, M) SPEIEBFT (f)o1 °

S—E EEN

o 8.2.1 1 {REX (fn)n>1 =fEH X BRG] M NREFY  MEEHIREE f - NRERFA
Bn>1- f, o888 BE f1EaEE-

G B> 00 B (fo)n>1 EE9IKEE - FFIEEIREI N > 1 17
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dy (f(2), f(y)) < du(f(@), (@) + da (fn (@), I (y) + du (fn (), fy) < 3e.

BEAT fEaER - O

SSWRE) £ BBE £ TE X LI -

B SERMEE s IEIEER o 0

0

RIE823 1 D Y u, B8 o, ] BETE Banach 2R (W ||-|) BOEERBFR MRS - MR
B w, BIE [a, b] EIRE - BRI R 3", BTE [a, b LA -
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R - O
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Chapter 8 Sequences and series of functions

Example 8.2.4 : Let us consider the series of functions ) _, - u, defined on R as below,

« For each z > 0, the series ), - u,(z) converges, and we denote the limit by u(x).
+ The convergence of the series Zn>0 Uy, to u is not uniform. In fact, for every N > 1, we have

N

— +00.
Nl I—00 +

3 uula) = 3 o)

n>0

« For any M > 0, the convergence of the series )~ uy to u on [0, M] is uniform. To see this,
we write, for any x € [0, M],

N-1
Zun(x) - Z up ()| =
n=0

n=0

> un(a)| <

n>N

n>N
which gives us a uniform upper bound of the remainder which does not depend on .

« In consequence, the limit function u is continuous on [0, M] for every M > 0, so it is also
continuous on R .

This examples illustrates that to get the continuity of the limit function, we do not necessarily need
the uniform convergence on the whole domain of definition. Since the continuity is a local regularity,
it is sufficient to show the uniform convergence on, for example, all the segments.

8.2.2 Integation

Let I C R be an interval such that [ # . Consider a sequence ( f,,)n>1 of functions from I to a Banach

space (W, |[-]))-

Proposition 8.2.5: Let (f,,)n>1 be a sequence of continuous functions that converges uniformly to f on
every segment of I. Let a € I, and define the following primitives,

o(z) = /az f&)dt and @n(x / fn(t) Vn > 1.

Then, the sequence (@ )n>1 converges uniformly to ¢ on every segment of I.

Remark 8.2.6 : The conclusion of Proposition 8.2.5 menas that we may interchange the order of the limit

and integration,

lim / " () dt = / " lim f(t) dt

n—oo a
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n!’
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STCRABEBFE ]+ o EEMA [ BRETE Banach 22/ (W, ||-||) BIREFES) (fo)ns1 ©

B 8.25 1 W (fu)no1 AEERBBNRIFS) > MESESE I WREREHIREE f -
a € WESHETHEBIRRE

/ f@)ydt Uk on(z / fn(t) Vn > 1.
BBEE > 5 (0n)n>1 BTESE I BURER ESWEE o o

51 8.2.6 : i 8.2.5 GRS AR MI AT AR BRI B/ NIER - BALER
lim /xfn(t) dt:/xnlggofn(t)dt

n—oo a
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Chapter 8 Sequences and series of functions

Proof : Let [c,d] C I be a segment of I containing a. Since ( f,),>1 converges uniformly on [c, d] to
f, it follows from Corollary 8.2.2 that f is also continuous on [c, d]. Therefore, the primitives ¢ and
©n, with n > 1 are well defined on [c, d]. For every n > 1 and x € [¢, d], we have

lon(z) — o) = [f(ﬁxw-—f@»d4
<z —al fn— Flasjoa < 14— el 1 fn = fl fog —— 0.

The convergence to 0 in the above bound does not depend on = € [c, d], so we have established the
uniform convergence of (;,)n>1 to ¢ on [c, d]. O

Example 8.2.7 : Let (f,)n>1 be a sequence of real-valued continuous functions on [0, 1] that con-
verges uniformly to f. This means that (f,,),>1 is bounded in B([0, 1], R), so we may find M > 0
such that || f, ||, < M for all n > 1. Then, we have

vo e [0,1], |fu(2)? = f(2)?] < 2M|fa(z) — f(2)]-

This means that (f2),,>1 converges uniformly to f2, so we have

/Olfﬁm/;f?

Example 8.2.8 : Let us consider the sequence of functions ( f,,)n>1 on [0, 1], defined by
Ve € [0,1], fu(z)==2

This sequence of functions converges pointwise to the indicator function f = 1; (Example 8.1.2)
which is not continuous, so this convergence is not uniform (Proposition 8.2.1). However, the sequence

of integrals converges,
/ fn o n+1 n—)oo / ]11

This shows that the notion of uniform convergence is much stronger than the convergence of integrals.
Actually, later in Section 8.5, we will see in a more general context, how to obtain the convergence of
integrals without having the uniform convergence.

Corollary 8.2.9: Let > u,, be a series of continuous functions from [a, b] to a Banach space (W, ||-||). If
the series Y uy,, converges normally on [a,b], then, for x € [a, ], we have

[ (g5 ([ o) - s 5 ([ o).

n>1 n=1 k=1

where the limit on the right side is uniform on [a, b].
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Chapter 8 Sequences and series of functions

Remark 8.2.10 : Corollary 8.2.9 gives us conditions under which we are allowed to interchange the order
of integration and series. In such a circumstance, sometimes we also say that “we may integrate the series
term by term”.

We also have a more general statement for the behavior of a uniformly convergent sequence of functions
in the context of Riemann-Stieltjes integration. The following theorem states that (1) the Riemann-Stieltjes
integrability is preserved by the uniform convergence, and (2) the sequence of primitives also converges
uniformly.

Theorem 8.2.11: Let o € BY([a,b]). Let (fn)n>1 be a sequence of bounded functions from [a, b] to

R such that f,, € R(a;a,b) foralln > 1. Suppose that (f,)n>1 converges uniformly to a function
f :[a,b] — R, and define

:/xf(t) da(t) and gn(x / fn)da(t), VYn=>1.

Then, the following properties hold.
(1) f € R(a;a,b).

(2) The sequence (gy)n>1 converges uniformly to g on [a, b].

Proof : By the decomposition theorem of functions with bounded variation, see Theorem 5.1.17 and
Corollary 5.3.16, it is enough to show the statement for a strictly increasing function . We have seen
a similar argument in the proof of Theorem 5.3.21.

(1) Let us prove that f satisfies Riemann’s condition with resepct to « on [a, b] (Definition 5.3.8).
Let € > 0. The uniform convergence of (fy,)n>1 to f allows us to find N > 1 such that

3

a(b) — ala)’

This means that for any partition P € P([a, b]), we have

1f(x) = fa(@)] < Vz € [a,b],¥n > N.

\Up(f — fn.a)|<e and |[Lp(f— fn,0)[ <e¢ (8.6)
Since fy € R(a;a,b), we may find a partition P. € P([a, b]) such that
VP 2 P., Up(fn,a)— Lp(fn,a)<e. (8.7)

Therefore, for any P O P., we have

Up(f,a) = Lp(f, o) <Up(f = fn,a) = Lp(f — fv,a) + Up(fn,a) — Lp(fn, @)
\Up(f — fn, )|+ |Lp(f — fn, )| + [Up(fn,a) — Lp(fn, )]

<
< 3e
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AR T FUIME BRI -

/ fn(t) da(t Vn > 1.

(1) f € R(esa,b)

) B3 (gn)n>1 BTE [a, 0] EFFUREEE g ©

B EREREERENOMRTEIE BREFIE 1.1 MRE 53.16 » RFIREEHBRIEILH
BRE o FEERENA] o 72 5.3.21 BYEEEAA » B2 EABUNAE -

(1) BERMRER FE 0,0 LEREHR o WREBKEHF (EFX538) Be>0°HRN
(fn)n=1 EFIURER] £ - FFIRTLURE N > 1 &7

3

1f(z) — fa(2)]| < ab) —a(a)’
ERREHNEEDSE P c P([a,b]) » HMBE

Vz € [a,b],Yn > N.

|UP(f_fN704)| <e€ UK ‘LP(f_fNaa” e (8.6)

B fv € R(a;a,b) » HPIEEIRRIDE P. € P([a,b]) 15

VPO P., Up(fn,a)—Lp(fn,a)<e. (8.7)
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Chapter 8 Sequences and series of functions

from Eq. (8.6) and Eq. (8.7). This shows that f € R(«a;a,b).

(2) Forn > N and x € [a, b], we have
|gn(x)—g(x)| < / [fu(O)=f ()| de(t) < [[fn = fll [(@)—(a)] < [[fn = fll [(D)—c(a)],

where the upper bound does not depend on z, and converges to 0 when n — oo. .

Corollary 8.2.12: Let o« € BV([a,b]). Let Y uy,, be a series of bounded functions from [a, b] to R such
that u, € R(a;a,b) foralln > 1. Suppose that the series Y, u,, converges uniformly on [a,b]. Then,

the following properties hold.
(1) 3 un € R(a;a,b).

(2) Forz € [a,b], we have

n s

[ ()= 5 [ i) - 55

n>1 n>1 Sl

ukG)dda(ﬂ),

where the convergence on the right side is uniform in x € [a, b].

8.2.3 Derivatives

Let / C R be an interval such that I # @. Consider a sequence ( fy,)n>1 of functions from I to a Banach
space (W, [|-[}).

Theorem 8.2.13 : Let us make the following assumptions.
(i) For everyn > 1, the function f,, : I — W is of class C*.
(ii) The sequence (fy)n>1 converges pointwise to f € F (I, W).
(iii) The sequence (f,)n>1 converges uniformly to g € F(I, W) on every segment of I.
Then, the following properties hold.
(1) The function f is of class C! and f' = g.

(2) The sequence (fy,)n>1 converges uniformly on every segment of I.
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Chapter 8 Sequences and series of functions

Proof : Let a € I. From (ii), we know that f,(a) — f(a).

(1) First, we note that since (f},)n>1 converges uniformly to g on every segment of 7, it follows from
Corollary 8.2.2 that g is continuous on /. By Proposition 8.2.5, for z € I, we have

/aa,- = lim / fn(®) hm (fu(@) = fula)) = f(z) — f(a).

n—0o0

This shows that .
veel, f(z)=fla)+ / g(t)dt

Since g is continuous, we deduce that f is of class C! and f’ = g.

(2) To show the uniform convergence of (fy,)n>1 to f, let us proceed as follows. For every n > 1
and x € I, the fundamental theorem of calculus gives us

x
|
The first term on the right side converges uniformly to 0 by Proposition 8.2.5, and the second

term converges to 0 due to the assumption (ii). Therefore, the above rate of convergence does
not depend on x € I, so (fy,)n>1 converges uniformly to f.

Vule) — f@ < || [ (L) - 1) dtH @) - F(@)].

O

Remark 8.2.14 : From the above proof, we see that the assumption (ii) can be softened to

(ii’) there exists a € I such that f,(a) — f(a).

Corollary 8.2.15:Let p > 1 be an integer, and (f,)n>1 be a sequence of CP functions from I to W.
Suppose that

(i) forevery0 < k < p — 1, the sequence ( j}gk))n% converges pointwise;
(ii) the sequence (fﬁp))n% converges uniformly on every segment of I.
Then, the pointwise limit f := lim, o fr is of class CP, and for 0 < k < p, we have

veel, f®z) = lim f¥ ().

n— o0

BNE RHEBIETERH

B S ae o (i) BPIFE fu(a) —— fla)°

(1) B HPEERER ()1 BESE [ NIRER EHIBRE ¢ 0 HRIE 822 HMEH
gTE 1 LRERN - IRigmE 825 - Wz e 1 FMF

/am t)dt = hm/ fr(t hm (fn(z) = fala)) = f(z) — f(a).

n—0o0

'DIE‘:

BRY

(i

vrel, f@)=f(a) +/Ig(t) dt
HR g BEEN S f2C' BN -MB f=g-°

(2) BREMEFZR (f)n>1 BEHIWHE f> HEOT cHREBEn > 1 UKz e I MESD
HAFEIEEEM
|

RiganE 8.2.5 » AFEMNE—HFHIIWHE 0 REBREK (i) EZEGHRHEO -
It FERECRELARBCRR z € 1 > B (fo)ns1 SETWEE £ - 0O

[fn(2) = f(2)] <

£i(8) — £(1) dtH @) — F(@)].

sEfE 8.2.14 ¢ W LEBIFERAIRFIRTINE LR - REX (i) JIAFELR
(ii) FHE a € [ ER fula) —— fla) °

RIE8215 1 Dp> 1 BEH - B (f,). B8 TREHE W 8 cr REFHERNES - BR
Q) HREEo<k<p—1 B (fV)o BT
(i) 5 (f7)ns1 BTESIE 1 HUIRER E3ISURRE -

BRI » FEEUBEVEIR £ 1= lim,, oo £, BB CP HIRE > MAHR 0 <k <p> RME

veel, f®) = lim f¥ ().

n—o0

Proof : This can be shown by induction using Theorem 8.2.13. g

Corollary 8.2.16 : Let (uy,),>1 be a sequence of C* functions from I to W. Suppose that
(i) the series Y u,, converges pointwise;

(ii) the series > u), converges uniformly on every segment of .
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Chapter 8 Sequences and series of functions

Then, the function ), - uy, is of class C! and

<7;un)/ = Z u,. (8.3)

n=1

Example 8.2.17 : We claim that the Riemann zeta function s + ((s) is of class C!, and

Vs>1, ((s)=—=3 12”
n=1

(8.9)

For every n > 1, let u,, : s = n~*, which is a C! function with derivative given by

Inn

/
Vs>1, wu,(s)=— —
The series of functions _ u,, converges pointwise to ¢. Fixb > a > 1, let us show that )" u/, converges
normally on [a, b], so also uniformly. Let us choose ¢ € (1,a). We have

Jten].. = S = o)

na n¢

Since >~ n~¢ converges (Proposition 6.2.6), we deduce that ) u,, converges normally on [a, b]. There-
fore, Eq. (8.8) gives us Eq. (8.9).

Corollary 8.2.18 : Let p > 1 be an integer, and (un)n>1 be a sequence of CP functions from I to W.
Suppose that

(i) forevery0 < k < p — 1, the series ), u%k) converges pointwise;
(ii) the series Y u%’) converges uniformly on every segment of I.

Then, the function ), -1 uy, is of class CP and for 0 < k < p, we have

< 3 un) " =Y ud. (8.10)

n>1 n>1

Example 8.2.19 : We follow the same notations as in Example 8.2.17, we find, for every n,p > 1,
that
(Inn)P

ns

Vs> 1, uP(s)=(=1)

n

Let us fix b > a > 1. We show in the same way that > un converges normally on [a, b] for all p > 0,
so also converges uniformly and pointwise. We apply Corollary 8.2.18 to conclude that s — ((s) is
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gB@E’ @@%&E:n>lunlaxE(jl*§Eg ’ﬁﬁﬁi

(Z un)/ = z/: ul,. (8.3)

g0 8.2.17 ¢ HMEEFZ/PRE (¥ s — ((s) BC R MH

=1
Vs > 1, C/(S):—Z zn
n=1

HRBER>1 Bu,:s—n 0 52MEC EHNRE - MAMBHSEMH

1
Vs>1, ul(s)=— nn

(8.9)

ns
RBRE S, BEBRRE o B b > a > 1 BROEE Y o, BIE [0, b] L ERKEK » B
MBI - BIFSE ¢ € (1,0) - BIFTE
. 1 1
|esimal . = e =0(e):
B S e SRR (B8 626) » BFHES S w, BTE (0,5 LIEFUREK - EI - 2 (s.5) B
33 (3.9) °

RIL82.18 1 B p> 1 BEY > ME (un)n> BE T BHEHE W B » REFT) - BR
() BREEo<k<p—1 BB > WP TR
anﬁﬂzﬁ?&%@IWﬁEt@ﬂ%Wﬁo

ABE - KBS, v, B CPEN > MEABRO<k<p EME

< 3 un) " = u. (8.10)

n>1 n=1

$B6) 8.2.19 : VLSRG 8.2.17 PRIEESE » HNEE n,p > 1 HMAFER
nn)’

Vs> 1, uP(s)= (—1)p

ns

BHMEE b > o > 1 ROEHEERSERBELNRFAE p > 0> D ul) B [o,0] LERK
2 I G B F RS - FHMIERARIE 8.2.18 2REEHE s — ((s) = CP ARV » BIRFR
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Chapter 8 Sequences and series of functions

of class CP for all p > 0, so it is of class C*°. Moreover, Eq. (8.10) gives us

(Inn)P

nS

Vs>1LVp>1, (P(s)=> (-1

n=1

Example 8.2.20: Let (W, ||-||;;,) be a Banach space. We have seen in Theorem 3.2.18 that L.(W) :=
L.(W, W) equipped with the operator norm |||-|| is a Banach space, and is also a normed algebra
(Definition 6.6.1), that is the operator norm satisfies the submultiplicative property. Givenu € L.(W),
we may define the following function

Ev: R —  L(W)

We may denote u,(t) = Lru™ foralln > Oand t € R.

« It is straightforward to check that £,(t) is well defined for all ¢ € R, because

vteR, Y <Y

n=0 n! n=0

" "

= t
el = exp (el lfull])-

+ A similar argument as in Example 8.2.4 shows that for any M > 0, the series of functions
> n>0 Un converges uniformly on [~ M, M] to &,.

« We have ug(t) = 1 forall t € R. For every n € N, we have

tnfl
VEeER, u,(t)= ———u" =u-u,_1(t).

" (n—1)!
This shows that the series of functions Y, 5 ul, = >2,,51 U, = >_,,50 U+ Uy cONverges pointwise
to u - £,(t). This convergence is also uniform on every [—M, M| for M > 0.

« Let us fix M > 0 and apply the uniform convergence of 3, - un and y°,, - uy, on [=M, M] to
conclude that &, is of class C! on [~ M, M] and &, (t) = u - E,(t) fort € (—M, M). This allows
us to conclude that &, is of class C! on R and &/, (t) = u - £,(t) for all t € R.

« From the relation £, = u - £,, we deduce that if &, is of class C* for some k > 1, then so is £/,
meaning that £, needs to be of class C**1. As a consequence, &, is of class C*.

8.3 Power series
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BNE  REBIBF LRI

Syt

n>1

Ev: R — L

- BFIFTIEREREHRFABE t e R (1) BE

n=0 n! n=0

. ERRERTEEA] 8.2.4 FBUBIETS » R LUFHEEA
[-M, M) B39 88E &, -

VteR, ul(t)=

n

-
M>0> ﬂElISZ"SZT‘[ M) EEEHTR] -

s e, ER ERCT N -MAE,(t) =u-

RRE &, = CH R - FTUARMIFBEHRTS

&5 8.2.20 : & (W, ||l;y) % Banach ZEf o FEEE 3.2.18 > HMBEBE L. (W) = LW, W)
BYHEFEHE ||| 22218 Banach R - MELEERMEBRE (E&Koo.1)  LHEREF
EERMEHTM - F8E u e L.(W) » RFITUEERTIIRE

WA n > 0 M t € R » FAFITTLAEE w,(t) = Lun o
ERIFN > EA

tn
veer, 3 My <y 12

cBRFAEte R BB w(t) =1 - BREMEn e N> EME
tn—l
(n—1)!

ERRTRBEIRE Y ou, = X s Ul = Y pso U Uy FBRAWEE u - £,(2) - HREME
>0

(B3 £, 75 [~ M, M] £ CV AR TR £(1) = u - £u(t) B 1 € (—M, M) - EPTER

- B &, = u- &, » BRIHEBMBHRE@ L > 15, BCHEN - BES, LER &

1"
llll™ = exp ([¢[lflll)-

HRER M >0 RBIRE Y, u, B

u" =u-up—1(t).

£ [ M, M| LR KERY - FPIRTX

E) BRFiBteRo

E, B CHEM

E=H BB
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Chapter 8 Sequences and series of functions

In this section, we are going to study a particular form of series of functions, called power series. We
restrict ourselves to real-valued and complexed-valued power series, but you need to keep in mind that all
the notions are still valid if we replace (R, |- |) or (C,| - |) by a normed algebra.

8.3.1 Definitions and radius of convergence

We define a few topological notions in (C, | - |). An open ball centered at ¢ with radius r > 0 is also called
an open disk centered at ¢ with the same radius 7, denoted D(c,r) := B(c,r). We also define the notion of
closed disks in the same way.

Definition 8.3.1: Let (a,),>0 be a sequence of complex numbers and ¢ € C.

« A series of functions of the form Y, . an(z — ¢)" is called a power series (B EX) centered at
¢, where z € C is the variable of the functions.

« If the sequence (ay, ), is real-valued and ¢ € R, we may use = € R as the variable of the power
series, and write ), an (7 — ¢)". Then, this power series takes values in R.

We are going to develop some theories for power series centered at ¢ = 0. For a general power series
centered at ¢ € C, all the corresponding notions and properties can be obtained by a shift z +— z + ¢. The
properties and theorems are stated in terms of complex-valued power series, but you should also know that
the exact same proofs apply to the real-valued power series.

Proposition 8.3.2 (Abel’slemma) : Let > a, 2" be a power series and zy € C be such that the sequence
(anz{)n>0 is bounded. Then, the following properties hold.

(1) Forevery z € C with |z| < |29

, the series Y anz™ is absolutely convergent.

(2) For everyr € (0, |z0]), the series of functions > a,z" is normally convergent in the closed disk

D(0,7) := B(0,7).

Proof : Let M > 0 be such that |a,||z0|" < M for every n > 0. For z € C such that |z| < |z
have

, We
n
)

n < n n <
Vn >0, |anz y:]%\ lan|| 20| gM’Z—O

where the right-hand side is a convergent series (geometric series with ratio strictly smaller than 1). [J

Definition 8.3.3:Let Y a,2" be a power series. The following quantity
R=R()_anz") :=sup{r > 0: (|an|r")n>0 is bounded} € [0, +oc]

is called the radius of convergence (WEIF1X) of 3 a, 2™
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RBEMILAY

B—hEl ERRBEHFE

BMERTE (C, | |) PH—LRERR - HPHEPOH c F &S r > 0 WEAKBIER LS c F &S
r BUBHIEIRR » 521E D(c,r) := B(c,r) - M EHERAXREERFEE -

EFE83.1 I D (an)nzo BEEBFIIMUK ceCo

« BHEBAL Y, o0 an(z — )" FENRIRBREFBLIEFOIE ¢ BIBREX (power series) » HH
z € C BREBVEE -

. HNRFFF (an)ns0 BEEFS - B c R » RIS « € R RARBESEY - 1t
B3 Y, tn( — o)  SEEHE - BRBEIETER & o

=

BEEZERMIEFHRPOME ¢ = 0 WERBFBARIIER - H—ARPIOTE c € CIERE - FREHES
BELZMIEETHAILGEB T 2 — 2 4+ ¢ RIFE] - TENEENEEEHERERBCRKL - EIRE
MERR - HRERAHRERERBLE N

ol 8.3.2 [Abel 5132] @ © Y a,2" BERE - ME 20 € CEIBFF (anzi)nz0 BT © FE
TIMEBRMIL -

(1) HREME 2 € CRRE |2| < |20] * BB a,,2" EHEEUE o
2) WREE r € (0, |20]) * REIREL Y a,,2" TEFAER D(0,r) := B(0,r) PEERUKEL -

8B B M > 0115 |an||20|" <K M ERFIB n > 0 HR 2 c CRRE |2] < |20| * BB

V>0, |anz"| = ]zio\"|an||zo|" < M]Zio "
B AKX S EWSERE (RLE&/INR 1 R ERE) o a

EER 833 ! DY a2 RERE - KMIESR
R=R() anz") :==sup{r > 0: (Jan|r")nz0 B} € [0, 0]

FBIE S a,2" BICEAE (radius of convergence) ©
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Chapter 8 Sequences and series of functions

Remark 8.3.4 : We note that if we add phases to the sequence (a,,),>0 defining the power series > a,,2",
its radius of convergence remains unchanged.

Proposition 8.3.5: Let ) a, 2" be a power series and R be its radius of convergence. Then, we have the
following properties.

(1) For z € C with |z| < R, the series > a,z" converges absolutely.
(2) For z € C with |z| > R, the series Y a,z" diverges.

(3) Forr € [0, R), the series S_ a, 2" converges normally on the closed disk D(0, ).

And the open disk D(0, R) is called the disk of convergence (WBXIEIfE) of the power series Y a,,2".

Remark 8.3.6:

(1) When R = +o0, the power series Y a,2" converges for every z € C, so it defines a function from C
to C. Such a function is called an entire function (BK£5).

(2) When R < 400, on the boundary of the disk of convergence, that is when z € 9D(0, R), the power
series may have any possible behavior, see Example 8.3.9.

Proof :
(1) Ttis a direct consequence of Proposition 8.3.2 (1).

(2) For z € C\D(0, R), since (|a,||2|™)n>0 is not bounded, we do not have a,,2" — > 0,50 the
n—oo
series Y a, 2" diverges.

(3) Itis a direct consequence of Proposition 8.3.2 (2).

Proposition 8.3.7 (D’Alembert’s criterion, ratio test) : Let Y . a, 2" be a power series, and R be its radius
of convergence. Suppose that the following limit exists,

. An+1
{:= lim |2F
n—o0 an,

’ € [0, +o0].

Then, R = (1,

Proof : It is a direct consequence of Theorem 6.3.1.
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(i

(1)
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S anz™ BEEY o

o B

(3) FERME 832 2) WEEHER -

0
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R FHIEREFE
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Chapter 8 Sequences and series of functions

Proposition 8.3.8 (Cauchy’s criterion, root test) : Let > a,2" be a power series, and R be its radius of
convergence. Let
A := limsup |an|"/" € [0, +00].

n—00

Then, R =

>l

Proof : It is a direct consequence of Corollary 6.3.8. (]

Example 8.3.9: The following three series have the same radius of convergence 1, that can be obtained
by either the ratio test or the root test. However, they have totally different behaviors on the boundary
of the disk of convergence.

(1) The series Y 2™ has radius of convergence 1. For z € C with |z| = 1, the series ) 2" never
converges.

(2) The series > ;—’; has radius of convergence 1. For z € C with |z| = 1, the series ;—Z converges
normally, so converges.

(3) The series ) = 22 has radius of convergence 1. For z = 1, the series Z " diverges. For z € C
such that |z| = 1 and z # 1, the series % converges by Example 6.4. 9

8.3.2 Operations on power series

Proposition 8.3.10: Let f(z) = Y an2" and g(z) = > b, 2" be power series with radius of convergence
Ry and Ry. Let R be the radius of convergence of _(a,, + by,)z". Then,

R > min(Ry, Ry).

Moreover, if Ry # R,, we have R = min(Ry, Ry). For any z € C with |z| < min(Ry, Ry), we also

have
D (an +bn)2" =D anz" + > bpz™ (8.11)

n>0 n>0 n=>0

Proof : Let z € C such that |z| < min(Ry, Ry). It follows from Proposition 8.3.5 that both >~ a,,2"
and ) b, 2" converges absolutely, so the series Y (a, + by,)z" also converges absolutely. This means
that Eq. (8.11) holds. Moreover, this also implies that R > min(Ry, Ry).

Suppose that Ry # R, for example, Ry < R,. Let z € Csuchthat Ry < [z| < Ry. Since (b,2"™)n>1
is bounded and (a,2"),>1 is unbounded, we deduce that ((a, + bn)z”)n>1 is unbounded so |z| > R.
By taking infimum over z € C satisfying Ry < |z| < Ry, we find that Ry > R. O
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Chapter 8 Sequences and series of functions

Definition 8.3.11:Let ) a,2z" and > b,2" be power series. Their Cauchy product is the power series
3" ¢y 2", where the coefficients (¢, ),>1 are given by

n
Yn =0, c,= Z arbp_.
k=0

Proposition 8.3.12: Let f(z) = Y an2" and g(z) = > b, 2" be power series with radius of convergence
Ry and Ry. Let y ¢, 2™ be their Cauchy product. For every z € C with |z| < min(Ry, R,), we have

f(2)g(z) = (ganz") <nz>%bnzn> = 7;) <;:0 akbnk> — r%:ocnz”. (8.12)

In particular, if R is the radius of convergence of > ¢, 2", then we have

R > min(Ry, Ry).

Proof : Let z € C such that |z| < min(Ry, Ry). From Proposition 8.3.5, we know that both >~ a,, 2"
and Y b, 2" converges absolutely, then by Theorem 6.6.3, we know that their Cauchy product }_ ¢, 2™
converges absolutely, and satisfies Eq. (8.12). Additionally, this implies that R > min(Ry, Ry). |

8.3.3 Regularity

Here, let f := )" a, 2" be a power series with radius of convegence R > 0. We have seen in Proposition

8.3.5 that f is well defined on D(0, R).

Theorem 8.3.13 : The function f : z + 3, - a,2" is continuous on the disk of convergence D(0, R).

Proof : Fix z € D(0, R). Let us consider a closed disk D(z,r) centered at z with radius 7 < R — |z|.
Then, for any w € D(z,r), we have |w| < |w — z| + |2| < |2| + r < R, which means that D(z,r) C
D(0, R). It follows Proposition 8.3.5 (3) that the power series Y a,,2" converges normally on D(z, ).
Since the partial sums defining f are continuous (polynomial functions), we use Proposition 8.2.1 to
conclude that the limit f is continuous at z. ([

Theorem 8.3.14 (Abel’s theorem) : Let ) a,,2" be a power series with radius of convergence R > 0.
Suppose that the series ) a, R" converges. Then, the function x — Y, ~qanz" defined on [0, R] is
continuous. In other words, we have

BNE  REBIBF LRI

EE 8311 0 D Y a2 F Y b, AERE - ORI EERE Y o, PR - B
EFW?R% (Cn>n>1 E%QDT .

n
Vn = 0, Cp — Z akbn_k.
k=0

BE83.12 1 D f(2) = Dan2" M g(2) = ¥ by BKEEEH R, FI R, OTRE 9 X 2"
BAPIHIER o HIS(E - € C MR |2 < min(R;, R,) * B

f(2)g(z) = (Z anz") (Z bnz"> = Z (,;0 akbn_k> PP = Z cn2™. (8.12)

n=0 n=0 n=0 n=0

SNRFFHE X cn 2" WRERFIEECIE R - BRERFIE

R > min(Ry, Ry).

G I B2 € CMRE |2| < min(Ry, Ry) © W6nRE 835 » HMIENE Y a,2" M Y b,2" MEEEHE
IR HEREIE 6.03 - RPIFRLEMPIBFAIEIE 3 c,.." SRHEKE > MAEREI 8.12) Itk
A EMBET R > min(Ry, Ry) © O

SBZE R

EBE D=2 a2 BWHEESR R > 0 NERE - e 835 » HPIEH f £ D(O,R) L2
ERREFH o

EIE83.13 1 BB f:2— Y ,50a,2" ERHER D(0, R) E2EMEN -

5888 : EE 2 € D(0, R) ° FBEMEBROTE 2 » ¥8%5 r < R— || WHER D(z,r) o AREHR
2w e D(z,r) » BB |w| < |w— 2|+ |2| < |z| +7 < R 3ERKE D(z,7) C D(0, R) ° #tdn
78835 (3) HMIFHMEBERE Y a,2" BTE D(z,r) LIERKER - HRER [ IERMHFIE B EEN

(ZIEXRE) - HAIRILUERDE s.2.1 FEEEDIR £ 7 - F2EEN - O

I 8.3.14 [Abel EIE] : © Y a,2" BRWHFREE R > 0 HERE o BRERBEE D a, R W
B o BBE - ERTE (0, R LHRE 2 — 3, a2 BEAEN - BOEER > HKME
Z anr" ——— Z a, R".

n>0 e=R= 030
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Chapter 8 Sequences and series of functions

Proof : For every n € Ny, let u,, : [0, R] — C be defined by

Ve € [0,R], up(z)=ayz", and R, = Z apR*.
k>n+1

By the assumption, the series of functions Y u,, converges pointwise on [0, R]. We want to show
that this covnergence is uniform, then we can conclude by Proposition 8.2.1. By rewriting each w,, as
n(x\"
Uy, = apR" ()", we may assume that R = 1.
Let ¢ > 0. Since Y _ a,, is convergent, we may find N > 1 such that |R,,| < e foralln > N. For
m,n € Nwithm > n > N, and = € [0, 1], we establish the Abel’s transform using the remainders of
the convergent series > ay,

m m m—1 m
Z akxk = Z (Rk,1 — Rk)wk = Z kak+1 — Z kak
k=n+1 k=n+1 k=n k=n+1
= Rpx"™ — Ra™ + Z L — gk,
k=n+1

Since R,, —— 0 and (2;,)m>0 is bounded, we have R,,z™ ———— 0. Moreover, we have
m—00 m—ro0

|Rp,(xF*! — 2F)| < e(aF — 2F*1), and the series ;. (2% — 2F*1) converges, so 3 Ry (xzF ! — zF)
converges absolutely. Thus, for n € N and = € [0, 1], the remainder of the power series writes

ra(z) = Rpa" ™+ ) Ry(aMt —2F).

k>n+1
Forn > N and z € [0, 1], we have
IRz < |Rp| <,
Z |Rk;(!,1:'k+1 _ xk)‘ < c .’L'k N .lek+1) _ 6.1‘n+1 <e.
k2n+1 k>n+1

So |rp(x)] < 2e¢forallm > N and z € [0,1]. This means that 7, — 0 uniformly. By
n—oo

Proposition 8.1.17, we have shown that ) u,, converges uniformly on [0, R]. |

The following Tauber’s theorem gives a converse of the above Abel’s theorem.

Theorem 8.3.15 (Tauber’s theorem) : Let f(2) = >_ a, 2™ be a power series with radius of convergence
R > 0. Suppose that f(x) — ¢ and nay, — 0. Then, the series ) a, R™ converges to {.
r—R— W=re9

Proof : Without loss of generality, we may assume that R = 1. Let us denote by (S, )n>0 the partials
sums of the series ) ay,. Forany n € Ng and z € (—1,1), we have

x) = zn:ak(l —zF) — Z apah.
k=1

k>n+1
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$8EA : RSB c Ny ' B u, : [0, R] — C EEM

Vo € [0,R], up(z)=anz", MUK R,= Z anRF.
k>n+1
RARRER » RBUREL > u, BT [0, R] LZF RN - (NREPIFTFERREEWMEST TR » AE
HMIRPTAE RS 8.2.1 JRIBHE - MFIEPTLIEE —IH v, B v, = anR”(E) BRI
HFIURER R=1°
De>0°HR Yo, BRE - BMEKREIN > 185 R < c 8RB > N HR
m,n € NIWEm >n>N Mk xe|0,1]° ?de'ﬁﬁﬁ”&»ﬂ‘f&%( > ay BUBRIEZRE T Abel B84 :

m m m—1 m
Z apa’ = Z (Rg—1 — Rk)xk = Z RpzFt! — Z Riz”
k=n+1 k=n+1 k=n k=n+1
= Rpz"" — Rpa™ + Z Ri (2™ — o).
k=n-+1

B R, —— 0 B (zm)m=0 B8R &ME Rna™ ——0° o FME | R (2P — 2F)| <
e(xh — 2F L) TERE X (aF — 281 US> BRI S Ry (2% — o) EHBHINEN - Eitt - ¥
MRneNUKxcl[0,1]  BRKBIERERMH

T’N,(w) _ RnflfnJrl 4 Z Rk(l’kJrl o $k>

k>n+1
B n>NUKzc[0,1] &ME
|Rn1‘n+1| <Ryl <,
Z |Rk($k+1 _wk)| < Z 5(1‘k k+1) n+1 <e
k>n+1 k>n+1
FRL ()] < 2 RSP n > N Ml o € [0,1] ° ERRBUH 1, —— 0 BTN - RIRew
78 8.1.17 » FFIRTLARERE 3w, B7E [0, R] LW - O

TEHBY Tauber EIRIGFM Abel FIEBI—EW A ©

EIF 83.15 [Tauber EE] : B f(2) = Na " BRBFERB R > O NERE - RFE
f(a) —— € Bna, —— 0« BB » BT o, " BRBE £

FEEA ¢ AR - BFIFTLURER R = 1 - BEMIHERE S a, BIEBEHFIEENE (S,)ns0 © BHRE
BncNo MUk re (-1,1) &ME

n

Sn—f(a:):Zak R Z apat.
k=1

k>n+1
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Chapter 8 Sequences and series of functions

For z € (0,1), we have
l—af =1 -z)(1+z+- - +2") <k —2).

Therefore, for any n € Ny and = € (0, 1), we have

Ey (1) Zk\akH— > axlz”.
k>n+1
Given £ > 0 and choose N > 1 such that n|a,| < e foralln > N. For any n > N, we have
> lag|z® < e Z Z " (l—x)

k>n+1 k>n+1 k>n+1

For n > N, let us choose z,, = 1 — l Then, we find
|Sn — < Zk|ak|+5

Since nlay| — 0, it follows from Exercise 6.1 that the first term’on the right side converges to 0.
n—oo

Therefore,
lim sup |Sn - f(xn)‘ <eE.

n—oo

Since € > 0 can be made arbitrarily small, we find
Jim |5, — f(za)| = 0.

That is, limy, 00 Sp, = limy 00 f(2y) = limg1— f(z) = £. O

The following is a generalization of Theorem 6.6.3 and Exercise 6.24.

Corollary 8.3.16 : Let > a,, and Y_ b, be convergent series. Forn € Ny, let ¢, = > }'_ arbn—k.
Suppose that Y, ¢, is convergent. Then,

e (2)(z)

n=0 n>0 n=0

Proof: Let > a,2", > b,2", and ) ¢, 2" be power series. Their radii of convergence are at least 1, be-
cause both (ay,|2|™)n>0 and (by|2|™)n>0 are bounded for z € D(0, 1). It follows from Proposition 8.3.12
that the radius of convergence of the power series ) _ ¢, 2" is greater or equal to 1. By Theorem 8.3.14,
we know that

Z an" z—1— Z an; Z bnz” P Z bn,  and Z ent” z—1— Z -

n=>0 n=0 n=0 n=0 n=0 n=0

!'The sum % ZZZI kay, is called the Cesard sum of (nan)n>1.
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Rz e (0,1) r B
l-adb=1-2) Q42+ -+ <k(l—2).

Et » WIRES n e Ng MUK 2 € (0,1) » F&FIE

|Sp — f (1—-x) ZM%H‘ Z ag |z

k>n+1
BEe>O0MBIEN > 1 BB nja,| <cHBRFAEn > N e HREERE > N BB
13

Z lag|z® < e Z - Z xkém.

k>n+1 k>n+1 k>n+1

Hin> N> B2, =1- 1« EFE—K » BFEE

b

|Sp — < Zk|ak|+6

RS nlan| —— 0> REBRE 0.1 RPIFERNPHE IR FUHEE 0 - Eit

limsup S, — f(z,)| < e.

n—oo

Bt e > 0 AIXER/) - BRI
nh—golo ‘Sn - f(xn)| =0.

WRLRER lim,, o0 Sn = limy, oo f(2) = limgy1_ f(x) = £ ° O

TEREIE 6.6.3 1ZE 6.24 FIHEE -

RIEE83.16 © 4 Y0, 1Y by BKEHEH - W n e N D e = Yigarbuy * BE Y &
WS8R o BREE - T

S o= (zan><zbn>.

n=0 n=0 n>0

FHEA I B Y 002" b2 Y 2" BERE - PINBEFEREDE 1 B (an]2|™)ns0
(bn|2|M)ns0 R 2 € D(0,1) BFR - #EdniE 8.3.12 HMIEH » BRI D 2" IR FEKRNEF
1o RIBER 8.3.14 » HKFIFE

Z anx" r—1— Z An, Z by™ K) Z bn, MUK Z Cn" z—1— Z “n-

n=0 n=0 n=0 n=>0 n=0 n=0

VERAHE LY kar BB (nan)n>1 BY Cesard # o
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Chapter 8 Sequences and series of functions

Moreover, Proposition 8.3.12 gives the following identity,

Vo e (—1,1), ch:c” = <Z anx"> (Z%ﬁ")

n=0 n=0 n=0

By taking the limit x — 1— in the above identity, we establish the identity we want. (|

Let us also introduce the notion of differentiability in a complex variable.

Definition 8.3.17 : Let A C Cand f : A — C. We say that f is C-differentiable (or simply differen-
tiable) at zg € A if the following limit exists,

d d —
o) = G o = o) = i T T

e C,

which is also called the C-derivative of f at z.

Remark 8.3.18 : We may identify C as a two-dimensional real vector space. If we compare the notion of
differential from Definition 4.1.1, we may notice that the C-derivative introduced here is much stronger.
In fact, if a function f : A — C is differentiable at zy in the sense of Definition 4.1.1, its differential is a
continuous linear map. However, if the same function is C-differentiable at zy, its C-derivative is given by
a complex number, which, seen as a differential, is a composition between a rotation and a dilation (in R?).
It is not hard to see that a composition between a rotation and a dilation is a continuous linear map, but the
converse fails to hold in general. In Complex Analysis, you will see that if a function is C-differentiable in an
open subset A C C, then it can be differentiated as many times as we want in A. Such functions are called
holomorphic functions.

A power series contains only polynomials functions, and it is not hard to check that the C-derivative of a
polynomial function is the same as its usual R-derivative. In other words, we have

d n
Vn € Ny, Eiz)—nz
z

n—1

Theorem 8.3.19 : The function f : D(0,R) — C, z = >, - anz" is of class Cl. The power series
Y on>1 nanz"~1 has the same radius of convergence as Ym0 n2", that is

R(nz;l nanz”_l) = R( Z anz”).

n=0

We also have
Vz e D(0,R), f'(z)= Z napz""1. (8.13)

n=1
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S - anid 8.3.12 EHRRFEMI TIIRAGRR ¢

Vo e (—-1,1), ch:t:” = <Z anx"> (Zanm">

n=0 n=0 n=0
FERH EXP 2 — 1- BUER - HFISEIFEFERRRERN O

FFIBRME | AR EEBE I ERIBER -

E&EB83.17 I SACCURf: A= C o #ATF 20 € A - MR TENBREFE :
df d f(2) = f(20)

- — g — 1
dz (20) = dzf(ZO) ['(20) : Z}e%] Z— 2

AU FItEMfthAS [ 1E 2 RARVEREINS - B3R f £ C FRIigyy (SifEiEarsy) -

e C,

sEfE 8.3.18 1 RFIFLUE C BERHMEBERMEZME - MRBFIEER 411 EFMOHNBIZE
RELE - HFPERREE5 I ENERMO SIS BB - BRLE - IR [ A - CHEER
411 BBERT » 1E 2 MAIH > FBEMEYN D &R EERIRIEBRS - AT - NRBERIRHBIE 2 B2
BEEIMBY » BEMHERMO ER—EEBATE - BRARRMBAIMNS ERH) - SHEH
MFERFRE R ° BFIFRHE LK - TeEMMERE S AR B [EEEIR IR - [EE B
REFH - TEORHIRIETR - FEFIMRRBERFES A C C HEEREFIDIRY - FBEMTE
A AL ERIZ R - ERRET RS (AR L -
BRBEPHEZEARE  BAFHBEZSHAEANNEH Mo RERM S 2HERR - RAOFER
HFIgH -
d(z")

Vn € Ny, T:nz
z

n—1

B 8319 : WE f: DO,R) - C, 2z Y,50a,2" B CLEEH - BRE Y, na,z" 1
Sns0 an 2" BEEINMEHE - LRER

R( Z nanz”_1> = R( Z anz”).

n>1 n>0
xHtEs
Vz2€ D(0,R), f'(z)=> nanz"". (8.13)
n=>1
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Chapter 8 Sequences and series of functions

Remark 8.3.20 : This theorem is of particular interest. It means that we can always differentiate term by
term a power series, which is not the case of a general series of functions, where additional assumptions are
needed (Corollary 8.2.16).

Proof : Let R be the radius of convergence of Y na,2""!. For any r € [0, R'), we know from
Definition 8.3.3 that (na,r™ '), is bounded, so (a,,7"),>0 is also bounded, which implies that r <
R. By taking the limit » — R’'—, we find R’ < R. For the converse, let 7 € (0, R) and rg € (r, R).
Again by Definition 8.3.3, we know that (a,,7{)n>0 is bounded. We have

1 _1 r\n—1
napr" " = nlapry )(—) — 0,
T0 n—oo

so we also know that (nanrnfl)n% is bounded, that is r < R’. When we take r — R—, we find R <

R'. Now, we can deduce Eq. (8.13) as a direct consequence of Corollary 8.2.16 and Proposition 8.3.5.
O

Corollary 8.3.21: The power series f(z) = >_,>0an2" is of class C* on D(0, R). For every p € N,
the p-th derivative of the power series has the same radius of convergence and writes

Vze D(0,R), fP(z)= Z nn—1)---(n—p+1)apz"? = Z (Z)p!anz"p.

nzp n=p

In particular, this gives

® (0o
VPENQ, ap:fp‘( ),
and )
f(0)
Vz € D(0, R), f(z)—z o z7.
p=0 ’
Proof : It is a direct consequence of Theorem 8.3.19 with an induction. O
Example 8.3.22 : We have the following identity,
Vz € D(0,1) ! :Zz”
Y 9 1 —z *
n=>0

Theorem 8.3.19 allows us to differentiate the identity, giving us

vz € D(0,1), L > n = "(n+1)2" (8.14)

(1 - 2)2 n=1 n=0
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5% 8.3.20 @ EEEEIFEEE - ERXBRMAREBITUHERB—E—IREMSD - MEREH MR
RERBORER - RARIMRRIVEEZEN (R s216) o

BB DR B Xne MRHF T - BHRERr € [0,R) MLER 833 F&E
(napr™ N1 ERBFEB I (a0 CERERN B8 I r < Ro HMEUEIR
r— R— G583 R <R -BFAZ—EAFRERX HMIEEr € (0,R) UK 9 € (r,R) °
BREREZ 833 » BPIFE (0,720 2B RH - B

-1 ne1y( T\t
napr" " = n(apr] )(—) — 0,
o n—00

FRAFMIFIE (na,r™ ) HRBERN  UHMER»r < R - ERMNr — R- B 253
R < R < 3R7E » HMIeTLUBR (8.13) BIERRIE 8.2.16 el 8.3.5 WEEGER o O

RE 8321 ¢ BRE [(2) = 0 an" 7 D(0, R) £2 > 1889 - HIAEE p N » BB
B p B B EERRAERE - RS

Vze D(0,R), fP(z)= Z nn—1)---(n—p+1)az" P = Z (Z)p!anz"p.
nzp

nzp

EERFISE

~—

B @0

VpeNy, a
P p!

Vz€ D(0,R), f(z)=)_ /

sHEA : B LHBRWEAR - SEREE 8319 WEEER - O

8% 8.3.22 : B THRIFRR :

Vz € D(0,1), = 2"

EH 8.3.19 EEFIAT UL ERERARIMD - 52
1

Vz € D(0,1), 5 = Z nz"t = Z(n +1)2". (8.14)
(1 B Z) n>1 n=0
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By taking higher-order derivatives, for every p € N, by Corollary 8.3.21, we find HARIE 8321 » BRI AIUEESRENMS - HREEpc N HME
vz € D(0,1) L:Z(nﬂ) (n+p)" or ¥:Z mEP) Vz € D(0,1) L:Z(nﬂ) (n+p)z" B Lzz mEP)
P (1 —z)ptl = (1 —z)ptl = P » (1 — z)ptl = (1- z)PH = p
If we multiply Eq. (8.14) by z then differentiate again, we find WNRFMIBI (8.14) 3k L - B —X » HFEFR
1 142 n— n
Vz € D(0,1), * 23 = Z n?z" 1 = Z(n +1)%2". Vz € D(0,1), . 3 = n?z" 1l = Z(n +1)22™
1=z = n>0 =2 5 n>0
In particular, when z = %, we find the following identity, EBRMEAFHINE » = % » BMERITEEERRI -
2 n2
S —. D gn =6
n>1 2 n=1
Corollary 8.3.21 gives us following direct consequences, which are very useful when we deal with power RIB 8321 MR TEESEEESER » SHEREBEKAM2IESERAM -
series.
Corollary 8.3.23 : The power series RIE 8.3.23 | EIRE
I D(O, R) N (C F: D(O, R) — aC :
an_ nt1 z — Yl
n el E 2 y » B I'— fo
has the same radius of convergence as >, a,2". Moreover, we have F' = f on D(0, R). Y an 2" BHERBMEHE - 15 - 72 DO, R) L - 2B 17 = f
8.3.4 Coefficients of power series E/NET SHREEYREL
Corollary 8.3.24 (Uniqueness of power series) : Let f(2) = Y,50an2" and g(z) = 3,5 bn2" be RIE 8.3.24 [ERHAE—H] @ B f(2) = > ons00nz™” B g(2) = 3,50 bn2" AT El . (th{fg
two power series with radius of convergence B Bk 1R 04
Rp:=R(Y anz") >0, and Ry:=R(> by2") >0. Rpi= B( X ane") >0, BB RByim B( 3 bz > 0.
n=0 n=0 n>0 n>0
Suppose that there exists v > 0 and r < min(Ry, Ry) such that f = g on (—r,r) C R. Then, we have BBEFE r > 0 UK r < min(Ry, Ry) 87 (—r,r) C R ERME f = g BEHRFE
an = by, foralln € Ny. o
J n e Ny B a, =by, °
Proof : Let R = min(Ry, R,;) and consider the following functions defined on (—R, R), &M 1 © R =min(Ry, Ry ERTIERTE (—R, R) LHIREL :
Vze (-R,R), f(z)= Z a,z", and g(z)= Z bp2". Vz € (—R,R), f(z)= Z apz", MR g(z) = Z bp2".
n=0 n=0 n>0 n=>0
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Chapter 8 Sequences and series of functions

It follows from Corollary 8.3.21 that both f and g are C* functions, and their coefficients are given by

(n)
YneNy, an= Cand b, = 20
n! n!

By the assumption that f = g on (—7,r) for some 7 € (0, R], we deduce that £ (0) = g(™)(0) for all
n > 0, so we also have a,, = b,, for alln > 0. |

Example 8.3.25:Let f : D(0,R) — C, z = 5 a,2" be a power series with R > 0. Suppose
that f is an even function, that is f(z) = f(—z) for z € (—R, R). In other words,

Vz € (R, R), Z an(—2)" = Z anz".

n=0 n>0

This implies that
Vn € Ng, (—=1)"a, = an.

In other words, a,, = 0 if n is an odd integer.

Theorem 8.3.26 (Cauchy’s formula) : Let f(z) = Y a,2" be a power series with radius of convergence
R > 0. Then, for anyr € (0, R) and n € Ny, we have

n 1 o i0\ —inf
rap / f(re'%)e dé.
0

"o

Proof : Let us fix r € (0, R) and n € Ny. We have

27 . . 2m .
f(,r_619)€— ind do = / (Z CLpT‘pel(p_n)9> d6.
0

0 p>0

Since 3" |a,|rP converges, the series of functions 6 + 3 a,rPe!(P~™? converges normally on [0, 27].
We deduce from Corollary 8.2.9 that we may interchange the order between integration and summa-
tion. As a consequence,

2w . . 21,
f(ret?)e im0 dg = Z aprp/ P04 — Z apr? (2m) 1=y = 21" ay,.

0
p=0 p=0
O

Remark 8.3.27 : This provides another proof of Corollary 8.3.24 if, using its notations, f = g on D(0,r)
for some r € (0, R).
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I 8321 BAPVEE » £ ¢ ZBE ¢ R > MAMPINRBBE TIBGERAT :
F™(0)

(n)
WneNy, an=1——, HUR bn:gi‘(()).
n: n:
HRTEE r € (0,R] 18 f = g 7 (—r,r) EHEFHRER - BFIHSR 1 (0) = ¢ (0) HRFRE
n >0 FIAEMEE o, =0, BRFABEn>0-° O

& 83.25 1 S [ D(0,R) = C.zes Ypogans" BEBE > B R >0 B f 2EERE -
HWERE f(2) = f(—2) 8RR = € (—R, R) - REER » BTG

Vz € (-R, R), Z an(—2)" = Z anz".

n=0 n>0

A=
3

A
|=|l\ =

]
2

Vn € Nog, (—=1)"a, = an.

HBA)EEER » IR n BEHE 0 BIEMB a, =0-

EIE 8326 [MMALK] : B f(2) = a2 BRHFEES R > 0 WERE - AE - HRER
re (0,R) Ak n e Ny BB

n L 2m 0y, —inf
ran = o f(ret”)e dé.
™ Jo

$8HA - SEHEAFIEIRE » € (0, R) UBen € Ny - B

27 . . 27 .
f(rele)e_ inf 49 = / ( Z aprpe‘(p_”)9> dé.
0

0 p=0

B 3 |ay|r? R > RBHEREL 0 — 3 a,rPel®—0 1F [0, 27 L@ IEFRIKEN o ERIE 8.2.0 FMIHE
BRI ESMIMIER - FRAEE

27 . . 2T
f(ret?)einf qg = Z aprp/ P04 = Z apr? (2m) 1=y = 21" ay,.
0 p=0 p=0 |

£ 8.3.27 : HHARIEs3 24 MW WREEr € (0,R) B f =g 7E DO,r) £ - BEEERETIE
feHMS—E5E0A f HE ¢ MEERAPNEBERNAR -
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8.3.5 Expansion in power series

In the previous subsections, we were given power series and discussed their properties. In this subsection,
we are going to see when and which functions can be written (or exapnded) as a power series.

Definition 8.3.28 : Let A C C be an open set and a function f : A — C.

« Let R > 0. If 0 € A and there exists a power series ) a, 2" such that

Vze D(0,R), f(z)= Z anz", (8.15)
n=0

then we say that f can be written (or expanded) as a power series around 0, or on D(0, R). In
particular, such a function needs to be C*° at 0, which is a direct consequence of Corollary 8.3.21.

« Let zg € A. We say that f can be written (or expanded) as a power series around zj if z +—
f(z + z0) can be written as a power series around 0.

Proposition 8.3.29 : Let A C C be an open set containing 0 and a function f : A — C. Then, the
following properties are equivalent.

(1) f can be written as a power series around 0.

(2) There exists r > 0 such that the series of remainders (R, )n>0 converges pointwise to 0 on D(0, 1),
where

(8.16)

n_ k)
Vn € No,Vz € D(0,r), Ru(z)= f(z)— Z / kk'(o)zk.
k=0 ’

When (2) holds, it means that the power series ) %z" has radius of convergence R satisfying R > r,
and f is equal to the series on D(0, ).

Remark 8.3.30:

(1) To check Proposition 8.3.29 (2), we use Taylor-Lagrange or Taylor integral formula (Section 4.3.1) to
write the remainder as

Zn+1

Rn(z):mf(”“)(ez), 0c(0,1), or Ry(z)=2z""! /0 1(1;f)nf<n+1>(tz)dt.

(2) We note that to check Proposition 8.3.29 (2), it is not sufficient to check that the radius of convergence
(n)
of 3° f n(O)

is strictly positive. Actually, there are functions such that this power series has a strictly
positive radius of convergence without Eq. (8.15) holds, see Example 8.3.32 for an example. However,
if this radius of convergence is 0, it tells us that f cannot be written as a power series around 0.
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Vz € D(0,R), f(z)= Z anz"”, (8.15)
n=0

AREEFAIER f BILATE 0 MESE - SR1E D(0, R) LB (HERR) EME - 8RR » &
BHERE—EEF OB C N E22RE 3.2 NEERR -

e Bz AR 2 — f(z 4 20) ATMATE 0 BAMBEE R EMREL - BIFRMIER f vTLATE 20 MR
B (BRI ERE -

B 8.3.29 | DACCARES 0 MMHESE  URRH f: A— C - BETFIMEEZEHBN -

(1) f RILATE 0 BEFHT R A EARES

(2) FHE 7 > 0 EESRERY (Ro)oz0 BTE D(0,7) EEBIKHE 0 Hep

Vn € No,Vz € D(0,r), Ru(z)

(8.16)

B ML EREZERE Y L0 S RSB R >0 B 1 D(0,r) EBRIRE
R

5% 8.3.30 :
(1) FMIRTLAEF Taylor-Lagrange 3 Taylor AT (55 4.3.1 /NEi) RAREMRE 8.3.29 (2) » :EH
DGR FHERRIER i -
n+1
Ru(2) = —

mf("+1)(9z), 0e(0,1), T Ru(z)= e /01 (1;‘t)nf(n+l)(tz) dt
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3 f £ 0 FEMBOEE R ANERE -
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Chapter 8 Sequences and series of functions

Proof : There is nothing to show for (1) = (2). Suppose that (2) holds, let us show (1). Let r > 0 sat-

isfying Eq. (8.16). Let z € D(0, ). The condition R, (z) —0 implies that f(z) = 37,59 1(0) n,

n!

(n)
Therefore, the sequence (f n!(o) 2")n>0 tends to 0, so is bounded, so the radius of convergence R of the
corresponding power series satisfies R > |z| (Definition 8.3.3). By taking supremum over z € D(0, ),
wefind R > r. |

Example 8.3.31: The following functions can be written as a power series around 0.

(1) The exponential function z — exp(z),

2"
VzeC, ¢€° gn—

In fact, for any z € C and n > 0, the n-th remainder writes
’ Z‘n—l—l

(n+1)!

‘Z|”+1

0 Re(z)
(n+ 1)!6 n—00 0.

| Rn(2)] = F"D(02)] =

(2) The function z — 12— is defined on C\{1}, and we have

vz € D(0,1), => 2"

In fact, for any z € D(0,1) and n > 0, the n-th remainder writes

2"

:‘1—2‘\|1—Z| n—00

| Rn(2)

(3) Any polynomial function P € C[X] satisfies

VzeC, P(z)= Z

Actually, the above power series contains only finitely many terms.

Example 8.3.32: Let us consider the function f defined as below,

f: R — R

e VT ifx >0,
r
0 ifx <0.

For k € Ny, we may compute the k-th derivative of f on (0, +00),

1
vz >0, f®(z)= Pk(;)e—l/f, (8.17)

where Py is a polynomial satisfying deg(Py) < 2k. Therefore, for each k > 0, we may extend f (k) con-
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z € D(0,r) ° &% R, (2) —— —0 BHEE f(2)
Wk ® 0 - FAUAB R - RS EERBNEEHFEE R @ﬁ% R
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BARE  HRER : c C3&F n >0 8 n EERERM
_ ’Z‘n+ n+1) ‘ |n+1 9Re(z)
(2) B¥ 2 — L BEHRT C\{1} LAY HME :
]' n
Vz € D(0,1), 1_227%%2.

_ 2"
|R”(Z)‘ B ‘1 — z‘ = ‘1 — z‘ n—00
3) ERZEREH P € C[X] RmE :
(n)
VzeC, P(z)= Z P |(0)z"
=
BAAURE - FENERITPREEERSEE -
56 8.3.32 : BRMEBERUNTHIRE 1

f: R — R
e~/ FEa>0,
T
0 Er<0.

B ke Ny » FFIRTLGTE f 72 (0, +00) RIS Kk BERS -

1
ve >0, fR(z)= Pk<;)e_1/x,

28 REBEXL :

(8.17)
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Chapter 8 Sequences and series of functions

f(">(0) n

tinuously to 0 by the value 0, so f is a C* function on R. Therefore, the power series )~
is the zero function. Its radius of convergence is +00, and is not equal to f on (0, ) for any r > 0.

Proposition 8.3.33 : If f can be written as a power series in D(0, R) for some R > 0, then for any
20 € D(0, R), f can also be written as a power series around z.

Proof : Let f be a function, R > 0, and a power series > a,,2" such that

Vz e D(0,R), f(z)= Z anz"

n=>0

Let 29 € D(0, R) and r = R — |2|. It is not hard to see that D(0,r) C D(0, R). Let z € D(zg,r), we
write

Zanz":Zan(zo—F (z — 20)) Zanz<> Bz — 20)F

n=0 n>0 n>0
2D 9) ST LA R
n=>0 k>0
We may check that for every n > 0, the series Y~ anLyzk(}) 20 *(z — 20)* converges absolutely

(finite series). Additionally, we have

n _
Do lan|lnsg (k) |20[" |z = 20" = D lanl(|20] + |2 — 20])"

n=0k>0 n=0

which converges because |z9| + |z — 20| < |20| + 7 = R. Therefore, Theorem 6.7.4 allows us to
interchange the order of summations. We find,

Zanzn:ZZann>k<> Rz — 20)F Z(Zan<> )(Z—zo)k,

n=0 k>0n=>0 k=0 \n>k

which is a power series centered at zg. (|

8.3.6 Applications to ODEs

Power series can be used to solve linear ordinary differential equations with polynomial coefficients. We
have two cases.

« We know that the solution can be written as a power series, and we look for recurrence relations
between coefficients of the power series. Then, the uniqueness of the cofficients (Corollary 8.3.24)
allows us to find this unique solution. See Example 8.3.34.

« We do not know whether the solution can be written as a power series and want to show that there
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=> Y anl n>k< ) (2= 20)"
n=0 k>0
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Chapter 8  Sequences and series of functions BNE REBEHTEREH

exists such a solution. We apply the same method as in the previous point, and show that the corre- —fR > REF 8335 < EREF] » BIULBRHEMEMBERBHE—EIER -
sponding power series has a strictly positive radius of convergence. This gives us the unique solution
that can be written as a power series, see Example 8.3.35. Note that this does not prove any result
about the uniqueness of the solution.

Example 8.3.34 : We want to look for a power series expansion of the following function around 0, #i 8.3.34 : RMEEHTH|RE » 7 0 M ELHREBIER :
f+ R — R f: R = R
R v o et
The function f can be written as a power series centered at 0 with radius of convergence equal to +o0, AR OTE 0 MERE  WACEES 1o RAMSEEERIYNREEEH

because it consists of multiplication and integration of such functions. Additionally, by the fundamen-
tal theorem of calculus, we have

7 o IS IRBEMRDBAEE - FfIE -

Ve eR, f'(z)=2zf(z)+1, and f(0)=0. Ve eR, fl(z)=22f(z)+1, MKk f(0)=
Suppose that f(z) = },,~¢ anx". Then, we have BRE% f(z) = X ps0 ana™ © AEHKME
Ve eR, f'(z Z napz™ ', and xf(z Z an,z"tt = Z Ap_ox™ L. VreR, f'(z Z napz” ', UK xf(x Z apr" ™ = Z Apyox™
n=1 n=0 n>2 n>1 n>0 n=2
Therefore, ESlie
VzeR, f'(z)—2 = n— 2an_9)z" L.
x (@) = 2zf(x a1+§2na n—2) Ve eR, f(z)—2af(z) = a1+ Y (na, — 2a,-2)z" ",
n=2
The initial condition f(0) = 0 gives ap = 0. By Corollary 8.3.24, we know that . . .
) FIaI&E £(0) = 0 483 ap = 0 ° IRIERIE 8.3.24 » HMIFNE
ap =1, and Vn>2, ap,=—an_s. 9
n ar=1, UK VYn>2 a,= —a,o.
n
Thus, by induction, we find that .
Fitt - SEBERINE - HAFE
4™n)
Vn > 0, n=0, d ntl = —————. 4"n)!
" 2 and At = o ) V>0, asm=0, MBE aps=——

(2n+ 1)1
HAIIUBRRE (BIEEEEENF - EFRYEAERN) - BBFY (an)n>0 EFEHRIER
IR FEEEFR +0o @ EHItE

4"n!
Ve e R, f(x)= g%t 4™n)

We check again (even though not necessary in this example) that the power series define by this
sequence of (ay,)n>0 indeed has radius of convergence equal to 400, so

(]

n>=0

AREE AR UTEER o € R MBEERFRERE -

Note that this solution can also be expanded around every a € R as a power series.

Example 8.3.35: Let o € C. We want to look for a power series expansion of the following function #8.3.35 : & acC > ERMAEERLE TIERETE OMBEMNERZERS :
around 0,
f: (-1 — C f: (-1 — C
T = (1+2)”. T = (1+2)2.
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Chapter 8 Sequences and series of functions

This function f satisfies the following first-order linear ordinary differential equation,
Vo e (-1,1), (1+a)f(z)=af(z), and f(0)=1.

Such a differential equation has a unique solution (Theorem 8.4.17). Suppose that f(z) = >_,, 5 anz"
with radius of convergence R > 0. Then, we have

Vz € (-R,R), f'(x)= Z napz" "t = Z(n +1Dapp12”, and zf'(z) = Z na,x".

n>1 n=0 nz=1

Therefore,

Vz € (-R,R), (1+2x)f(z)—af(z)= Z (n+ 1)ant1 + nap, — aay)z™.

n=0

From the initial condition f(0) = 1, we have ap = 1. By the uniqueness of the coefficients

(Corollary 8.3.24), we find
a—n

Vn € Ny, = .
n 0 An+1 n+1 an
By induction, we deduce that
—-1)... — 1
¥neNo, a, = 2=V '(O‘ ntl)_ <a> (8.18)
n! n
By d’Alembert’s criterion, we have

‘anH’_‘a—n

Qp, n-+11 n=oo

Therefore, the power series Y a,z" defined by the cofficients in Eq. (8.18) has radius of convergence
equal to 1, and we conclude that

vz € (—1,1), (1+x)a:Z (Oz)xn:Za(a—l)...(a—n+1)xn'

1
n>0 \"* n>0 n:

This generalizes the binomial expansion to the case with a complex-valued exponent.

8.4 Advanced theorems on uniform convergence
8.4.1 Arzela-Ascoli theorem

Arzela-Ascoli theorem is an important theorem in functional analysis, and it allows us to characterize
when a subset of continuous functions is compact. In particular, it turns out to be useful to show the exis-
tence of solution for some differential equations, see Theorem 8.4.14. First, let us introduce the notion of
equicontinuity.
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ERSBEWNE - FHPIHE
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|
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Chapter 8 Sequences and series of functions

Definition 8.4.1:Let (K, d) be a metric space. In addition, if K is a compact space, the space of
continuous functions C(K, R) is a subset of B(X,R). We have equipped B(K, R) with the supremum
norm in Definition 8.1.9, which we may induce on the subspace C(K,R). A subset F C C(K,R) is
said to be equicontinuous (FEELE) if

Ve >0,Vx e M,36 >0,VfeF, yeBxd = |flx)—flyl<e (8.19)

Remark 8.4.2 : We note that the definition in Eq. (8.19) is much stronger than just requiring that all the
functions f € F are continuous. Once € > 0 and x € M are fixed, this condition needs the choice of § > 0
to be uniformin f € F.

Example 8.4.3:
(1) A subset of finitely many continuous functions is equicontinuous.

(2) For every L > 0, the set of all the L-Lipschitz continuous functions is equicontinuous.

Theorem 8.4.4 (Arzela—-Ascoli theorem) : Let (K, d) be a compact metric space and F C C(K,R) be
a subset. Then, we have the following properties.

(1) F is compact if and only if F is bounded, closed, and equicontinuous.

(2) F is precompact if and only if F is bounded and equicontinuous.

Remark 8.4.5:

(1) We recall that a compact space is necessarily bounded and closed (Proposition 3.1.6), and a bounded
and closed set may not be compact (Remark 3.1.34), except that we are in a finite-dimensional normed
vector space (Corollary 3.2.24). If the compact metric space K is consisted of a finite number of points,
it is clear that C(K, R) is isomorphic to R" for n = Card(K), which is a finite-dimensional normed
vector space, and the theorem becomes trivial. However, for a generic compact metric space K, the
space of continuous functions C(K, R) is not of finite-dimensional.

(2) FromExercise 3.21, we know that a metric space is compact if and only if it is precompact and complete.
Moreover, in Exercise 8.30, we can check that if F is equicontinuous, then so is F. Moreover, since
C(K,R) is a Banach space, we see that (2) is a direct consequence of (1).

(3) We also note that R can be replaced by any Banach space, and the following proof can be adapted
accordingly.
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Chapter 8 Sequences and series of functions

Proof :

+ Suppose that F is compact. We already know that it is bounded and closed, so we only need
to show that it is equicontinuous. A compact set is also relatively compact (or precompact), see
Lemma 3.1.22. Lete > 0. Wemay find N > 1 and f1, ..., fy € F suchthat F C Ui\il B(fi,e).
Additionally, the finite set of functions { f1, ..., fx} is equicontinuous.

Let x € M. We may find § > 0 such that

For any given f € F, we may find 1 < ¢ < N such that f € B(f;, ). Then, forany y € B(z,0),
we have

[f(@) = f)l < [f(2) = filx)| + | filz) = fi)] + fily) — F ()] < 3e.

This allows us to conclude that F is equicontinuous.

« Suppose that F is bounded, closed, and equicontinuous. In order to show that F is compact,
it is sufficient to show that it satisfies the Bolzano-Weierstraf property (Definition 3.1.19), see
Theorem 3.1.20.

Let (fn)n>1 be a sequence in F. Since K is compact, we may find a dense sequence in K, that
we denote by (z,,),>1%. We are going to use a diagonal argument to extract a subsequence of
(fn)n>1 which converges at every xj, for k > 1.

— The sequence (f,(z1))n>1 is bounded in R, so by the Bolzano-Weierstra3 theorem
(Theorem 2.2.5), we may find a convergent subsequence, that we denote by (f,,, (n)(21))n>1,
where 1 : N = N is an extraction.

— Let m > 1. Suppose that we have already constructed extractions (1, ..., ¢, such that
(form () (Tk) )Jn>1 converges for all 1 < k < m, where ¢, := 1 0 -+ 0 ;. Then, the
sequence (fy,,(n)(Tm+1))n>1 is bounded, so we may find an extraction ¢y,11 : N — N
such that (fy, 00,41 (n) (Tm+1))n>1 converges. It is clear that for 1 < k < m, the sequence
(fmopms1(n) (Tk))n>1 still converges, being a subsequence of a convergent sequence.

- Forn > 1,let¢(n) := @1 0---0¢u(n) and g, = fy(n)- Then, (gn)n>1 is a subse-
quence of (f;,)n>1. From above, for every k > 1, the sequence (g, (zx) = fy(n)(Tk))n>k is
a subsequence of the convergent sequence (fy, (n)(7k))n>1, so the sequence (gn(7x))n>1
converges. We may denote by f(xy) for the above limit for every k > 1.

Now, we need to show that this convergence can be extended to every x € K, and that this
convergence is uniform, so the limit is still in C(K, R).

Let us fix € > 0.

— For every kK > 1, from the convergence of the sequence (g,(xg))n>1, we may find

*We use the precompactness of K. For every n > 1, we may find finitely many balls with radius % that cover K. The union of the

centers of these balls over all the integers n > 1 is a countable dense set in K.
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B FIRT LRSS 7 REFEERR -

. B3 F RERH% - BREFEEEN - (IREFEHR Fr @88 - BMREEZHEMZ M
R Bolzano-Weierstrafl 8 (E# 3.1.19) BIA] » BEE 3.1.20 ©

B (fa)ns1 BTE F EENFES - AR K SR8 - HMERBE K PRENFEY) - &
PIEMERIE (2,)n>1? © BRPIEERHBRBIEREZR ()1 BFFY - FERMEREE
k> 18381 o) WK ©

- B (fu(z1))n>1 TE R AER » FRLUBIR Bolzano-Weierstral B (EIE 2.25) -
FIRESR BB FIFS » B (for ) (21))nz1 * EF 1 : N - N ZEZEERE -

-Em > 1 - BREMEKBEF TENERHE ¢o,...,om FEENREME 1 <
E<m> UK U, = P10 0Py’ r_§u (fzpm(n)(mk))n% hbﬁu&?& %BFE ’ r_
B (fymn) @me1))nz1 BB RBY > FAUATPIREIRBI ZEVRE o1 : N —» N &
18 Fonromns o (@ons1))ot BIREH © R UBESRISE) - B 1 < k < m - B3
oo o () ot BREIS - EBARIBFFIN— AT -

SR> 1 B () = or0- 0 pn(n) B gu = Fugm * B  (g0)uor BIB (fu)uos
NFFY - RLEERMEE - BREE L > 1 B (gn(zr) = fum) (@r))nzk YR
527 (fr(n) (Tk) )1 BFFEH > FIAES (gn(7r))ns1 BWEL - HREBE L > 1 K
PIeTLUB_EEBRRECE f () ©

T RMIFEFRESERE I UHEERIFEN » € K » MEEEKREEEHIR » Bl
BIREEREEC(K,R) EFF °
ERMEE::>0-0

PRFIER K WTREEN - HREE n > 1 - RFEKIERSF|FRES - UKL K BHE - RFHEELEROIOER

RIS - HINFAER » > 1 MEIER - RFIRRINRE K PEIBRENES -
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Chapter 8 Sequences and series of functions

N(e,x) > 1 such that

Vm,n > N(e,zr), |gm(xr) — gn(zk)| < €. (8.20)

— By the equicontinuity of F, for every z € K, we may find 6, > 0 such that for every n > 1,
we have

y € B(2,0,) = |gn(2) —gn(y)| <e. (8.21)

The open balls B(z, ) form an open covering of K, and by the compacity of K, we may
find L > 1and 21, ..., 21, € K such that

For every 1 < ¢ < L, we may also find n; > 1 such that z,,, € B(z;,05,).

- We may take N := max{N(e,zp,),..., N(¢,2y,,)}. This implies that we have a uniform
Cauchy condition (Proposition 8.1.8) on p,, ..., Zn,,

Vi=1,...,L,Ym,n >N, |gm(zn,) — gn(zn,)| < €.
- Letz € K and 1 < i < L such that x € B(z;,6,,). For m,n > N, we have

lgm () = gn ()| < |gm(x) = gm(2i)] + |9m(2i) = gm(@n)| + [9m(2n;) — gn(2n,)]
+ |gn($m) - gn(zi)| + |gn(zi) - gn(x)|
< Je,

where for the middle (thrid) term, we use Eq. (8.20); and for the other terms, we use Eq. (8.21)
and the fact that z, z,, € B(z;,05,).

Therefore, for every x € K, the sequence (g, ()),>1 is Cauchy, and we saw from above that the
choice of N is independent from the choice of € K. From this we can deduce that (g, (x)),>1
converges for every x € K, and this convergence is uniform, so the limit function is still an
element of C(K, R).

O

8.4.2 Stone—Weierstrafl theorem

The following Stone-Weierstraf3 theorem allows us to find sets of functions that can approximate contin-
uous functions uniformly on compact spaces.

Theorem 8.4.6 (Stone-Weierstrafl theorem) : Let X be a compact metric space and K = R or C. The
space of continuous functions C(X, K) equipped with the supremum norm ||-|| . is a normed vector space
and a normed algebra. Let A C C(X,K) be a subalgebra of C(X,K). Suppose that

e le A;

Last modified: 20:40 on Tuesday 20™ May, 2025

BNE RHEBIETERH

- BIREE L > 1 1FEF (90(2k))n>1 BB - FRPIBEIRD N (e, 1) > 1 17
Vm,n > N(e,zk), |gm(xk) — gn(zk)| < €. (8.20)

- A F NFEEEM > BREME - ¢ K » T 0. > 0 EEHREE > 1
x5

y € B(2,6:) = |gn(z) —gnly)| <& (8.21)

BERK B(2,6.) B K NHEBES  BEH K WEREMY  HMERI L > 188
Zlu"’szeK;‘I%E

K= B(Zz,ézl)

IC-

WREE 1 <i< L BRIFBEERE n > 1 68 2, € B(2:,6,) °
- RME N = max{N(e,2n,),...,N(e,2n,)} > EEFEFALIOABIEGE (@
RE8.1.8) HWR 2., .., z,, BRI :

Vi=1,...,L,Ym,n > N, |gm(zn,) — gn(zn,)| < €.
- Sre KUR1<i< LEE 2 e B(2,6,,) c R m,n> N> EFE

|gm () — gn(@)] < [gm (@) — gm (20)] + 19m (2i) = Gm (Tn,)| + |gm(Tn;) — gn(@n,)]
+ |gn(xm) - gn(zi)| + ‘gn(zi) - gn(‘r)’
< be,

HAFMEHPENIE (=18 FATR (8.20) ; HREMNIE » BHMIERATH (8.21)
BE v, € B(2;,0,,) °
Hit > HRBE 2 € K FF (gu(2))n>1 2HEN - BERMARGEER - N BEEZEHE
r € K RUSEEERT - FRAEMIRI LUK » IRBE 2 € K > (g0(2))n>1 GIRE - MEEE

WD - FRUBRRBGER G C(K,R) B - .

$E—/Ei Stone-Weierstraf} FEIR

T RBY Stone-Weierstrafl FEIBEIFRPIFEHEERNREBES @ B LUERTERBES LEE

EIE 8.4.6 [Stone-Weierstray FFIE] : © X ZABRBIREZTRUR K = R 3 C < ;& &R EFTH#E
FRXRYZER] C(X,K) Bl P/ EREH ||| % SSEREREZER > LESEMERE -
ACC(X,K) % C(X,K) IFRE - RE&
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Chapter 8 Sequences and series of functions

« A separates points, that is for any v # y € X, there exists f € A such that f(z) # f(y);
o (inthecase K = C) f € Aifand only if f € A.
Then, A is dense in C(X, K).

Example 8.4.7 : Below are some examples for which the Stone-Weierstrafy theorem applies.

(1) Let I = [a,b] be a segment with K = R. The set of polynomials K[X] viewed as functions
defined on [ is dense in C(I, R).

(2) Let I = [a,b] be a segment with K = R or C. The set of all the Lipschitz continuous functions
is dense in C(I, K).

(3) Let Cper(R, C) be the set of 27-periodic continuous functions on R. The set of trigonometric
functions, which is spanned by the set {z + €!"* : n € Z}, is dense in Cper(R, C).

The proof of the Stone-Weierstrafl theorem is quite involved. We are going to state a particular example of
this theorem, called Weierstraf§ approximation theorem, and prove it using a more elementary approach. After

this, we need a few lemmas (Lemma 8.4.11 and Lemma 8.4.12) that allow us to prove the Stone-Weierstraf3
theorem.

Theorem 8.4.8 (Weierstrafl approximation theorem) : Let I = [a,b] be a segment and C(I,R) be
equipped with the supremum norm ||-|| . Let P be the set of all polynomial functions. Then, P is dense

in C(I,R). In other words, for any f € C(I,R), we may find a sequence of polynomials (P,,)n>1 such
that

1P = flloo 7557 0-

Remark 8.4.9:

(1) It is not hard to check that the set of all polynomials P is a subalgebra of C(I,R) and it satisfies the
conditions in Theorem 8.4.6. Thus, the Weierstrafl approximation theorem can be seen as a special
case of the Stone—Weierstrafy theorem.

(2) It is important to take I = [a, b] to be a segment. For example, in Exercise 8.6 we have seen that this
theorem does not hold if I = R.

The original proof from Weierstrafl uses convolution, that we do not discuss in this class. The proof we
give below is from Bernstein, which can be reformulated using a probabilistic language, in terms of the law
of large numbers for Bernoulli random variables.
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(1) B =1ab BREZAK =R ERMIBZIERES K[X] BIEEERTE [ LHIREE > b
£ C(I,R) FEEREN o

(2) &1 =[a,b] BEBE K — R 5, C - BT Lipschitz SERBFFEMATESTE (1, K) &
BT -

3) B Cper(R,C) AH R LEHEAZA 2r RUEBRBFAERMZER c B {z — ¢ 1 n € Z} R4
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Stone-Weierstrafy FEIERIFEIAARFHE o I SLRGNEEEIZBVEFE - BBIE Weierstraf FLUERY -
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1P = flloo 7557 0-

53 8.4.9 :

(1) BPAHBLR > HFTEZEXMBEHRNES P 2@ C(L,R) WFHKE > mMAtAEEE
8.4.6 RIS o BT » Weierstra3 T {BUEIBR] LATR A /2 Stone-Weierstrafy & IEAY4FF o
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AL e
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Chapter 8 Sequences and series of functions

Proof : Without loss of generality, we may assume that I = [0, 1]. For every integer 0 < k < n, let us
define

bn,k I = R
T (Z) (1 —z)"k,
and for n € Ny, define
B,: C(ILR) — R[]

"ok
foe ];]f(n>bn,k(x).

We are going to show that B,,(f) converges to f uniformly.

Given ¢ > 0. Since f is continuous on the segment I, it is bounded. Let us take M > 0 such that
|f(x)| < M for all x € I. By the Heine-Cantor theorem (Theorem 3.1.17), we may find 7 > 0 such
that

Ve,yel, |z—yl<n = |f(z)-fy)l<e.
Then, for any n € Ny and = € I, we have

Ba(f)(@) = (@) = 1Ba(f)(@) = F(@)Bal1)] < kzzjo 1(3) = 1@ psto)
<3 5(5) - 1@ pusta) + hy 7(5) - s@)busto)
where
K= fosken:E s}, i K= foskan:|E o <ol

Using the uniform continuity, the second sum involving indices in K can be bounded from above,

> () - s@

keKy n

n

byk(x) < Z ebp k() < Z ebp () = €.

keKo k=0

For the sum involving indices in K7, we are going to use the following square trick,

2
kez[;l ‘f(i) - f(l')’bn,k(.%’) <2M kgﬁ bnk(r) < 27;\2/[ k;(l (i — x) b i ()
oM .

= 2 [Bule?) - 203(0) + 4B, (0).
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G C R BPIRTLURER 1= [0,1) - HRNEBERE 0 <k <n ' BEMAER
ang N R
x = (Z) (1 —z)" 7k,

EEHR e Ny ' BEE

B,: C(I,R) — R[]
" k
f F{ = )bni(x).
oy (2 )tusta)

HFIBEREERA B,(f) FIWEE] f -
fBE e >0 HR fIERER T BEE > EER - ERMWN M > 0mE |f(z)] < M HBRFE
x € I ° 1B¥% Heine-Cantor I (FIE 3.1.17) - FMIBEHE) » > 0 15

Ve,yel, |v—yl<n = |f(z)-flyl<e

BE WHREEneNy BBz BB

BuE) ~ £ = 1B - @B < 3 [7(E) = 1]
k=0
<Y () - 1@l + X [7(5) - f@)pso)
keKy keK>
5
k k

I e 1

<nj.
n

fERYEEN - FEMEFRIRE MEE K RN - FPIATURFR LR :

> () - f@

keKo

HIRTRE K, TR > BRFAER TERNF AR

>n}, R K2:{0</~c<n:‘n—:c

n

bn,k(x) < Z 5bn,k(x) < Zabn,k(x) =&

keKo2 k=0

2
S () = r@ase) <20 3 tuae) < 25 5 (5 - buato)
keKy keKy keKy
2M - [k 2
<2 (7))
- 2;‘24 [Ba(22) — 20B,(2) + 22Ba (1))
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Chapter 8 Sequences and series of functions

Consider the following identity,

F(a,b) =[a+ (1 -0)]" = i (Z) a®(1 —b)"

k=0

Then, we may compute By, (1), B,,(x), and B, (z?) as follow,

Bn(1) =) byp(z) = Fz,z) =1,
k=0

Bu() =Y Shpw) =1y k(’;) -
k=0 k=1
= Z;CLF(QZ,:U) = %n[ﬂz + (1 —2)" =,
n 2 n
k=0 k=0
2?2 92 x
= E%F(m,x) + E%F(az,aj)
z? x
= =D+ 0 —2)" ]+ Snlz+ 1 —2)]"
=22+ z(1—x)

Therefore, we find
k 2M z(1 —x M
S r(E) - s@fouste) < BT < AL
keKy N n N

Putting all the inequalities together, we obtain

M

Bul)@) — f@) <&+ 5.

By taking the supremum norm then lim sup over n, we find
limsup || B (f) = fllo < e
n—oo

Since the above holds for any arbitrary € > 0, we deduce that limsup,, ., [|Bn(f) — fllo =0. O

We need to introduce the notion of lattice, and state the lattice version of the Stone—-Weierstraf} theorem.
This will allow us to recover the original version in Theorem 8.4.6.

Definition 8.4.10 : Let X be a compact metric space and £ C C(X,R) be a subset. We say that L is
a lattice if

Vf,g € L, max{f, g}, min{f, g} € L.
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k=0
Bu(z) =Y %bnk(a» ==y k@ 21— )
k=0 k=1
0 x
= S o-F(r,2) = Snle+ (1-a)]" ' =,
n k2 " k(k—1)  k
Bn$2: =) bai(z) = + 5 ol
=3 (3) bos) = 3 (4 5 st
22 92 9
= 55z F @) + - F(z,2)
2
= Slntn = D + (1= 2))" % + Snfa + (1)
.2 z(l —x)
o n
Htk - #1953
k 2M z(1 — x) M
kezKl\f(n)—f<x>]bn,k<x><nQ 2 < g

BAEASFARE—IE - HMER
M
Buf)(0) ~ @] < 2+ o
ML E/N EREE - B n B limsup @ FJLIEE
limsup || Bn(f) = flloo <.
BN EEHERER > 0 BRI HIHHER limsup,,_,o | Ba(f) — fllo =0 O

BRI FIES | AMEMBIBER - X B 4G H M ARABY Stone-Weierstrafl FEIE < ;R LGERFIHSE
1 8.4.6 FIRIBARARIEE

EH84.10 I DX BEEMETHUR L CC(X,R) BTES - IR
Vf,g €L, max{f g} min{f g} €L,

RUFEFIER £ SELH -
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Lemma 8.4.11 : For any a > 0, there exists a sequence of polynomials that converges uniformly on
[—a, a] to the function x — |z|.

Proof : There are two ways to prove this lemma. It can either be seen as a direct consequence of the
Weierstraf3 approximation theorem (Theorem 8.4.8), or be proven by construction.
By scaling, we may assume that @ = 1. We note that for z € [~1,1],and u = 1 — 22 € [0, 1], we

have
| = Va2 =\/1-(1—-22)=v1—u

V1i—u= Z an(—u)", where a, = <1/2>, (8.22)

n=0 n

If |u| < 1, we have

where the power series comes from Example 8.3.35, and it has radius of convergence equal to 1. We
want to show that this power series converges uniformly for u € [0, 1]. We may check that it converges
normally, then the uniform convergence follows, see Proposition 8.1.22. For this, it suffices to check
that > a,, converges absolutely. For n € Ny, we have

l(_l) (l —n+ 1) 1 n—1 on — 3N

_2\73)---g T _ (=) (2n - 3)!
ap = =
n! 2n n!
(—D)" 1 @2n—-3)N2n—-2)t  (=1)"! (2n —2)!
2n n!(2n —2)11 221 pl(n — 1)

and the Stirling’s formula gives us |a,| ~ cst - n~3/2. This means that 3" a,, converges absolutely. []

5|13 8.4.11 : HIRER 0 > 0 BEERTE [—a,d] LNZENFT - ERMHEEIRBRIRH

T |x| e

HE: RPEMEA A KRERE@ESIIE - KT LUBMEER WeierstraB S BIEE (E
Hg48) NEEER  UZERBEERTEHR -
HP AT B EMMER > BT R o = 1 HEED > Rz € [-1,1] UKk u =

1—-22¢10,1] » &MB
z| = Va2 =\/1-(1—-22)=V1—u
MR |ul <1 BMEE

V1i—u= 7%%an(—u)", Hrh g, = (122), (8.22)
HAp R ALERF 8.3.35 75 > MEMAKEFEER 1 - FMEEFPEEEREY
Ruel0l] EHTKHK - RMOTUREMEERKE  BEMEERSI IR - Riv
78 8.1.22 o At » HPIRFERE Y a, REEE - B n c Ny » THME

(-3 ...-n+1) (=) (2n-3)

a’TL: =

n! 2n n!
=Dt @en=3)2n —2)t (1) (2n — 2)!
2n n!(2n—2)11 221 pl(n — 1)
HBEA stirling AT » HAIEEE |a,| ~ cst-n 32 c ERARE Y a, TBEUIH - O

Lemma 8.4.12: Any closed subalgebra A C C(X,R) is a lattice.

Proof : Let A C C(X,R) be a subalgebra. Given f, g € A, we have

f+g+|f—g|

f+g9 |f—4d
2 2 ‘

2 2

and min{f, g} =

max{f,g} =

Therefore, it is sufficient to show that for h € A, we also have |h| € A to conclude. Let h € A.
Due to the continuity of A and the compacity of X, we can define a := max,ex |h(x)| < oo, see
Proposition 3.1.12. By Lemma 8.4.11, we may find a sequence of polynomials (P,,),>1 that converges
uniformly to the absolute value function on [—a,a]. For every n > 1, define h,, = P,(h) € A.
Therefore, (h,,)n>1 is a sequence of functions that converges uniformly to |h| on X. Since A is closed,
we conclude that |h| € A. O
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Theorem 8.4.13 : Let X be a compact metric space with at least two points and L C C(X,R) be a
lattice. Suppose that for any x # y € X and a,b € R, there exists f € L with f(x) = a and f(y) = b.
Then, L is dense in C(X, R).

Proof : Let £ C C(X,R) be a lattice. Let g € C(X,R) and € > 0. We want to construct a function
f € Lsuchthat || f — g, <e.

For any a,b € X, we may find f,;, € L such that f,,(a) = g(a) and fo,(b) = g(b). By the
continuity of f,; and g, we know that there exists an open set U, containing b such that f,; >
g — e on Uy, Since (Ugp)pex is an open covering of the compact space X, by the Borel-Lebesgue
property (Definition 3.1.3), we may find by, ..., by, € X such that (U, )1<i<m covers X. Let fo :=
SUP1<j<m fab; € L. Then, we have f,(a) = aand f, > g — € on X. Similarly, by the continuity of
fa and g, there exists an open set V, containing a such that f, < g + ¢ on V. Since (V},)q.cx is an
open covering of the compact space X, again by the Borel-Lebesgue property (Definition 3.1.3), we
may find a1, ...,a, € X such that (Vi,)1<j<n covers X. Let f := infi<j<p fa;. Then, we may easily
checkthatg —e < f < g+eon X, so | f — gl <e. This concludes that £ is dense in C(X,R). O

Proof of Proof of Theorem 8.4.6: Let A C C(X,R) be a subalgebra satisfying the assumptions
in Theorem 8.4.6. We write £ = A, which is still a subalgebra, because addition, multiplication, and
scalar multiplication are continuous. It follows from Lemma 8.4.12 that £ is a lattice. Now, let us check
that the assumptions in Theorem 8.4.13 are satisfied.

Letz # y € X and a,b € R. By the assumptions in Theorem 8.4.6, we may find p € A such that
p(x) # p(y). Since 1 € A, we may also add ¢ x 1 € A to p, to make p(x) + ¢ # 0 and p(y) + ¢ # 0.
Without loss of generality, let us assume that p(z) # p(y), p(z) # 0, and p(y) # 0 for some p € A.
Then, we may look for f € Ain the form f = ap+ p?, where o, 3 € R can be chosen properly so that
f(z) = aand f(y) = b. Therefore, Theorem 8.4.13 tells us that £ = C(X,R), that is A = C(X, R).

For the complex version of the theorem, we proceed as follows. Let A C C(X, C) be a subalgebra
satisfying the assumptions in Theorem 8.4.6. Let Ay C A be the set of real-valued functions in A,
which is a R-subalgebra of C(X,R). We want to check that Ay = C(X,R). First, it is not hard to
check that 1 € Ag. Then, for any f € A, since f € A, we deduce that Re(f),Im(f) € Ag. For any
x # y € X, there exists f € A such that f(x) # f(y), so we need to have Re(f)(z) # Re(f)(y) or
Im(f)(xz) # Im(f)(y). This means that Ay separates points. By the real version of the theorem, we
conclude that Ay = C(X,R). For any function f € C(X,C) and ¢ > 0, we may find g1, g2 € Ag such
that

IRe(f) — gille <o and [Im(f) - gallc <=

Since A is a C-algebra, we know that g; +1g2 € A. Moreover,

If = (91 +1ig2)lle < Re(f) = g1lloe + Mm(f) — g2/l < 2e.

This shows that A is dense in C(X, C). O
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SHHZERE X BIBAEE © AR¥R Borel-Lebesgue 8 (€% 3.13) - HMIBEHRE) b1,...,0, € X 1F
17 (Uap)1<icm BEX ° D fo 1= supicjcm fap, € Lo FBE BB fo(a) =a BB fo>g—c¢
EXL-FE FHLMNEEE FEES HNHEEV, FR L <g+eEV, L-BR
(V) aex BERWZR X FHEE - BR{ER Borel-Lebesgue 8 (E#& 3.1.3) - FHFIaeiE
at, ... an € X 15 (Vo)) 1<jcn BE X o B [ 1= infigjcn fo, ° BE > RFITUEZRERE X
F EMBg-—c<f<g+e FAL|f -9l <e° EBERMAILUEE £ T C(X,R) PERER
By o O

EIE 406 WEAMNERE: DA CCX,R) AREEE 846 EFHRFHIFRE - FHME
L=A EHEEREFRE  AANE - FREMBDEFTET S EAREEN - #5318 8412 K
I19H £ 2EMHEE - IR7E - FBRORBETIE 8.4.13 PRBRERGMIL

DrAyc XEEBabc R IBBETIE s.4.6 PARER - FMIBEIKE) p ¢ A S p(z) # ply) ©
MR 1e A BAATLUBcx 1€ AMB]p - BRMERD p(2) +c#A0BB py) + ¢ #0° K
—hRME  EBRFBREpc A ME px) #py) ~ p(z) # 0FBEAE ply) # 0° B » HFIHATIUL
BERf=ap+ P R fc A REEEB o, BcREB f2) =aBE f(y) =b-EHIb ' &
Ba13HRIHM L =C(X,R)  HELR A=C(X,R) °

BHREMAREEZRAEIREANTEE - S A C C(X,C) AMEEE 846 EPRFHNFH
HoDACABAPNEREFABENES  EE2E C(X,R) W R FRE - HMEER
B A =CX,R)-B% BMIFTHERET1c A -BR HREEfcA BR fec A EM
B Re(f),Im(f) c Ag e BHREB s Ayec X BFEfc ARRB f(z) # f(y) » FAIAEM—E
B8 Re(f)(x) # Re(f)(y) H Im(f)(z) # Im(f)(y) ° BT » FFIFE Ay BEOEERL - FEARHEH
RABRIELR - HPIEHE Ao = C(X,R) e HRERRE f € C(X,C) BEH ¢ > 0> FMeTUILE]
g1, 92 € Ao E15

IRe(f) — g1l <& MK [Im(f) — g2/l <&

R A ZME C K HfIE g1 +ig2 € A° I - BfBER
1f = (91 +1g2)lloc <IRe(f) = g1l + Mm(f) = g2l < 26

IEFEAT ATEC(X,C) EFEEREM - .
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Chapter 8 Sequences and series of functions

8.4.3 Peano existence theorem

As an application of the Arzela—Ascoli theorem and the Stone—Weierstrafy theorem, we have the following
Peano existence theorem, which gives us the existence of solution for differential equations.

Theorem 8.4.14 (Peano existence theorem) : Fix an integern > 1. Let  C R x R" be a non-empty
open subset, and I’ : Q2 — R"™ be a continuous function. Let ty € R and yo € R" such that (to, yo) € €.
Let a,b > 0 such that

R:={(t,y) : [t —tol < a,lly —wol < b} C Q.

Let M > 0 and suppose that || F'(t,y)|| < M for (t,y) € R. Then, the following differential equation

{y'(t)ZF(t,y(t))a vt e,
y(to) = vo,

has a solution t — y(t) defined on I := [ty — a', to + '] witha’ = min{a, 1 }.

Remark 8.4.15 : It is important to note that the Peano existence theorem does not guarantee uniqueness,
see Example 8.4.16. In order to have a unique solution, the function F' needs to satisfy stronger properties,
as stated in the Picard-Lindel6f theorem, also known as the Cauchy-Lipschitz theorem, see Theorem 8.4.17.

Proof : The proof consists of three parts: (1) We reformulate the solution to the differential equation
as a fixed-point problem; (2) we show the existence of the solution in the case that F' is a Lipschitz
continuous function; (3) we show the existence in the general setting.

Without loss of generality, we may assume that ¢ = 0 and yp = 0 € R" by a translation in time and
in space.

(1) First, let us reformulate this as a solution to some fixed-point problem. Let us write X' =
C(I, B(0,b)). Consider the following operator,

T. X o x
fom JoF(s, f(s)ds.

Let us check that for f € X, the image T'(f) is well defined. We first note that (s, f(s)) € R for
any s € I, so for any ¢t € I, we have

<M < b,

Il =| [ Fere)as

In other words, T'(f) is a function from I to B(0, b). Moreover, it follows from the fundamental
theorem of calculus that 7(f) is of class C!, so we do have T'(f) € X. As a consequence, if y
is a fixed point of 7', that is T'(y) = y, we deduce that y is of class C*°. Moreover, if y is a fixed
point, by taking the derivative at ¢t € I, we find

Y (t) = (T(y)'(t) = F(t,y(t)).
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FE=INE Peano FIEMETEIR

BRKMEETER T IR Peano FEMEIE » 35 Arzela-Ascoli FEIEF] Stone-Weierstrafl & I HY FE
B MM AN EENE -

EIE 8.4.14 [Peano FEMTEE)] : BEIEEBH n > 1°- D QCRxR*"ABIFERE UK
F:Q > RZEBRE -5ty RUK y € R* 1§18 (to,y0) € Q° B a,b > 0 imE

R:={{ty): [t —to|l <a,lly — ol <b} SO
B M >0 MREFHN (t,y) € R FHFIE | F(t,y)|| < M - FRE - TEEEMS HERX

{ y(t) = F(t,y(t), Vtel,
y(to) = yo,

@ﬁﬂﬂfﬁ%& 1= [tQ — a',to + CL/] J:E,\Jﬁg t— y(t) ’ ﬁEFI a = min{a’ %} o

3% 8.4.15 1 BREEME » RMIEFEEER Peano FRAMEIEN R B IREEAIME—1E » REHIs.4.16 ©
MREBERENME—M > KRB F FERECEBRNME - REE 8.4.17 EFPB Picard-Lindelof EE -
#81E Cauchy-Lipschitz EIE ©

28R ¢ WAHEFERD =80 : (1) RFIBMO FIENEEF L AEEREE 5 2) HME F
18 Lipschitz B EBIERT - HABNEREN  6) T—RHNRET » HFERBENEFE
'E °

RER—gt » FPITUHRBEMZERMTERS > ERE =0&EB yy=0€R"°

(1) B EBRFHEPAEREPRNEFRCLSEERMEE - FfIEE X = C(1,B(0,0) - ZETE
EEES T -

T: X — X
foe JF(s £(5)) ds.

EEMEBE  HR fc X T(f) WEREEZRBHHN - HFILIER  HREEsc I XK
RoBEME (s, f(s) e R FIMERERtc T HMBE

< JtM < b.

IO = | [ Fo. £ as

BAEEER - T(f) =EE 1 BRFE B(0,0) BIKE © L5 EMBEDEXREE » FFIRE
T(f) = C 18 » FIUFFIB T(f) € X - EIt - SR y A T WEIER: - LMERE W
R T(y) =y HfHERS y §2 C~ |/ - b5 R y SEEER:  FHE tc IS -
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Chapter 8 Sequences and series of functions

We may also check easily that y(0) = T'(y)(0) = 0. Therefore, the conclusion of Theorem 8.4.14
is equivalent to showing that 7" has at least one fixed point.

(2) Let us assume that F' is an L-Lipschitz continuous function on R. In this case, we can easily
check that T is an (La')-Lipschitz continuous function, so it is continuous.

We are going to define a sequence of functions (y,, ),>1 which are elements of X. First, let y; be
the constant zero function, which is indeed in X'. For n > 1, we define y,,+1 = T'(y»), which is
in X from (1). By induction, we establish a sequence (¥ ),>1 in X'. Moreover, for any ¢,t' € |
and n > 1, we have

¢
yn(t) — yn(t)| = H/t’ F(s,yn—1(s))ds|| < M|t —1|. (8.23)

This means that (y,),>1 is a sequence of equicontinuous functions. The Arzela-Ascoli theo-
rem’allows us to find a convergent subsequence (Yp(n) )n=1 With limit y € X'. We want to check
that T'(y) =

Let us denote I = I NR4 = [0,d/]. For every n > 1 and ¢t € I, let us define

My(t) = sup [T(ya)(s) = yn(s)| = sup [[yn1(s) —yn(s)ll-

0<s<t 0<s<t

Forn > 2 and s € I, we have

1T (yn)(s) = yn($)Il = T (yn)(s) = T (yn-1)(s)|l
H/ (u, yn(u F(%yn—l(u))) du

</ LM, —1(u)du
0

which implies that

t
Vie T, My(t) <L / M, (u) du. (8.24)
0
We may compute M; as below,
Vte Iy, M(t)= sup |ly2(s)|]| = sup / F(u,0)du|| <tM.
0<s<t 0<s<t
Then, for M, we apply Eq. (8.24) and find
t t2
Vtel,, Myt)<L | M(u)du= ELM.
0
By induction, we find, for every n > 1,
" n—1 (a/)n n—1
Viely, My(t)<—=L"M<~——L"M——0.
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g
Y (t) = (T()'(t) = F(t,y(t)).

HFIEAIURE y(0) = T(y)(0) = 0 - HLt - T 8.4.14 UFEREFER T ELVE—EEE
R FER ©

ERMIRER F 2E7E R £BY L-Lipschitz SEIERE o TEEEFERT » HAITURGRE
={E (La’)-Lipschitz 3EAERZ » FrA &E4E o

EMBERETEBE X PRTEMERNREFEY (v))is1 ° TR Dy BEHSRE
EHEEEX PN BN > 1 HAIER yurr = T(yn) » ¥ (1) B5TER - FFIFEM
BE X EF c BHEERWNE  RATUERE X FHFEF (yn)ns1 © 1S BHRER
t,t' eI BB n>1 KME

t
() — ya(t)]| = H/t F(s, yn1(s)) ds|| < Mt —t']. (8.23)

ERRE (Yn)n=1 CEEEEEXEFTERAFES o Arzela-Ascoli FEIE FEF I AT LA B WK
BFFFS (Yp(n))nz1 * BIRECIFy € X - RFIBERE T'(y) =y ©

EEME L =INRy=[0,d] BRBEn>18Ftcl,  BEMER
My (t) := sup [|T'(yn)(s) — yn(s)| = sup |lyn+1(s) —yn(s)]l -
0<s<t 0<s<t

HRn>288sel, ' &ME

1T (yn)(5) = yn($)l| = (1T (yn)(s) = T(yn-1)(s)ll

H/ (U, yn(w)) — F(u, yn-1(u))) du

< / LM, (u) du
0

H<L / "My () du (8.24)
0

25 A
=]

faii
Eot

VeI, My
EF LUK T A REE M, -

X

Vte I, M(t)= sup |ly2(s)|| = sup
0<s<t 0<s<t

/FuOdu

B - BN M, - HPERR (3.24) - ARRFR -
t

t2
Vi€, Ma(t) <L [ Mi(u)du= LM
0

BRERE WX > 1 RFIEH

n 1 (a/)n
Viel,, Mu(t) < =L""'M <
n.

L" M ——0.
n_ n—oo
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Therefore, this allows us to conclude that (T'(y,(n)) — Yy (n) )n>1 uniformly converges to 0 on .. Xtk » FAFIER (T (Yo(n)) = Yo(n))n=1 gE I EHFKREE 0 - #E - ERMEMNAE -
;I;en, a similar ar.gum'efnt allow;~ uss. to get the ur.lfifornll convergencte to 0 ZnTI., = t{ NR_, so ?*z{FﬁEJLM%éIJUIEIHﬂZ?&EIJ 07E [ = INR_ _FHEH58 » FIUERE I T €289491 -

is convergence is uniform on I. Since y,,(,,) uniformly converges to y and 7" is continuous, we A P g, e & P -
deduce that 7'(y,,(,,)) uniformly converges to 7'(y), giving us T'(y) = y. EEB/\\ Yon) BITTWEER] y - TE T BERRY - RPHER T(y,n) SRR T(y) * 5E

#a Pl T( ) =
(3) If F' is only continuous, by the Stone-Weierstrafl theorem (Theorem 8.4.6), we may find a se- (3) TR Fr J2EEN - 1B Stone-Weierstral TIE (EIE 8.4.6) - HFIaEHRBIH Lipschitz
quence of Lipschitz continuous functions (F},),,>1 that converges uniformly to F' on R. For every EERBFAERNES (£ BER EHORBEF - BREE> 1 Sy, B
n 2 1, let y,, be the corresponding solution to the differential equation with F' replaced by Fi,. s o o o= s E/ '; '
Then, (Y, )n>1 is a sequence in X. Since (F},),>1 converges to F' uniformly on R, we know that T ARS8 F 8K F, Fﬁﬁi‘]%ﬁ%ﬂ’ﬂﬁ@ iE Bk ;'5 C(yn)n>1 BEEETE X EF
(F%)n>1 can be uniformly bounded by a constant M’ > 0. This implies that the sequence of IS IR (Fo)n1 B R EHIKRERE F o HFIRE (F)n AR —EEH
functions (y,,)n>1 is equicontinuous due to the same Eq. (8.23), with M replaced by M’. There- M > 0¥ g9ZE1E - BB (8.23) FH M #E M BRFAFNSERBEMRBRTIULE
fore, the Arzela-Ascoli theorem gives us a subsequence (Y, (»))n>1 that converges uniformly to FEM RBFEF (y)ns) BEHEEEN o B Arzela-Ascoli EIRIBERFIFF5F
y € X, and we need to check that 7'(y) = y. To achieve this, we start by checking that the e ,_\n : e s
functions in the sequence (s +— Fi, ;) (S, Y (n)(8)))n>1 are equicontinuous. (Yp(m))nz1 * EIDERE y € X > BREMABRE T(y) = y - BRKFITRELBFS
Lete > 0. Forn > 1 and s,t € I, we write (s F, (n)(svygp(n)( 5)))n>1 BEEEEN o
BEec>0 Hln>1EFs tel FMEC
1E5 (5, yn(5)) = Fn(t, yn(8))]]
< UFu(s, 9a()) = F(s, yn()) | + I1F(,3n()) = s,y + 1P (5, 5(5)) — F(t,y(0)] 1B (5, 5 (5)) — Fult, yn (1))
I () = FE gD+ 1EE a(6) = Falt 30 < 1B (5.9()) = F(s,yn ()] + (5 9a(s)) = Fls,y()] + [ F (s y(5) = Ft,y(0) |

Since s — F'(s,y(s)) is continuous on the segment I, it is uniformly continuous. Similarly, the +F(tyt) — F(t,yn ()] + | E(E, yn(t)) — En(t, yn(t)]]

map (t,y) — F(t,y) is also uniformly continuous on R. We may take 1 > 0 such that

R s o Fs,y(s) EMEE I E2EMM - BRI EHYSEE - FIE B (4y)
t=sl<n = [F(sy(s)) - Fty@)l < F(t,y) T R ELRESSEHEN o RPTIUB 4 > 0 6518
< €.

1t y) = (s, o)l <n = [|F(ty) - F(s,2)] <
. : t—sl<n = |F(sy(s) - Fty@®)l <e,
Since Yy, ) T Y uniformly and F;,,) — F uniformly, there exists N > 1 such that
Ity) = (s,o)l <n = |[F(ty) - F(s, )| <e.

W2 N e~ <0 and R - F < R ) y RER 0 B gy — o F RSN N > 1 48
Therefore, for n > N, and s,t € I such that |s — ¢| < 7, we find yns N H H 3 MR H FH <

nz40 e Y| ST pn) T S €
[ (5 5 () = Fotoy (6 o (1)) | < 52 Bt - R 0 > N BB 5.t € TRR |s — 1] <y - RIHE

This means that (s = F(,)(S,Yp(n)(5)))n>1 is equicontinuous, so has a convergent subse-

quence, and we denote the corresponding extraction by . Therefore, for ¢t € I, we have HF (s yYo(n )( s)) — F, o(n) (t, Yo(n) (t))H < de

¢ ! EBRRE (s — Fuo (8, Yom n>1 B EEER TS B FFS  RFIEMATE

T(Waei)(0) = [ Frasto (5 pouion(s)) ds — [ Fls,y(s))ds = T@)(0), BAVIER (51 Fon) (9 ot (8)) o RSEEAE

0 0 FERIRVZEENRERECIE ¢  ELL - Bt € T B

which is uniform in ¢ € I by Proposition 8.2.5. We conclude that T'(y) = y. t
0 T(Ypoun / Fpoutn) (5 Upoio(5)) ds = [ Fls.y(s) ds = T(w) 1),
EEKEBIREME 825 » Wt c T PRI - BRFWEE T(y) =y © -
>Theorem 8.4.4 (2) tells us that the set {y,, : n > 1} is a precompact subset. It can be shown that there exists a subsequence of EE 844 (2) SHREMERE {yo : n > 1} FEREBHOFRE - HATURHBFS (yo). BEEAETFY - BE

(yn)n>1 which is a Cauchy sequence, see Exercise 8.31. Then, this subsequence converges by the completeness of X'. 7831 o BRME > iFEd X WSt EEFEIIM G -
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Example 8.4.16 : Let us take n = 1, and F'(¢,y) = +/|y| with initial condition (¢, yo) = (0,0). In
other words, the differential equation we are looking at is

y'(t) =/ly(t)| and y(0) =0. (8.25)
We have many different solutions to Eq. (8.25),
« y(t)=0fort € R;
«y(t) = % fort € R;
« forany a > 0, y(t) = % fort > aand y(t) = 0fort < a.

Indeed, the function = — /|| is not locally Lipschitz continuous at 0, so does not satisfy the assump-
tions of the Picard-Lindelof theorem (Theorem 8.4.17).

The following Picard-Lindel6f theorem, also known as Cauchy-Lipschitz theorem, gives sufficient condi-

tions for the solution to an ordinary differential equation to be unique.

Theorem 8.4.17 (Picard-Lindelof theorem or Cauchy-Lipschitz theorem) : Let us fix the same nota-
tions as in the statement of Theorem 8.4.14. In addition, suppose that F' is L-Lipschitz continuous in the
second variable in R. Then, apart from the existence provided in Theorem 8.4.14, we also have uniqueness
of the solution, in the sense that if J is an interval containing to and ¢ : J — R" is a solution, then y
and o conincide on I N J.

Proof : We keep the notations from the proof of Theorem 8.4.14. In particular, we want to show that
the map 7" defined therein has a unique fixed point. More precisely, we want to show that there exists
an integer m € N such that 7™ is a contraction, then we may conclude by Exercise 3.24.
Let f,g € X. We proceed in a similar way as in (2) in the proof of Theorem 8.4.14. For n > 1 and
t € 1, let us define
Ka(t) i= sup [[(T")(s) — (T"g)(s)]] .

0<s<t

Forn > 2 and s € I, we have

I17"(1)(s) = T = | [Pl T (@) - Pl T (g) )
< [ Lt -1 ) w) | du

S

< | LK,—1(u)du,
0

which implies that
t

Vtel,, K,t)<L| K,i(u)du
0
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g5 8.4.16 : BB n =1 UK F(t,y) = /|y| FAFIRRIEE (to,y0) = (0,0) ° #AIFER » T
BEEBIMOHENT

y'(t) =/ly(t)] MUK y(0)=0. (8.25)
I (8.25) BIEZRREIAVAE -
cyt) =0HRteR;
cy(t) = M HR e R ;
CHIMEE 0> 00 y(t) = CL R > a0 R y() = 0Bt <ao

FEL BBl — |2 7E 0 BEHBEARZBEB Lipschitz B » FTXAREW/E Picard-Lindelsf
EE (T 84.17) EHRHERE -

T EIE(E Picard-Lindelof FIE » HFE{E Cauchy-Lipschitz I & 8 7 ROMEHFEIBMO AR
REEHE— -

EIE 8.4.17 [Picard-Lindelsf FEEE » Cauchy-Lipschitz EIE] : FEHFIERERETIE 8.4.14 BIM
AERABEIRYESER © thSY  RER F T R > BWRE T EEEE L-Lipschitz FIER © AR » bR T
EIE 8.4.14 FIGHMINEEEER 2N - BFIEEH—MNER - SEE—ENERWT : A0
RIBEEStNEM - Be: J >R Z2EFE > BEy Mo EINJ LEEXEEEFN -

PR FIERRERE s.4.14 HEAEPERAIEHE - PIBEFERNRE - BEMERLBRE
T SEM—MEER - EREYIRSR > AFEEZAEEEH » c N E17 T & 2@ RHER
5 - RRERAERE 3.24 2RHBHE -
T fige X o BRPIEREEE 84.14 (2) ERBLUNGERFER - W n>1 UK tel, 58
HFIEE
Kn(t) = sup [[(T"f)(s) = (T"g)(s)] -

0<s<t

HMn>2FGscl, » HME

I7(7)(s) = T)(6)] = | [P T () )~ P T () ) du
< [ L] -1 g )| du
< /OS LK, _1(u)du,

EERFISE

t
Vie L, Kn(t)< L/ K1 (u) du.
0
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Chapter 8 Sequences and series of functions

We may compute K as below,

Vte I, Ki(t)= sup

0<s<t

[ P ) = P gt dal| < 2215 - gl

By induction, we find, for every n > 1,
Vel Knt) <L <L) 0
1, Kalt) < S = gl < LS~ gl o O

which tells us that 7™ is a contraction map for large enough n. (]

8.5 Theorems on convergence of integrals

In Proposition 8.2.5, we saw that the uniform convergence of a sequence of functions implies the uniform
convergence of their primitives. As a consequence, the sequence of integrals also converges. In practice,
however, we are more interested in the convergence of integrals. We have already seen in Example 8.2.8
that a sequence of integrals may converge without the sequence of integrands converges uniformly. Below
we are going to prove the monotone convergence theorem (Theorem 8.5.3) and the dominated convergence
theorem (Theorem 8.5.5), which are consequences of Eq. (8.26).

8.5.1 Monotone convergence theorem

We start with the following key lemma.

Lemma 8.5.1: Let I C R be an interval. Let (uy,),>1 be a sequence of piecewise continuous functions
from I to a Banach space (W, ||-||). Suppose that

(i) foreachn > 1, uy, is integrable on I;
(ii) the series of functions ) u,, converges pointwise to a piecewise continuous function f : I — W;
(iii) the series Y, [ |lunl|| converges.

Then, f is integrable on I and

S < il and [ 7= [ un (8:26)

n>1 n>1

Proof : We are going to prove this in three steps: (1) I is a segment and all the functions are continuous;
(2) I is a segment and all the functions are piecewise continuous; (3) / is an interval and all the functions
are piecewise continuous.

(1) If I = [a, b] is a segment, and all the u,,’s and f are continuous functions, the proof is similar to
the Dini’s theorem (Theorem 8.1.14).
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HFIAIUGTE K W0 -

Vte Iy, Ki(t)= sup
0<s<t

BEHBEWNE - RPIFREREE > 1 B

S Ltf — gl

[ P ) = P, gt du

t" n (@) »

EHFHRPIHNRIAAR n KR - T G2EBHEIRSS - O

BRE RoWABEE

i 825 - RFIBZRBFFIEIGIRRE - GRS HPAIRREBEIIIERE - BHROERES
FIEM - AN ERNES EERE - A - TERERL - AMAEHRONRELLEEER - 1
gh s.28 B - HMBEBB—EHF - WOFIIERR - BEREIRD REAN NS IGIUE - TR -
KM EHRERARMEE (€ ss53) BRENBRHEE (FEss55) » ARTUEEZI (8.20)
HUFESR ©

B—Eh ERINER
P35t TEEER%ES | X2 o

53851 : B ICRAIERM W (un)n>1 #H I BEIE Banach ZERE (W, ||-||) BIF BGERERIEX
5 - {iR&%

() BREE > 1 R, T LEZAER
(ii) BRBIAREN > v, BEFRMBBFEEERE f: T > W
(iii) HREBLDS,, [; [|un | BUHRK o
E > 121 LA - MERMHE

S <

S [lulls 2B [7=Y [ (8.26)

n>1 n>1

B RMEH S ESRARBBEEZ D : (1) 1 REKS > MAFERBSSEENIER )
I RIEREY - MEFTERYHMES BEENIER  (3) 1 2EER - MRS RBHRH BEE
BINER -

(1) BNR I = [a,b] BEIREL - MEFE v,  f #EEER - FBHHE Dini TIE (I 8.1.14)
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Let € > 0 and define SIEEELE -
PAN 3 [—1——4
el Ea= el L) - X lu@)l <o) 627) 7o 0RER
vn>1, E,={z¢€lab):|f()] - Z lug (@) < e} (8.27)
The continuity implies that E,, is open for every n > 1. The pointwise convergence of ) u,, to
f implies that {J,,~; E,, = [a,b]. Since [a,b] is a compact set, by the Borel-Lebesgue property, A e
we may find N > 1 such that UnNzlE = [a, b]. Therefore, we have RBHERESHFEAMNERESE > 1> £, RERK - Yo, BZHKHE £ X
Uns1 En = [a,b] ° BBIR [a,b] REIRBES > RIR Borel-Lebesgue £ E - FFIaE X F|
N > 1 &8 E, = [a,b] - Elt - F&FIH
[ (Zuuku +e) Z/ i+~ @) < 3 [l +<(0 ~ ) B Ut B = [0l
a, a,b n=1
The above inequality holds for any arbitrary € > 0, so we deduce that /[a,b] IF1 < /[a ( Z el + E Z / k]l +&(b —a) n§>:1/ lun]l + (b= a).
/ <y / [P R EESERSREREE - > 0 BRRHN - RIWESE
[a,b] n>1
LM< [l
n>1
(2) Next, we suppose that I = [a, b] is a segment, and all the u,,’s and f are piecewise continuous. (2) BR » TR I = [0, 0] BIEMRER - SARFIER w, M f BRFEEBEN - De >0 1%
Let € > 0. From Lemma 8.5.2, we may find continuous functions g and (v, ),>1 such that BIE 852 » BAEEHRTIEMBMEE g 7 ()01 TR
g< Il suchthat [ 7] <+ [ g, g<lfl ®8 [Ifl<e+ [0
I I
€
Vn > 1, |luy|| < v, such that /vn < on —i—/HunH . Vn > 1 |un| < v, 15 /Un <= +/||Un\| )
I I I 2n o Jr
Define the following subsets as in Eq. (8.27), but for the continuous functions g and (v, )n>1, SNETER (3.27) B » FAIEHEBRE g 7 (vn)n>1 EE FEELEFES
Vn>1, G,={z€lal]: Z x) < e} Vn>1, G,={x¢€]lab]: Z x) < e}
Similarly, we know that there exists N > 1 such that UY_, G,, = [a, b]. Therefore, we find B - FFIFEEE N > 1B U, G, = [, 0] - Bl - HFE

/Ilfll 6+/ €+/ ka+€ b—a+16+2/vk /I||f||<€+/g<6+/(§:vk+6>:(b—a+1)5—|—§:/vk

_a—i-la—l—z 2k+/HukH (b—a+2) €+Z/HukH —a—i—la—i-z 2k+/ ]ukH (b—a+2 E+Z/HukH
—a+25+Z/HunH < —a+2€+2/||un\|

n=1 n=1
Then we conclude as in the previous point. R ERMAILUEAN _ EEERN A EREE
(3) For any subsegment J C I, from above, we have (3) HNEEFRER J C I - R LEEMEER - FMER
f n up|| < oo. IfIF < [unl| < [n| < oo
AR S AR AT [ur<X fimi <3 ]
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Chapter 8 Sequences and series of functions

Therefore, f is integrable on I and satisfies

S <X [ luall < o,

n>1

which is the first part of Eq. (8.26).

For the second part of Eq. (8.26), let us apply the first part to the remainder > ;~,, 1 ux = f —
> k=1 Uk, and we find

> /||Uk|| —=0

k>n+1

Hr-51

since the right side in the above relation is the remainder of the convergent series >_ [; ||uy||.
Then, it follows that

Uk

k 1
which gives us the relation
fr=tim 3 fu=3 [

n>1

0

Lemma 8.5.2:Let J = [a,b] be a segment of R and f € PC(J,R). For every e > 0, there exists

continuous functions f_ and f. on J such that
fo<f<f+ and (/f+)—s</f<(/f_)+e
J J J

Proof : If f is continuous, then there is nothing to prove. Suppose that f has discontinuities. Let P =
(k)o<k<n be a partition of [a, b] such that f restricted on (x;_1, ) can be extended to a continuous
function on [xj_1,xg] for every 1 < k < n. From Proposition 7.1.3, we know that f is bounded on

[a, b], so we may take

M >sup f(x) and m < inf f(z).
xeJ zeJ

(23,0)NJ for 0 < i < n.

Let§ > 0 with§ < 1 |
We define a continuous function ¢_ on J as below,

m+(M—m)‘x%;m"| ifx e J;,
p-(z) =

M otherwise.
Then, the function f_ := min(f, ¢_) satisfies f_ < f on J is continuous. In fact, we can see that
« if z # x; for all i, then f is continuous at z, and f— = (f + ¢ — | f — ¢_|) is also continuous
at x;
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BNE RHEBIETERH

Hit + /75 1 ERFRS > TEKE
JATED Sy AT

n>1
EERE (8.20) FIE—IBR o
B RPIEHER (5.20) WE G - BRAOEE—BONERABERE X0 us —
f—Yr w £ TS
> [l =2

/I k>n+1

H& LXEHERBERE Y [ un|| BIERIR - BBEE - HFIRH

Bl <

B FIRMRI -
fir=tm > fu=3 fon ]

f_

k=

BIIE852 ¢ S —[a,b 2 RHHKE - BUR [ € PC(J,R) « HINEME > 0+ %4E J LHOEE
R f I f R

fo<s<s BB ([r)-e<[r<([1)+e

FGEA lll]% fEERER - B ﬁﬂ‘ﬁ*ﬁ-ﬁguﬂéﬁﬂﬂﬁ R f BREER D P = (vp)o<ken 7
[a,b] BY  EEHREE 1 <k <nKRER ' Z fREITE (v, 2p) LB ATUIRAERTE
[z 1,:%} J:E’JE,E 8 - fiedn % 7.1.3 FFIFH f 7 [a, b)) ERBEFRB - FTAFRFIRTLAEX

M >sup f(x) UK m< ;Ielgf(l‘)

zeJ

BI>0MES < 5 ||P|| > FIUEMEIUERERERM J; .= B(z;,0)NnJ > HEFO0<i<n
HMEERT J LHEBRE o_ 0T -
m+ (M — m)‘x;“‘ =xeJ;,
o (z) = i
M HiER.
BREE - KB f_:=min(f, ¢ ) TEJ ERE f- < f WEEEEWN - BF L > BMAITUER
CHR A W B S E B WA = (e —|f - ) BBEE
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Chapter 8 Sequences and series of functions BNE REBHTEREH

« if # = z; for some 4, then ¢_ (z) = m < inf,c; f(x), so we may find ¢ > 0 such that ¢_ stays EAE
strictly below f on B(z,¢). This means that f_ = ¢_ on B(z, €), so we get the continuity of f_
at z. c MRz =z, HREME i » BE ¢_(z) = m < infey f(z) » FIATPIRERB > 0 15 o
e, et us compute the following integral, 1 B(o.o) ERBIBRISTE [ 2T  BREHE Do) LRIVE [ — o FURME
B f 7E o BERUERENE ©
/(f 1) = Z/ (f— 1) < Z/ (M — m) < 20n(M — m), Bk - BRI E THES
J =177 =17
where the equality is obtained from the fact that when = ¢ J; for all i, ¢_(x) = M > f(x), so /(f —f) = z”:/ (f—f2) < z”:/ (M —m) <2n(M —m),
f-(x) = f(x). To conclude, for ¢ > 0, we may choose § < , which will give us 7 j ' i '
HAWMEXZBRABE « ¢ L BRI i HPIBHE o () =M > f(2) BTk f_(2) = f(x) ° &
JU-ri<e o [r<(f5)+e ERFRARE W < > 0 RFTLERIE 6 < min{ S, P} 0 SEEEH
For the construction of f., we proceed in a similar way. We consider the following continuous
function ¢ on J, /(f f-ise & /f /f TE
M — (M —m)=2l ifz e g, . . . . .
e —{ Momf== doed BRI ERBLNT LA £, - RMERE J CHSERY o, -
m otherwise.
Then, we define f; := max(f, ¢4). O M — (M — m)@ Earcl,
py(z) = s
m HAtbF5.
PR [, = max(/, o) ° -
Theorem 8.5.3 (Monotone convergence theorem): Let I C R be an interval. Let ( f,)n>1 be a sequence 853 [BERKHTIE] : FICRABEM B (fu)1 AHEITMEER, NIEE - FER
of non-negative, piecewise continuous, and integrable functions from I to R . Suppose that SE4E B AR R SR R BT o (SR

(i) foreveryx € I andn > 1, we have f,,(x) < fni1(2); () RSB c I BEn> 1 BITE fo(2) < fani(@)

(i) (fn)n>1 BEREBERE R BCEIBRE [

(ii) (fn)n>1 converges pointwise to a piecewise continuous function f;

(iii) [; fn converges when n — oo.
- (il) Bn— oo B [ f, BURK
en,

Jin=tl om0 and [ [ AR - S5

[l =m0 8B [ [

Remark 8.5.4 : We note that this theorem is very similar to Dini’s theorem (Theorem 8.1.14), with the SR 854 : BFIER - EETIEE Dini I8 (FIs.1.14) IJEEELL  ZR)W0TF -

followins differences. . CRE B E 8 O
(1) We make a weaker assumption in Theorem 8.5.3, which is piecewise continuity. (1) BE 853 R 5 RRERBGER
(2) We do not get the uniform convergence of the sequence of functions (f,),> to deduce the conver- @) HPAEEAREFI (/). BEITBERIERAESRD BB - FHLE - —RREE » 29K

gence of the integrals. Actually, we do not have the uniform convergence here in general, whereas the AL > BIED RS G -
convergence of integrals still holds.
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Chapter 8 Sequences and series of functions

Proof : It is a special case of Eq. (8.26). For every n > 1, let up, = fn+1 — fn = 0. We may check the
following properties.

(i) Foreveryn > 1, u, is integrable because both f,;; and f,, are integrable.

(i) Y- up = > (fnt+1 — fn) converges pointwise to a piecewise continuous function because ( f;,)n>1
converges pointwise to a piecewise continuous function.

(iii) We have
N N
nzl/lwn :nzlflmﬂ ) = /IfNH —/Ifl,

where the right side can be uniformly bounded from above due to the convergence of [; f,,. This
shows that >~ [ |uy| converges.

Therefore, we may apply Eq. (8.26) to conclude that f is integrable on I and

/I’fn—f|:/l‘gluk‘<§/lfuk’~

The right side in the above inequality is the remainder of a convergent series, so goes to 0 when n goes
to oo. U

8.5.2 Dominated convergence theorem

Theorem 8.5.5 (Dominated convergence theorem) : Let I C R be an interval and W be a Banach
space. Let (fn)n>1 be a sequence of piecewise continuous functions from I to W. Suppose that

(i) There exists a piecewise continuous non-negative integrable function ¢ : I — R such that|| f,| <
@ foreverymn > 1.

(ii) The seugnece (fy,)n>1 converges pointwise to a piecewise continuous function f : I — W.

Then, each f,, and f are integrable on I and we have

lim/Ian—meO’ and hm/f _/f

n—oo n—oo

Proof : Suppose that the theorem holds when (W, ||||) = (R, |+]), (fn)n>1 are non-negative functions,
and f = 0 is the zero function. For alln > 1, let hy, = || f,, — f||, which is still a piecewise continuous
function on I. Then, h,, < 2¢ and (h;,),>1 converges pointwise to the zero function. So we find

[t [ < f1 =11 = [h s [0

Now, let us prove the theorem with the assumption that (W, ||-||) = (

.|*1)s (fn)n>1 are non-negative
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BNE RHEBIETERH

B ERMER (3.20) BHEH o HRNEE 0 > 10 D = furr — fu > 0 - REATRE THIE

[e]

IS

() HREEn > 1 B u, 2ATER  BS [, M f, E2EER -

BRIZK

(iii) FMH

BRI BRI

N N
n;l/l‘un :T;/I(fn+1_fn) :/IfN-i-l_/[flv
HARA% [, f, Gl - BTSSR ESIE < EFZRT X [ |u.| SURER
Ftt - FPIRTUERTC (8.20) ZKAEHE f £ [ ERAIFEN » UK

Jitn= 1= 1w < X [

FEAFANE - SR EURERERIERIR » FILLE n @A oo B » BIREEI 0 - O

ZINER PRI TR

EE 855 [EEIWHEE] | ©1CRABEMR > B W % Banach ZZ[ © B (fu)n>1 #H I B
BE W MR BEEREFY] o B

() FEIFEREBREEIRRE ¢ [ - R, BRHERFAE n > 1 BFIE | /. <
(i) BB (fr)n>1 EEFRBERE R EBGEBRE [T > W e
AE - FREW f, M f 72 [ LEZEFIEN - BEME

tim [ 5~ fl om0 BB lm [ = [

n—0o0

§ER : {RERIE (W H =R, |-) > (fa)ns1 BIFEEE - B f =0 SESERBENERFERL -
HREABEn>1 D h, = |fn— fl| EREEEE | LWREREERE - B h, <20 MH
(hp)n>1 BXHRBEZTRE - FRUFKRMIEE

[ [ < U= 1= [0 [o=0.

BEAMITIAE (W, [1) = R, |- ]) > (fo)nz1 EIFERE > TH f 2

RE BRI BNV RER 2
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Chapter 8 Sequences and series of functions

functions, and f is the zero function. For every n > 1 and p > n, let

Jnp =max{fn, fnri,-- -, fp}

which is still a piecewise continuous function and satisfies f,, , < .

« Fix n > 1. Since (fy p)p>n is an increasing sequence, the sequence (I, )p>n defined by I, , =
J; fnp is increasing. Since I, < [;¢ for all p > n, the sequence (I, p)p>n converges, so it
satisfies Cauchy’s property. We may find p,, > 1 such that

’Imp - In,q| < 27”7 Vp,q P

It is possible to make a choice of (p,)n>1 such that it is an extraction (strictly increasing se-
quence).

« Forn > 1, let g, = fp,. We note that g,, converges pointwise to 0 (Cauchy’s criterion at each
point of ). For any n > 1, we have

0 if gnt1 — gn <0,

_ + - =
|9n+1 = gnl + (gn+1 = gn) {2(gn+1— gn) otherwise.

Additionally, for any n > 1, we also have gn41 — gn = frti,pnis — frpn < frppis — frp, and
0 < fupnsr — frpn- Therefore, we find

Vn>1, [gnt1—gnl < Q(fn,pn+1 - fmpn) — (gn+1 — gn)-

« Forn > 1, let u, = g, — gn+1. Then, we have

/‘un| < 2|In,Pn+1 - In,pn| + /gn - /gn+1 < 2t + /gn - /gn+1-
I I I I I

By taking a summation, we find,

p p
Wp=n>1, Z/I|uk|<Z2l—k+/lgn—/lgp+1<2+/lgn.
k=n k=n

In the above formula, we see that the upper bound does not depend on p. Since the left side
contains only positive terms in the series, we deduce that the series ), -, [; |ux| converges.

From what we have shown above, and the fact that g,, converges pointwise to 0, we have > ;. up = gn.
This allows us to apply Eq. (8.26),

Og/lfng/lgn:/f(,;luk):,;/fuk'

The rightmost term in the above formula is the remainder of an absolutely convergent series, so its limit
when n tends to oo is zero. This shows that [; f, — 0. (]
n—oo
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BNE  REBIBF LRI

T REGATIE - HREEn > 1 UK p>n - BHFAS
fn,p = maX{fnvfn+17"'7fp}v
EREEN ESERY > TARE /o, <

* EE nz=1le° EEBA (fn,p)p>n E1IEJE1}-‘_§IJ r_§|J ( 7p)p>'n, /:E%1H I np — f] fnp IEJEii
B e BREIRAB p > n BB L, < [0 FH (Inp)psn GHER - PR ERTFE1E
B o HFIeRE p, > 1 &1

’In,p - In,q| < 27“7 Vp,q P
HPIRTLGEEE (pn),>) ERMMEEZENRE (BEEEFT) -

RS 1B gy = fop, o RFGEED g, BFRKE 0 (1 LRSEL - HEER)
MERT) - WMEEn > 1 BIE

0 B gnt1— gn <0,

|gn+1 = Gnl + (Gnt1 — gn) = ‘
2(gns1 — gn) EHAHIER.

Jlt‘5'1~ ’ ﬁﬁé\ﬁ%f n>=1- ﬁﬂaﬁ‘@ﬁ In+1 — Gn = fn+1,pn+1 - fn,pn < fn,pn+1 - fn,pn Uk
0< frons — fupn Bt > BAFVGE)

Vn > 1, |gn+1 - gn‘ < Q(fﬂ,PnH - fn,pn) - (gn+1 - gn)'

CHR>1 B, = 9n — 9n+1 ° BEHEME

/’un| < 2’In»pn+1 _In,pn| +/gn _/gn+1 < 21_n+/gn _/gn-l-l-
1 I I I 1

¥ EICEA - BMIEEE
Vp=n>1, Z/\Uk\ 21k+/gn /gp+1 2+/gn

ZFLEENRXFH - HMER LERLAREURRN p o HREAKSBFPRIBIENIE - HMHESR
2 > ksn J7 Ukl FUE

WP LEPFERN - UK g, EFRUEE] 0 BB » FFIE X, un = g ° BEFEFIFTIX

A (8.26) -
e g

FRPRAEZNESZEEIEIRBAIERIE - FTUE n BER oo K » VMR
T fifn om0

mE)
:Ilﬂl
i
Ei%@l
O o
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Chapter 8 Sequences and series of functions

BNE RHEBIETERH

Example 8.5.6 : For every n € N, consider the function

(1, 400) — R °°
i A ; ) Ly L and I, = / fn(t)dt
1+tn+2 1

We can check the following properties.
« For every n € N, the function f,, is piecewise continuous.
« For every ¢t > 1, we have

14t 1
fn(t):WN?’ when n — oo.
So the sequence f,, converges pointwise to the function ¢ — t% which is piecewise continuous
n (1, +00).

+ (Domination assumption) For every n € N and ¢ > 1, we have

L+t Pt 2
1 nt2 = gnt2 g2

‘fn(t)’ =

The function ¢ — t% is integrable on (1, +00), so the domination assumption is satisfied. There-
fore, we may apply the dominated convergence theorem from Theorem 8.5.5, giving us

oo dt
In—>/ =1
n—oo  Jq $2

gl 8.5.6 : HINEE n c N ZERE

n s (1, R o
S (1,400) — e MR I :/ fa(t)dt
t = T 1

HFIFTLRE TS -
- HRBEn e N R f, BHEBEERY

 HEREE > 1 BEE

1+t 1
W=~ e

AR f, @FRBBIRE ¢ — & ERMETE (1, +oo) LREGEBRIRE -

- [ERIRER] HRBErec Nt > 1 &ZMB
1+t" "+ t" 2
‘fn(t)’ - 14 ¢n+2 T gnt2 - t72

Rt — 5 7E (1,400) LEAIRR > FRILUERIBRRERHE - Bt - AITUERE

t2

I 8.5.5 HEVIEHIINRAER » 155

oo dt
b [T
n—o00 1 t2

I3

n — oQ.

Example 8.5.7 : For every n € N, consider the function

fn: [0,1) - R _/1
PN S and I, = ; fa(t)dt

For every n € N, the function f,, is continuous and integrable on [0, 1). For every ¢ € [0, 1), we have
fn(t) ——+ 0, which implies that the sequence (f,,)n>1 converges pointwise on [0, 1) to the zero

function. However, we have .
vneN, I,=[nt"],=n.

This shows that the order of the limit and the integration procedure cannot be interchanged,

1 1
Jim [ fu@de# [ tim g.0de=o0

The reason is that the domination assumption is not satisfied.
To be more precise, if ¢ is a function that dominates all the f,,’s, then for ¢ € [0, 1), we need to have
o(t) = fn(t) for all n > 1. In particular, for ¢ € [0, 1), we may choose n = L“iﬂj, then, fort — 1—,
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86 8.5.7 : HIREBEn e N ZRERHK

fa: [0,1) — R
t = ninl

IS C N B, BT 01) EEMATR KIS < 01) B A0 o
SETEEFD (f,),1 BIE (0,1) EEREHEIBEY - 2477 - BAVE

UK I :/Olfn(t)dt

VneN, I,= [nt”](l) =n.
EEA T WEMESNIEF AR o

1 1
7}520/0 fn(t)dt#/o Jim fu(t)dt =0
REREAZEHIRE LB MKIL ©

EHEYIRR R o SEGLRE f, MRERIRE - WEHR ¢ € [0,1) HMAEHR
p(t) = folt) BRFIE n > 1o KRR B/t € [0,1) > HAITLUR 0 = |2y] > BE > &
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Chapter 8 Sequences and series of functions

we have the following relation,

BNE RHEBIETERH
t — 1- B - HASE TEERERRFRI
Inf,(t)=2lnn+(n—1)Int
>2In (

2 2
Y —1)+ (m—l)lnt

Infp(t) =2lnn+ (n—1)Int
—Int—2In|Int| + O(1).
This means that when ¢ — 1—, we have

P 2
>2ln(m—1)+(m—l)lnt

=—1Int—2In|Int| + O(1).
cst
fa(t)

Z T
t]In ¢|?
which implies that ¢ is not integrable around 1—.

ERREEt— 1- K> BME

fn(t) > cst

R

EBREE o 7T 1- HHERATTE o
8.5.3 Applications: integrals with an additional parameter

S=/E FEA - FEASENERS
We give a few important applications of the dominated convergence theorem. Let us consider a general TEHE—LZ4|WEIBENEEER - ERMPAZ2E—SMNER T C R E9BREES2E o F1 0 TR S
. C . . . . _ < < . -
interval / C R, with endpoints a and b satisfying —oco < a < b < 400, and a Banach space (W, ||-||). 2 o0 <a<b< 400+ BUR Banach 2R (W, ||-|) -
Theorem 8.5.8 (Continuity under integration) : Let (M, d) be a metric space and a map f : M x I — =i g58 [ THEE] & (M,d) BEIEERE - B [ M x T — W 5%2 T
W satisfying the following conditions. " o ’ '
(i) For everyx € M, the map f(x,-) : t — f(x,t) is piecewise continuous on I.
() HREE e MBS f(z,) : t — f(z,t) 1 EEHEGEE -
(ii) Foreveryt € I, the map f(-,t) : x — f(z,t) is continuous on M.
11 \ AVt ’ v o . 3 ,‘E o
(iii) (Domination assumption) There exists a non-negative, piecewise continuous, and integrable function (i) BRBME € 12 BE S(.0) 00 flo ) M LR
I =Ry such that || f(2,t)|| < p(t) forallz € M andt € L. (i) (25D BHEES  AEREEETERH o [ > R, BENRFE ¢« c MBS
Then, the map te D B ||f(@, 0] <o) °
F: M — W
b LI v
x / f(z,t)dt ARIE - PR
a F: M — w
is well-defined and continuous on M. = /b f(z,t) dt
x x,
EBEZERIFH - BE M LEF -
Proof : The assumption (iii), the domination assumption, shows that the function f(x,-) is integrable
for every x € M, so the map F' is well defined. For a given x € M, to check that F' is continuous at z,
we need to check that for any sequence (zy,),>1 with values in M,

s2EA  RER (i) R RIERIRER - SRFAFENEE 2 c M > RE f(z,.) BHEN > AU F 2
EERIFH - BHIEOER © ¢ M R - IRBRE F 7 + FE - RAFTEREHNEENER
M HFEFET (2,)n>1 * BB

n—0o0

Let x € M and (x,,),>1 be a sequence in M such that xz,, — For every n > 1, we may define

n—oo

n—oo
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Chapter 8  Sequences and series of functions BNE REBEHTEREH

the function P - Tz eMUK ()1 7 M PHFIRE 2, —— e o HRE@E n > 1 HPITUERKRE
t = f(an,t) fo: I — V
Due to the assumption (ii), we know that f,(t) = f(xy,t) — f(x,t) for every t € I, where t o fzat).
t — f(z,t) is a piecewise continuous function by the assumption (i). This means that the assumption
(ii) in Theorem 8.5.5 is satisfied. Then, the assumption (iii) here corresponds to the assumption (i) in RMRER (i) » BRMFEENRE@ ¢t c I FHME f.(t) = f(on, t) — f(x,t) » HPIRIRERE ()
Theorem 8.5.5, so we can apply Theorem 8.5.5 to the sequence of functions ( f;,),>1. This shows that t fa,t) SEEBREBERE - EXRTEIE 855 PHRSR (11) = ;%E B > SEEMEE (i)
EX I 8.5.5 BURER L L U (fr)n i ° iG55

lim F(o,) —hm/f:cn, ) d = /f:ct o), HEIWZEEIE 8.5.5 AR (i) * FIATRPIRTAEREFS (fr)n>1 REAEE 8.5.5 © EERKM

n—00 n— ?.FEU
which allows us to conclude. O Jim F(xzy,) = = lim / f(zp, t)dt = / f(z,t)dt = F(z),

(Xl It Fe FIRERRHRE O
Theorem 8.5.9 (Differentiability under integration) : Let M C R be an intervalandamap f : M xI — EIE 859 [BROTHEMOM] : S MCRABER B f: MxI - W AmE FIHEHH
W satisfying the following conditions. A& o
(i) For everyx € M, the map f(x,-) : t — f(x,t) is piecewise continuous and integrable on I. () WIRAEE 2 € Mo BT f(n, )t f(o.t) T [ EBABEEETRE -

(i) Foreveryt € I, the map f(-,t) : x +— f(x,t) is of class C* on M.
(i) BREME e 1> BRES f(t) x> flz,t) TEM LR C BRY -

(iii) The partial derivative % is well defined and satisfies the assumptions from Theorem 8.5.8.

(i) RIS 2L EHET - BRTEE 555 IR -

Then, the map
B M= AR+ BRE
r / f(z,t)d F: M —
is of class C' on M, and we have T = / f(z,t)d
v &2 ol ¥5HY >
Yz € ]\47 F/(.CU) — gf (.CU t) dt. (8.28) E M _t E% C ?EEE’J ﬁ'ﬁﬂﬁﬁlﬂﬁ
x
b
Vee M, F'(x)= gi(a:,t) dt. (8.28)
Proof : The proof is similar to that of Theorem 8.5.8. Let z € M and (z,),>1 be a sequence with $5EH : EEEARETEIE 8.5.8 FUEERAMEM c B o € M UK (2,)n>1 BEUETE M\ {2} FHIFT]
values in M\ {z} that converges to x. For every n > 1, define HEWHE » o WRNEE > 1 TS
m: I — W, .
’ Flat) = £(2.) w0
t = n ? , f(xrwt)_f(x?t)
Ty — T b= . :
o . . . . > . . . . _ e _
which is a piecewise continuous function. For each n > 1, g, is also integrable on I, being a linear ERRERLBERERE - HREE > 1 g, 7 ] LHESTEN  AAHSTBRENSY
combination of integrable functions. ~
The sequence (g, )n>1 of functions converges pointwise to af (x,-). Moreover, the mean-value the- HE
orem (Eq. (4.3)) tells us that for every n > 1 and t € I, there exists y,, = y,(t) between x and x,, such BRBUFES (91)n>1 BFREBEHE gi( o k4 FEERE (R 4.3) SHFM > HREE
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that

() = LD ZLED Ly and gulo)] = |G twnt)| < ot

Tpn — T

where ¢ is the domination function given by the assumption (iii) for 8% from Theorem 8.5.8. Then, we
may apply Theorem 8.5.5 to conclude that

| rof
Jim [oudt= [ Gia,

and the left side of the above formula rewrite,

lim [ g,(t)dt = lim Flan) = Fz)

n—oo J1 n—00 Ty — T

This shows that F' is differentiable at x and its derivative does satisfy Eq. (8.28). To conclude, we note
that the assumption (iii) guarantees that the right side of Eq. (8.28) is continuous, so F is of class C'. [J

Example 8.5.10 (Gamma function) : We recall the Gamma function defined in Example 7.1.21,
+o00o
Ve >0, I'(x)= / t*le~tdt.
0

By applying Theorem 8.5.8 and Theorem 8.5.9, we can check that I is a function of class C*°, and its
derivative writes

[e.9]
Vn € Nog,Vz >0, TI'™(z)= / (logt)™ e "t*~1 dt.
0
More precisely, let us consider the function
fiRL xR = R, (z,t) = t7 e
We can check the following properties.

« For any fixed ¢ > 0, the function z — f(xz,t) is C*°, and we have

Vk € Ng, Vz,t>0 ﬁ(:p t) = (Int)kt=Le
) ) ) al'k )

« For any fixed x > 0 and k € Ny, the function ¢ — a—f(x t) is piecewise continuous.
o,

« (Domination assumption) Let k € Ny and [a, b] C 00) be a segment. For all z € [a, b], we

have
vieo, |2 f)‘ = |t e < It e
| oxk ,
ok
Vt € (1, 400), 8]]:(95 t)‘—]l t|ktx 1 _t<\lnt|ktb 1t
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BNE RHEBIETERH

n>1E28tecl EFEy=y(t) NR 2 R 2, ZFH » WE
f(xnat) —f(l‘,t) 8f

Ty — X

gn(t) = O et BB gl H—H o) < 00

Hep o 2 Y REEHE 8.5.8 EPHIRE (i) FHEEM o EF—K > BRFAIUERTEE 855 K
RS

| rof
Jim [oudt= [ i,

AR EXESAIUEREN

lim [ gn(t)dt = lim Flan) = Flz)

n—oo Jr n—oo Ty — &
EFRPBET FEzAM BADEZWMER 8.28) c THREMNERT » HATEIMREKR (i) RE
= (8.28) MAH EEER - AL F 2 C 81 - U

53

&l 8.5.10 [Gamma RE] : FHFICIEEEEF] 7.1.21 PEZMIT REL :
—+o0
_ rz—1 _—t
Vo > 0, r(:c)_/o 1ot dt,
BBEIE 858 MEE 859 » HFIATMUEE I 218 Cc> FERE - MEMMMOBEM

W¥n € No,Vz >0, TM(z) = / (logt)"e~‘t*~1 dt.
0

EREYIRER - RFIE RS
fiREXRY 5 R, (2,8) —» t7 et
BMEeRE TENMEE -
 BRNEBEEN >0 B8z — f(z,t) 2C W > MARME

ok f

Vk € Ng, Vz,t >0, @(l’,t):

(Int)kte—tet,

- HREBEEN 2> 085 ke Ny » BBt — 2 (a; t) B ERGERER -
- [EHIRER] Bk e No MUK [a,b] C (0, 400) BHRER - BWIRFTER « € [a,0] » FFIB
ok f

vt € (0, 1], Sk

- ( t)‘ = |Int/*o te=t < |Int|Ft* e,

ok f

vt € (1,4+00), Bk

- (z, )‘ = |Int/* " et < |Int|Ft et

BB : 20254 5 H 20 H 20:40



Chapter 8 Sequences and series of functions BNE REBHTEREH

Let ¢ be defined on R’ by Do ERER, £ 1T
p(t) = [t e + It "~ e, o(t) = |IntfFte et + | Ine[FLet,
which is an integrable function on R” . And we clearly have SETE R LR EBRY - TERMERES
v € la, b, V>0, axk@’”\ S ¢0)- Vo € a,b], VE> 0, %{(x,t)\ < plb).
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