
8 Sequences and series of functions

Let A be a set, and (M,d) be a metric space. We denote by F(A,M) the space of functions from A to

M , and by B(A,M) the space of bounded functions from A toM . Instead of a metric space, we may also

consider a vector spacesW overK = R or C, so that we have the + operation. This vector space is equipped

with a norm that we denote by ‖·‖.

In this chapter, we are interested in sequences and series of functions, which can also be seen as sequences

and series with terms in F(A,M) or F(A,W ).

8.1 Notions of convergence

We discuss different notions of convergence for sequences of functions, then for series of functions.

8.1.1 Sequences of functions

For a sequence of functions, we have different notions of convergence. Below we are going to discuss the

pointwise convergence (Definition 8.1.1), and a stronger notion of convergence, called uniform convergence

(Definition 8.1.4).

Definition 8.1.1 : Let (fn)n⩾1 be a sequence of functions from A toM , that is, they are elements of

F(A,M).

• Let f ∈ F(A,M). We say that the sequence (fn)n⩾1 converges pointwise (逐點收斂) to f if

for every x ∈ A, we have fn(x) −−−→
n→∞

f(x) in (M,d).

• We say that the sequence (fn)n⩾1 converges pointwise if there exists f ∈ F(A,M) such that

(fn)n⩾1 converges pointwise to f .

• LetB ⊆ A be a subset. We say that (fn)n⩾1 converges pointwise onB if ((fn)|B)n⩾1 converges

pointwise.
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Chapter 8 Sequences and series of functions

Example 8.1.2 : Let us consider the sequence of functions (fn)n⩾1 defined by

∀n ⩾ 1, fn : [0, 1] → R

x 7→ xn.

The sequence of functions (fn)n⩾1 converges pointwise to the indicator function f = 1{1} on [0, 1].

Remark 8.1.3 :

(1) If a sequence (fn)n⩾1 converges pointwise, then its limit function f is unique.

(2) Let (fn)n⩾1 be a pointwise convergent sequence of functions. Suppose that these functions take values

in a finite dimensional vector space (W, ‖·‖), then the limit does not depend on the norm, because all

the norms are equivalent inW .

(3) Properties such as linearity, product, inequality, monotonicity, etc., are preserved for the pointwise

convergence of functions.

(4) We see that in Example 8.1.2, the continuity at 1 is not preserved in the limit. Indeed, for all n ∈ N, the

function fn is continuous, but the limit function f is not continuous at 1. In other words, the following

two iterated limits are different,

lim
x→1

lim
n→∞

fn(x) = lim
x→1

f(x) = 0 6= 1 = lim
n→∞

1 = lim
n→∞

lim
x→1

fn(x).

We have already encountered a similar example in Example 6.7.2.

(5) Analytic properties such as continuity and differentiability are not preserved for the pointwise con-

vergence. We will define the notion of uniform convergence below (Definition 8.1.4), and will see that

analytic properties can be preserved if this convergence occurs (Proposition 8.2.1).

Definition 8.1.4 : Let (fn)n⩾1 be a sequence of functions from A toM .

• Let f ∈ F(A,M). We say that the sequence (fn)n⩾1 converges uniformly (均勻收斂) to f if

∀ε > 0, ∃N ⩾ 1, ∀n ⩾ N, ∀x ∈ A, d(fn(x), f(x)) ⩽ ε. (8.1)

• We say that the sequence (fn)n⩾1 converges uniformly if there exists f ∈ F(A,M) such that

(fn)n⩾1 converges uniformly to f .

2 Last modified: 20:41 on Tuesday 20th May, 2025



Chapter 8 Sequences and series of functions

• LetB ⊆ A be a subset. We say that (fn)n⩾1 converges uniformly onB if ((fn)|B)n⩾1 converges

uniformly.

Remark 8.1.5 : We may rewrite the definition of pointwise convergence using quantifiers. We say that

(fn)n⩾1 converges pointwise to f if

∀x ∈ A, ∀ε > 0, ∃N ⩾ 1, ∀n ⩾ N, d(fn(x), f(x)) ⩽ ε. (8.2)

If we compare Eq. (8.1) and Eq. (8.2), we see that the choice of N depends on x ∈ A in the case of pointwise

convergence, but does not depend on x ∈ A in the case of uniform convergence. This is the reason why the

convergence characterized by the condition Eq. (8.1) is called uniform convergence. This remark easily leads

to the following corollary.

Corollary 8.1.6 : If the sequence of functions (fn)n⩾1 converges uniformly to f , then it converges point-

wise to f .

Remark 8.1.7 : Due to the uniqueness of the pointwise limit (Remark 8.1.3), we deduce the uniqueness

of the uniform limit of a sequence of functions. To show that a sequence of functions (fn)n⩾1 converges

uniformly, we may start by computing its pointwise limit f , then show that (fn)n⩾1 converges uniformly to

f .

Proposition 8.1.8 (Cauchy’s criterion for uniform convergence) : Suppose that (M,d) is a complete

metric space. Let (fn)n⩾1 be a sequence of functions in F(A,M). Then, (fn)n⩾1 converges uniformly if

and only if it satisfies the uniform Cauchy condition, that is

∀ε > 0,∃N ⩾ 1, ∀m,n ⩾ N, ∀x ∈ A, d(fn(x), fm(x)) ⩽ ε.

Proof : Given ε > 0. Let N ⩾ 1 such that the uniform Cauchy condition holds, that is

∀m,n ⩾ N, ∀x ∈ A, d(fn(x), fm(x)) ⩽ ε. (8.3)

For each x ∈ A, we see that (fn(x))n⩾1 is a Cauchy sequence, so it converges to some limit that we
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denote by f(x). By taking the limitm → ∞ in Eq. (8.3), we find

∀n ⩾ N, ∀x ∈ A, d(fn(x), f(x)) ⩽ ε,

which is the characterization of (fn)n⩾1 uniformly converging to f from Eq. (8.1). □

Definition 8.1.9 : The notion of uniform convergence can be described using a distance (or a norm).

• Let (M,d) be a metric space and B(A,M) be the set of bounded functions from A to M . We

may equip B(A,M) with the following distance

∀f, g ∈ B(A,M), d∞(f, g) = d∞,A(f, g) := sup
x∈A

d(f(x), g(x)), (8.4)

called the distance of uniform convergence. A sequence of bounded functions (fn)n⩾1 converges

uniformly to f is equivalent to the convergence of (fn)n⩾1 to f with respect to the distance d∞.

• Let (W, ‖·‖) be a normed vector space and B(A,W ) be the set of bounded functions from A to

W . We may equip B(A,W ) with the following norm

∀f ∈ B(A,W ), ‖f‖∞ = ‖f‖∞,A := sup
x∈A

‖f(x)‖ , (8.5)

called the norm of uniform convergence. A sequence of bounded functions (fn)n⩾1 converges

uniformly to f is equivalent to the convergence of (fn)n⩾1 to f with respect to the norm ‖·‖∞.

Proposition 8.1.10 : Let (W, ‖·‖) be a Banach space. Then, the following properties hold.

(1) The space of bounded functions B(A,W ) equipped with the norm ‖·‖∞, defined in Eq. (8.5), is a

Banach space.

(2) A sequence (fn)n⩾1 of B(A,W ) converges uniformly to f ∈ B(A,W ) if and only if (fn)n⩾1

converges to f under the norm ‖·‖∞ given in Eq. (8.5), that is ‖fn − f‖∞ −−−→
n→∞

0.

Proof :

(1) It is not hard to check that ‖·‖∞ defines a norm on the vector space B(A,W ). To check that

it is complete, let us be given a sequence (fn)n⩾1 in B(A,W ), which is Cauchy with respect to

4 Last modified: 20:41 on Tuesday 20th May, 2025



Chapter 8 Sequences and series of functions

the norm ‖·‖∞. For every x ∈ A, we know that (fn(x))n⩾1 is a Cauchy sequence in the Banach

space (W, ‖·‖), so it converges to some limit f(x) := limn→∞ fn(x). Since (fn)n⩾1 is Cauchy in

(B(A,W ), ‖·‖∞), there existsM > 0 such that ‖fn‖∞ ⩽ M for all n ⩾ 1. Therefore, for every

x ∈ A, we have ‖f(x)‖ = limn→∞ ‖fn(x)‖ ⩽ M , so ‖f‖∞ ⩽ M , that is f ∈ B(A,W ). In the

end, it is not hard to check that ‖fn − f‖∞ −−−→
n→∞

0, so we conclude that (B(A,W ), ‖·‖∞) is

complete.

(2) It is exactly a rewriting of Eq. (8.1) in the normed vector space (W, ‖·‖) with help of the new

norm defined in Eq. (8.5). □

Example 8.1.11 : Consider the sequence of functions (fn)n⩾1 defined by

∀n ∈ N, ∀x ∈ [0, 1], fn(x) = xn(1 − x).

It is not hard to see that (fn)n⩾1 converges pointwise to the zero function. For every n ∈ N, the

function fn is of class C∞, so we may take its derivative to find its extrema on [0, 1]. We have

∀x ∈ [0, 1], f ′
n(x) = nxn−1

(
1 − n+ 1

n
x
)
.

Therefore, the function fn is increasing on [0, n
n+1 ] and decreasing on [ n

n+1 , 1] with maximum at xn =
n
n+1 , that is

∀x ∈ [0, 1], fn(x) ⩽ fn(xn) = 1
n+ 1

( n

n+ 1

)n
⩽ 1
n+ 1

−−−→
n→∞

0.

Therefore, the sequence (fn)n⩾1 converges uniformly to the zero function on [0, 1].

Remark 8.1.12 : If a sequence of functions (fn)n⩾1 converges pointwise to f , in order to show that this

convergence is not uniform, we may look at the negation of Eq. (8.1), which writes

∃ε > 0, ∀N ⩾ 1, ∃n ⩾ N ∃x ∈ A d(fn(x), f(x)) > ε.

In other words, we need to find a sequence (xn)n⩾1 with values in A and an extraction φ : N → N such that

the sequence (d(fφ(n)(xn), f(xn)))n⩾1 is bounded away from 0.
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Example 8.1.13 : Let us consider the following sequence of functions,

∀n ∈ N, ∀x ⩾ 0, fn(x) = x+
√
n

x+ n
.

It is easy to see that the sequence of functions (fn)n⩾1 converges pointwise to the zero function. To

show that it does not converge uniformly, we follow Remark 8.1.12. Let xn = n for n ⩾ 1. Then, we

have

∀n ∈ N, fn(xn) − 0 = n+
√
n

n+ n
−−−→
n→∞

1
2

6= 0.

We conclude that the convergence fn −−−→
n→∞

f is pointwise but not uniform.

The following theorem tells us which additional assumptions we may add to upgrade a pointwise conver-

gence to a uniform convergence.

Theorem 8.1.14 (Dini’s theorem) : Let (K, d) be a compact space, and (fn)n⩾1 be a sequence of con-

tinuous functions fromK to R. Suppose that

(i) the sequence is increasing, that is for every x ∈ K and n ∈ N, we have fn(x) ⩽ fn+1(x);

(ii) the sequence (fn)n⩾1 converges pointwise to a continuous function f : K → R.

Then, the sequence (fn)n⩾1 converges uniformly to f .

Proof : For every n ∈ N, let us define the continuous function gn = f −fn ⩾ 0. By the assumption (i),

the sequence of functions (gn)n⩾1 is decreasing. Given ε > 0, we define En = {x ∈ K : gn(x) < ε}

for n ∈ N. For every n ∈ N, since gn is continuous, the set En is open; since the sequence (gn)n⩾1 is

decreasing, the sequence (En)n⩾1 is increasing. Due to the assumption (ii), we find that
⋃
n⩾1En = K .

Since K is compact, by the Borel–Lebesgue property (Definition 3.1.3), there exists N ⩾ 1 such that

EN =
⋃N
n=1En = K . This means that for any n ⩾ N and x ∈ K , we have |fn(x) − f(x)| < ε. □

Remark 8.1.15 : There is another version of Dini’s theorem, stated as below. Let I = [a, b] be a segment

and (fn)n⩾1 be a sequence of (not necessarily continuous) functions from I to R. Suppose that

(i) for each n ⩾ 1, the function fn is increasing on I ;

(ii) the sequence (fn)n⩾1 converges pointwise to a continuous function f : I → R.

Then, the sequence (fn)n⩾1 converges uniformly to f . See Exercise 8.7 for a proof.
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8.1.2 Series of functions

In this section, let (un)n⩾1 be a sequence of functions from A toW , where (W, ‖·‖) is a Banach space.

Definition 8.1.16 :

• We say that the series of functions
∑
un converges pointwise if for every x ∈ A, the series∑

un(x) converges. We write

∑
n⩾1 un : A → W

x 7→
∑
n⩾1 un(x).

• The function defined by Sn(x) =
∑n
k=1 uk(x) for x ∈ A is called the n-th partial sum of the

series of functions
∑
un.

• If the series of functions
∑
un converges pointwise, then the n-th remainder is given byRn(x) =∑∞

k=n+1 uk(x) for x ∈ A.

• We say that the series of functions
∑
un converges uniformly if the partial sums (Sn)n⩾0 con-

verges uniformly.

Proposition 8.1.17 : The series of functions
∑
un converges uniformly if and only if

(i) the series
∑
un converges pointwise, and

(ii) the sequence of remainders (Rn)n⩾0 converges uniformly to the zero function.

Proof : Let
∑
un be a series of functions, (Sn)n⩾0 be its partial sums, and (Rn)n⩾0 be its remainders.

• Suppose that
∑
un converges uniformly to u, which means that (Sn)n⩾0 converges uniformly to

u, and it follows from Corollary 8.1.6 that this convergence takes place pointwise. The uniform

convergence means that ‖Sn − u‖∞ −−−→
n→∞

0, since u−Sn = Rn, we see that it is equivalent to

‖Rn‖∞ −−−→
n→∞

0.

• Suppose that (i) and (ii) holds, and denote by u the pointwise limit of
∑
un. Since Rn = u −

Sn, from its uniform convergence to zero, we find ‖Sn − u‖∞ −−−→
n→∞

0, which is the uniform

convergence of (Sn)n⩾0 to u. □
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Example 8.1.18 : Let us consider the series of functions
∑ (−1)n

n xn where each term is a function

defined on [0, 1]. We are going to show that this series of functions converges uniformly. For every

x ∈ [0, 1], the sequence (xn

n )n⩾1 is non-increasing with limit zero. It follows from Theorem 6.4.2 that

the series
∑ (−1)n

n xn converges, and the remainder Rn(x) satisfies

∀x ∈ [0, 1], |Rn(x)| ⩽ xn+1

n+ 1
⩽ 1
n+ 1

,

which does not depend on x ∈ [0, 1]. This implies that the convergence of the series of functions is

uniform.

Remark 8.1.19 : Wenote that saying that a sequence of functions (fn)n⩾1 converges uniformly is equivalent

to saying that the series of functions
∑

(fn+1 − fn) converges uniformly.

Proposition 8.1.20 (Cauchy’s condition) : A series of functions
∑
un converges uniformly if and only

if for every ε > 0, there exists N ⩾ 1 such that

∀n ⩾ N, ∀k ⩾ 1, ‖un+1 + · · · + un+k‖∞ < ε.

This is the Cauchy’s condition in the case of a series of functions.

Proof : This is very similar to Corollary 6.1.11. From Proposition 8.1.10 (1), we know that

(B(A,W ), ‖·‖∞) is a Banach space, in which a sequence converges if and only if it is Cauchy. □

Definition 8.1.21 : Let un ∈ B(A,W ) for every n ⩾ 1. We say that the series of functions
∑
un

converges normally (正規收斂) on A if the series
∑

‖un‖∞,A converges.

Proposition 8.1.22 : Suppose that (W, ‖·‖) is a Banach space. Let
∑
un be a series of bounded functions

from A toW that converges normally on A. Then, the following properties hold.

(1) For every a ∈ A, the series
∑
un(a) converges absolutely.

(2) The series of functions
∑
un converges uniformly.
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Proof :

(1) Let a ∈ A. For every n ⩾ 1, we have ‖un(a)‖ ⩽ ‖un‖∞. Since
∑

‖un‖∞ is convergent, we

deduce that
∑
un(a) converges absolutely.

(2) For every n, k ⩾ 1 and x ∈ A, we have

‖un(x) + · · · + un+k(x)‖ ⩽ ‖un(x)‖ + · · · + ‖un+k(x)‖ ⩽ ‖un‖∞ + · · · + ‖un+k‖∞ .

Therefore, the Cauchy’s condition for the series
∑

‖un‖∞ implies the Cauchy’s condition for the

series
∑
un(x), uniformly for all x ∈ A. This means that the series of functions

∑
un converges

uniformly. □

Remark 8.1.23 : Let us assume that (W, ‖·‖) is a Banach space, and un ∈ B(A,W ) for all n ⩾ 1. A series

of functions
∑
un can also be seen as a series with terms in the Banach space (B(A,W ), ‖·‖∞), meaning

that the normal convergence of the series of functions
∑
un is the same as the absolute convergence of the

series
∑
un with terms un ∈ B(A,W ). This allows us to find an alternative proof to (2), by noting that from

Theorem 6.1.16, we deduce that the series
∑
un converges in B(A,W ), that is the series of functions

∑
un

converges uniformly.

Example 8.1.24 : Let us define a sequence of functions (fn)n⩾1 on [0, 1] as below,

f1 ≡ 1 and ∀n ⩾ 1, ∀x ∈ [0, 1], fn+1(x) = 1 + 1
2

∫ x

0
fn(t) dt.

For any n ⩾ 1 and x ∈ [0, 1], we have

|fn+2(x) − fn+1(x)| = 1
2

∣∣∣∣ ∫ x

0

(
fn+1(t) − fn(t)

)
dt
∣∣∣∣

⩽ 1
2

∫ x

0
‖fn+1 − fn‖∞ dt

⩽ 1
2

‖fn+1 − fn‖∞ ,

implying ‖fn+2 − fn+1‖∞ ⩽ 1
2 ‖fn+1 − fn‖∞. Therefore, by induction, we find

∀n ⩾ 1, ‖fn+1 − fn‖∞ ⩽ 1
2n−1 ‖f2 − f1‖∞ .

It follows that the series
∑

(fn+1 − fn) converges normally, so uniformly, and the sequence (fn)n⩾1
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converges also uniformly.

Example 8.1.25 : Let us consider the series of functions
∑ (−1)n

n xn defined on [0, 1]. We have seen

that this series of functions converges uniformly on [0, 1] (Example 8.1.18).

• However, it does not converge normally on [0, 1], because ‖un‖∞ = 1
n for n ⩾ 1, and the series∑ 1

n diverges.

• It does converge normally on [0, a] for any a ∈ [0, 1), because
∥∥∥(un)|[0,a]

∥∥∥
∞

= an

n for n ⩾ 1,

and the series
∑ an

n converges.

8.2 Properties of the uniform limit

In this section, we are going to discuss some analytic properties of the limit of a convergent sequence of

functions. We are going to consider metric spaces (X, dX) and (M,dM ), and a sequence of functions (fn)n⩾1

in B(X,M).

8.2.1 Continuity

Proposition 8.2.1 : Suppose that (fn)n⩾1 is a sequence of functions from X toM and converges uni-

formly to f . If fn is continuous at a for every n ⩾ 1, then f is continuous at a.

Proof : Let ε > 0. Due to the uniform convergence of (fn)n⩾1 to f , we may find N ⩾ 1 such that

∀n ⩾ N, ∀x ∈ X, dM (fn(x), f(x)) ⩽ ε.

Since fN is continuous at a, we may find δ > 0 such that

∀y ∈ X, dX(x, y) < δ ⇒ dM (fN (x), fN (y)) ⩽ ε.

Therefore, for any y ∈ X such that dX(x, y) < δ, we have

dM (f(x), f(y)) ⩽ dM (f(x), fN (x)) + dM (fN (x), fN (y)) + dM (fN (y), f(y)) ⩽ 3ε.
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This shows that f is continuous at a. □

Corollary 8.2.2 : Let (fn)n⩾1 be a sequence of continuous functions fromX toM . If (fn)n⩾1 converges

uniformly to f on X , then f is continuous on X .

Proof : It is a direct consequence of Proposition 8.2.1. □

Corollary 8.2.3 : Let
∑
un be a series of continuous functions from [a, b] to a Banach space (W, ‖·‖). If

the series
∑
un converges uniformly on [a, b], then the limit function

∑
un is continuous on [a, b].

Proof : It is a direct consequence of Corollary 8.2.2 by taking (X, dX) = ([a, b], | · |) and (M,dM ) =

(W, ‖·‖). □

Example 8.2.4 : Let us consider the series of functions
∑
n⩾0 un defined on R+ as below,

∀x ⩾ 0, un(x) = xn

n!
.

• For each x ⩾ 0, the series
∑
n⩾0 un(x) converges, and we denote the limit by u(x).

• The convergence of the series
∑
n⩾0 un to u is not uniform. In fact, for every N ⩾ 1, we have

∣∣∣∣∣∑
n⩾0

un(x) −
N−1∑
n=0

un(x)
∣∣∣∣∣ ⩾ xN

N !
−−−→
x→∞

+∞.

• For anyM > 0, the convergence of the series
∑
n⩾0 un to u on [0,M ] is uniform. To see this,

we write, for any x ∈ [0,M ],

∣∣∣∣∣∑
n⩾0

un(x) −
N−1∑
n=0

un(x)
∣∣∣∣∣ =

∣∣∣∣∣ ∑
n⩾N

un(x)
∣∣∣∣∣ ⩽ ∑

n⩾N

Mn

n!
−−−−→
N→∞

0,

which gives us a uniform upper bound of the remainder which does not depend on x.

• In consequence, the limit function u is continuous on [0,M ] for every M > 0, so it is also

continuous on R+.

This examples illustrates that to get the continuity of the limit function, we do not necessarily need
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the uniform convergence on the whole domain of definition. Since the continuity is a local regularity,

it is sufficient to show the uniform convergence on, for example, all the segments.

8.2.2 Integation

Let I ⊆ R be an interval such that I̊ 6= ∅. Consider a sequence (fn)n⩾1 of functions from I to a Banach

space (W, ‖·‖).

Proposition 8.2.5 : Let (fn)n⩾1 be a sequence of continuous functions that converges uniformly to f on

every segment of I . Let a ∈ I , and define the following primitives,

φ(x) =
∫ x

a
f(t) dt and φn(x) =

∫ x

a
fn(t) dt, ∀n ⩾ 1.

Then, the sequence (φn)n⩾1 converges uniformly to φ on every segment of I .

Remark 8.2.6 : The conclusion of Proposition 8.2.5 menas that we may interchange the order of the limit

and integration,

lim
n→∞

∫ x

a
fn(t) dt =

∫ x

a
lim
n→∞

fn(t) dt.

Proof : Let [c, d] ⊆ I be a segment of I containing a. Since (fn)n⩾1 converges uniformly on [c, d] to

f , it follows from Corollary 8.2.2 that f is also continuous on [c, d]. Therefore, the primitives φ and

φn with n ⩾ 1 are well defined on [c, d]. For every n ⩾ 1 and x ∈ [c, d], we have

‖φn(x) − φ(x)‖ =
∥∥∥∥∫ x

a

(
fn(t) − f(t)

)
dt
∥∥∥∥

⩽ |x− a| ‖fn − f‖∞,[c,d] ⩽ |d− c| ‖fn − f‖∞,[c,d] −−−→
n→∞

0.

The convergence to 0 in the above bound does not depend on x ∈ [c, d], so we have established the

uniform convergence of (φn)n⩾1 to φ on [c, d]. □

Example 8.2.7 : Let (fn)n⩾1 be a sequence of real-valued continuous functions on [0, 1] that con-

verges uniformly to f . This means that (fn)n⩾1 is bounded in B([0, 1],R), so we may find M > 0
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such that ‖fn‖∞ ⩽M for all n ⩾ 1. Then, we have

∀x ∈ [0, 1], |fn(x)2 − f(x)2| ⩽ 2M |fn(x) − f(x)|.

This means that (f2
n)n⩾1 converges uniformly to f2, so we have

∫ 1

0
f2
n −−−→

n→∞

∫ 1

0
f2.

Example 8.2.8 : Let us consider the sequence of functions (fn)n⩾1 on [0, 1], defined by

∀x ∈ [0, 1], fn(x) = xn.

This sequence of functions converges pointwise to the indicator function f = 11 (Example 8.1.2)

which is not continuous, so this convergence is not uniform (Proposition 8.2.1). However, the sequence

of integrals converges,

∫ 1

0
fn(x) dx = 1

n+ 1
−−−→
n→∞

0 =
∫ 1

0
11(x) dx.

This shows that the notion of uniform convergence is much stronger than the convergence of integrals.

Actually, later in Section 8.5, we will see in a more general context, how to obtain the convergence of

integrals without having the uniform convergence.

Corollary 8.2.9 : Let
∑
un be a series of continuous functions from [a, b] to a Banach space (W, ‖·‖). If

the series
∑
un converges normally on [a, b], then, for x ∈ [a, b], we have

∫ x

a

(∑
n⩾1

un(t)
)

dt =
∑
n⩾1

(∫ x

a
un(t) dt

)
= lim

n→∞

n∑
k=1

(∫ x

a
uk(t) dt

)
,

where the limit on the right side is uniform on [a, b].

Remark 8.2.10 : Corollary 8.2.9 gives us conditions under which we are allowed to interchange the order

of integration and series. In such a circumstance, sometimes we also say that “we may integrate the series

term by term”.
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We also have a more general statement for the behavior of a uniformly convergent sequence of functions

in the context of Riemann–Stieltjes integration. The following theorem states that (1) the Riemann–Stieltjes

integrability is preserved by the uniform convergence, and (2) the sequence of primitives also converges

uniformly.

Theorem 8.2.11 : Let α ∈ BV([a, b]). Let (fn)n⩾1 be a sequence of bounded functions from [a, b] to

R such that fn ∈ R(α; a, b) for all n ⩾ 1. Suppose that (fn)n⩾1 converges uniformly to a function

f : [a, b] → R, and define

g(x) =
∫ x

a
f(t) dα(t) and gn(x) =

∫ x

a
fn(t) dα(t), ∀n ⩾ 1.

Then, the following properties hold.

(1) f ∈ R(α; a, b).

(2) The sequence (gn)n⩾1 converges uniformly to g on [a, b].

Proof : By the decomposition theorem of functions with bounded variation, see Theorem 5.1.17 and

Corollary 5.3.16, it is enough to show the statement for a strictly increasing function α. We have seen

a similar argument in the proof of Theorem 5.3.21.

(1) Let us prove that f satisfies Riemann’s condition with resepct to α on [a, b] (Definition 5.3.8).

Let ε > 0. The uniform convergence of (fn)n⩾1 to f allows us to find N ⩾ 1 such that

‖f(x) − fn(x)‖ ⩽ ε

α(b) − α(a)
, ∀x ∈ [a, b],∀n ⩾ N.

This means that for any partition P ∈ P([a, b]), we have

|UP (f − fN , α)| ⩽ ε and |LP (f − fN , α)| ⩽ ε (8.6)

Since fN ∈ R(α; a, b), we may find a partition Pε ∈ P([a, b]) such that

∀P ⊇ Pε, UP (fN , α) − LP (fN , α) ⩽ ε. (8.7)
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Therefore, for any P ⊇ Pε, we have

UP (f, α) − LP (f, α) ⩽ UP (f − fN , α) − LP (f − fN , α) + UP (fN , α) − LP (fN , α)

⩽ |UP (f − fN , α)| + |LP (f − fN , α)| +
[
UP (fN , α) − LP (fN , α)

]
⩽ 3ε

from Eq. (8.6) and Eq. (8.7). This shows that f ∈ R(α; a, b).

(2) For n ⩾ N and x ∈ [a, b], we have

|gn(x)−g(x)| ⩽
∫ x

a
|fn(t)−f(t)| dα(t) ⩽ ‖fn − f‖∞ [α(x)−α(a)] ⩽ ‖fn − f‖∞ [α(b)−α(a)],

where the upper bound does not depend on x, and converges to 0 when n → ∞. □

Corollary 8.2.12 : Let α ∈ BV([a, b]). Let
∑
un be a series of bounded functions from [a, b] to R such

that un ∈ R(α; a, b) for all n ⩾ 1. Suppose that the series
∑
n un converges uniformly on [a, b]. Then,

the following properties hold.

(1)
∑
n un ∈ R(α; a, b).

(2) For x ∈ [a, b], we have

∫ x

a

(∑
n⩾1

un(t)
)

dα(t) =
∑
n⩾1

(∫ x

a
un(t) d dα(t)

)
= lim

n→∞

n∑
k=1

(∫ x

a
uk(t) d dα(t)

)
,

where the convergence on the right side is uniform in x ∈ [a, b].

8.2.3 Derivatives

Let I ⊆ R be an interval such that I̊ 6= ∅. Consider a sequence (fn)n⩾1 of functions from I to a Banach

space (W, ‖·‖).

Theorem 8.2.13 : Let us make the following assumptions.

(i) For every n ⩾ 1, the function fn : I → W is of class C1.

(ii) The sequence (fn)n⩾1 converges pointwise to f ∈ F(I,W ).
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(iii) The sequence (f ′
n)n⩾1 converges uniformly to g ∈ F(I,W ) on every segment of I .

Then, the following properties hold.

(1) The function f is of class C1 and f ′ = g.

(2) The sequence (fn)n⩾1 converges uniformly on every segment of I .

Proof : Let a ∈ I . From (ii), we know that fn(a) −−−→
n→∞

f(a).

(1) First, we note that since (f ′
n)n⩾1 converges uniformly to g on every segment of I , it follows from

Corollary 8.2.2 that g is continuous on I . By Proposition 8.2.5, for x ∈ I , we have

∫ x

a
g(t) dt = lim

n→∞

∫ x

a
f ′
n(t) dt = lim

n→∞

(
fn(x) − fn(a)

)
= f(x) − f(a).

This shows that

∀x ∈ I, f(x) = f(a) +
∫ x

a
g(t) dt.

Since g is continuous, we deduce that f is of class C1 and f ′ = g.

(2) To show the uniform convergence of (fn)n⩾1 to f , let us proceed as follows. For every n ⩾ 1

and x ∈ I , the fundamental theorem of calculus gives us

‖fn(x) − f(x)‖ ⩽
∥∥∥∥∫ x

a

(
f ′
n(t) − f ′(t)

)
dt
∥∥∥∥ + ‖fn(a) − f(a)‖ .

The first term on the right side converges uniformly to 0 by Proposition 8.2.5, and the second

term converges to 0 due to the assumption (ii). Therefore, the above rate of convergence does

not depend on x ∈ I , so (fn)n⩾1 converges uniformly to f . □

Remark 8.2.14 : From the above proof, we see that the assumption (ii) can be softened to

(ii’) there exists a ∈ I such that fn(a) −−−→
n→∞

f(a).

Corollary 8.2.15 : Let p ⩾ 1 be an integer, and (fn)n⩾1 be a sequence of Cp functions from I to W .

Suppose that

(i) for every 0 ⩽ k ⩽ p− 1, the sequence (f (k)
n )n⩾1 converges pointwise;
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(ii) the sequence (f (p)
n )n⩾1 converges uniformly on every segment of I .

Then, the pointwise limit f := limn→∞ fn is of class Cp, and for 0 ⩽ k ⩽ p, we have

∀x ∈ I, f (k)(x) = lim
n→∞

f (k)
n (x).

Proof : This can be shown by induction using Theorem 8.2.13. □

Corollary 8.2.16 : Let (un)n⩾1 be a sequence of C1 functions from I toW . Suppose that

(i) the series
∑
un converges pointwise;

(ii) the series
∑
u′
n converges uniformly on every segment of I .

Then, the function
∑
n⩾1 un is of class C1 and

(∑
n⩾1

un

)′
=
∑
n⩾1

u′
n. (8.8)

Example 8.2.17 : We claim that the Riemann zeta function s 7→ ζ(s) is of class C1, and

∀s > 1, ζ ′(s) = −
∞∑
n=1

lnn
ns

. (8.9)

For every n ⩾ 1, let un : s 7→ n−s, which is a C1 function with derivative given by

∀s > 1, u′
n(s) = − lnn

ns
.

The series of functions
∑
un converges pointwise to ζ . Fix b > a > 1, let us show that

∑
u′
n converges

normally on [a, b], so also uniformly. Let us choose c ∈ (1, a). We have

∥∥∥(u′
n)|[a,b]

∥∥∥
∞

= lnn
na

= O
( 1
nc

)
.

Since
∑
n−c converges (Proposition 6.2.6), we deduce that

∑
un converges normally on [a, b]. There-

fore, Eq. (8.8) gives us Eq. (8.9).
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Corollary 8.2.18 : Let p ⩾ 1 be an integer, and (un)n⩾1 be a sequence of Cp functions from I to W .

Suppose that

(i) for every 0 ⩽ k ⩽ p− 1, the series
∑
u

(k)
n converges pointwise;

(ii) the series
∑
u

(p)
n converges uniformly on every segment of I .

Then, the function
∑
n⩾1 un is of class Cp and for 0 ⩽ k ⩽ p, we have

(∑
n⩾1

un

)(k)
=
∑
n⩾1

u(k)
n . (8.10)

Example 8.2.19 : We follow the same notations as in Example 8.2.17, we find, for every n, p ⩾ 1,

that

∀s > 1, u(p)
n (s) = (−1)p (lnn)p

ns
.

Let us fix b > a > 1. We show in the same way that
∑
u

(p)
n converges normally on [a, b] for all p ⩾ 0,

so also converges uniformly and pointwise. We apply Corollary 8.2.18 to conclude that s 7→ ζ(s) is

of class Cp for all p ⩾ 0, so it is of class C∞. Moreover, Eq. (8.10) gives us

∀s > 1,∀p ⩾ 1, ζ(p)(s) =
∑
n⩾1

(−1)p (lnn)p

ns
.

Example 8.2.20 : Let (W, ‖·‖W ) be a Banach space. We have seen in Theorem 3.2.18 that Lc(W ) :=

Lc(W,W ) equipped with the operator norm |||·||| is a Banach space, and is also a normed algebra

(Definition 6.6.1), that is the operator norm satisfies the submultiplicative property. Given u ∈ Lc(W ),

we may define the following function

Eu : R → Lc(W )

t 7→
∑
n⩾0

tn

n!
un.

We may denote un(t) = tn

n!u
n for all n ⩾ 0 and t ∈ R.

• It is straightforward to check that Eu(t) is well defined for all t ∈ R, because

∀t ∈ R,
∑
n⩾0

|t|n

n!
|||un||| ⩽

∑
n⩾0

|t|n

n!
|||u|||n = exp

(
|t||||u|||

)
.
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• A similar argument as in Example 8.2.4 shows that for any M > 0, the series of functions∑
n⩾0 un converges uniformly on [−M,M ] to Eu.

• We have u0(t) = 1 for all t ∈ R. For every n ∈ N, we have

∀t ∈ R, u′
n(t) = tn−1

(n− 1)!
un = u · un−1(t).

This shows that the series of functions
∑
n⩾0 u

′
n =

∑
n⩾1 u

′
n =

∑
n⩾0 u·un converges pointwise

to u · Eu(t). This convergence is also uniform on every [−M,M ] forM > 0.

• Let us fixM > 0 and apply the uniform convergence of
∑
n⩾0 un and

∑
n⩾0 u

′
n on [−M,M ] to

conclude that Eu is of class C1 on [−M,M ] and E ′
u(t) = u · Eu(t) for t ∈ (−M,M). This allows

us to conclude that Eu is of class C1 on R and E ′
u(t) = u · Eu(t) for all t ∈ R.

• From the relation E ′
u = u · Eu, we deduce that if Eu is of class Ck for some k ⩾ 1, then so is E ′

u,

meaning that Eu needs to be of class Ck+1. As a consequence, Eu is of class C∞.

8.3 Power series

In this section, we are going to study a particular form of series of functions, called power series. We

restrict ourselves to real-valued and complexed-valued power series, but you need to keep in mind that all

the notions are still valid if we replace (R, | · |) or (C, | · |) by a normed algebra.

8.3.1 Definitions and radius of convergence

We define a few topological notions in (C, | · |). An open ball centered at c with radius r > 0 is also called

an open disk centered at c with the same radius r, denoted D(c, r) := B(c, r). We also define the notion of

closed disks in the same way.

Definition 8.3.1 : Let (an)n⩾0 be a sequence of complex numbers and c ∈ C.

• A series of functions of the form
∑
n⩾0 an(z − c)n is called a power series (冪級數) centered at

c, where z ∈ C is the variable of the functions.

• If the sequence (an)n⩾0 is real-valued and c ∈ R, we may use x ∈ R as the variable of the power

series, and write
∑
n⩾0 an(x− c)n. Then, this power series takes values in R.

Last modified: 20:41 on Tuesday 20th May, 2025 19



Chapter 8 Sequences and series of functions

We are going to develop some theories for power series centered at c = 0. For a general power series

centered at c ∈ C, all the corresponding notions and properties can be obtained by a shift z 7→ z + c. The

properties and theorems are stated in terms of complex-valued power series, but you should also know that

the exact same proofs apply to the real-valued power series.

Proposition 8.3.2 (Abel’s lemma) : Let
∑
anz

n be a power series and z0 ∈ C be such that the sequence

(anzn0 )n⩾0 is bounded. Then, the following properties hold.

(1) For every z ∈ C with |z| < |z0|, the series
∑
anz

n is absolutely convergent.

(2) For every r ∈ (0, |z0|), the series of functions
∑
anz

n is normally convergent in the closed disk

D(0, r) := B(0, r).

Proof : LetM > 0 be such that |an||z0|n ⩽ M for every n ⩾ 0. For z ∈ C such that |z| < |z0|, we

have

∀n ⩾ 0, |anzn| =
∣∣∣ z
z0

∣∣∣n|an||z0|n ⩽M
∣∣∣ z
z0

∣∣∣n,
where the right-hand side is a convergent series (geometric series with ratio strictly smaller than 1). □

Definition 8.3.3 : Let
∑
anz

n be a power series. The following quantity

R = R
(∑

anz
n) := sup{r ⩾ 0 : (|an|rn)n⩾0 is bounded} ∈ [0,+∞]

is called the radius of convergence (收斂半徑) of
∑
anz

n.

Remark 8.3.4 : We note that if we add phases to the sequence (an)n⩾0 defining the power series
∑
anz

n,

its radius of convergence remains unchanged.

Proposition 8.3.5 : Let
∑
anz

n be a power series and R be its radius of convergence. Then, we have the

following properties.

(1) For z ∈ C with |z| < R, the series
∑
anz

n converges absolutely.

(2) For z ∈ C with |z| > R, the series
∑
anz

n diverges.

(3) For r ∈ [0, R), the series
∑
anz

n converges normally on the closed disk D(0, r).
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And the open disk D(0, R) is called the disk of convergence (收斂圓盤) of the power series
∑
anz

n.

Remark 8.3.6 :

(1) When R = +∞, the power series
∑
anz

n converges for every z ∈ C, so it defines a function from C

to C. Such a function is called an entire function (整函數).

(2) When R < +∞, on the boundary of the disk of convergence, that is when z ∈ ∂D(0, R), the power

series may have any possible behavior, see Example 8.3.9.

Proof :

(1) It is a direct consequence of Proposition 8.3.2 (1).

(2) For z ∈ C\D(0, R), since (|an||z|n)n⩾0 is not bounded, we do not have anzn −−−→
n→∞

0, so the

series
∑
anz

n diverges.

(3) It is a direct consequence of Proposition 8.3.2 (2). □

Proposition 8.3.7 (D’Alembert’s criterion, ratio test) : Let
∑
anz

n be a power series, andR be its radius

of convergence. Suppose that the following limit exists,

ℓ := lim
n→∞

∣∣∣an+1
an

∣∣∣ ∈ [0,+∞].

Then, R = ℓ−1.

Proof : It is a direct consequence of Theorem 6.3.1. □

Proposition 8.3.8 (Cauchy’s criterion, root test) : Let
∑
anz

n be a power series, and R be its radius of

convergence. Let

λ := lim sup
n→∞

|an|1/n ∈ [0,+∞].

Then, R = 1
λ .
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Proof : It is a direct consequence of Corollary 6.3.8. □

Example 8.3.9 : The following three series have the same radius of convergence 1, that can be obtained

by either the ratio test or the root test. However, they have totally different behaviors on the boundary

of the disk of convergence.

(1) The series
∑
zn has radius of convergence 1. For z ∈ C with |z| = 1, the series

∑
zn never

converges.

(2) The series
∑ zn

n2 has radius of convergence 1. For z ∈ Cwith |z| = 1, the series
∑ zn

n2 converges

normally, so converges.

(3) The series
∑ zn

n has radius of convergence 1. For z = 1, the series
∑ zn

n diverges. For z ∈ C

such that |z| = 1 and z 6= 1, the series
∑ zn

n converges by Example 6.4.9.

8.3.2 Operations on power series

Proposition 8.3.10 : Let f(z) =
∑
anz

n and g(z) =
∑
bnz

n be power series with radius of convergence

Rf and Rg . Let R be the radius of convergence of
∑

(an + bn)zn. Then,

R ⩾ min(Rf , Rg).

Moreover, if Rf 6= Rg , we have R = min(Rf , Rg). For any z ∈ C with |z| < min(Rf , Rg), we also

have ∑
n⩾0

(an + bn)zn =
∑
n⩾0

anz
n +

∑
n⩾0

bnz
n. (8.11)

Proof : Let z ∈ C such that |z| < min(Rf , Rg). It follows from Proposition 8.3.5 that both
∑
anz

n

and
∑
bnz

n converges absolutely, so the series
∑

(an + bn)zn also converges absolutely. This means

that Eq. (8.11) holds. Moreover, this also implies that R ⩾ min(Rf , Rg).

Suppose thatRf 6= Rg , for example,Rf < Rg . Let z ∈ C such thatRf < |z| < Rg . Since (bnzn)n⩾1

is bounded and (anzn)n⩾1 is unbounded, we deduce that
(
(an + bn)zn

)
n⩾1 is unbounded, so |z| ⩾ R.

By taking infimum over z ∈ C satisfying Rf < |z| < Rg , we find that Rf ⩾ R. □
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Definition 8.3.11 : Let
∑
anz

n and
∑
bnz

n be power series. Their Cauchy product is the power series∑
cnz

n, where the coefficients (cn)n⩾1 are given by

∀n ⩾ 0, cn =
n∑
k=0

akbn−k.

Proposition 8.3.12 : Let f(z) =
∑
anz

n and g(z) =
∑
bnz

n be power series with radius of convergence

Rf and Rg . Let
∑
cnz

n be their Cauchy product. For every z ∈ C with |z| < min(Rf , Rg), we have

f(z)g(z) =
(∑
n⩾0

anz
n
)(∑

n⩾0
bnz

n
)

=
∑
n⩾0

( n∑
k=0

akbn−k

)
zn =

∑
n⩾0

cnz
n. (8.12)

In particular, if R is the radius of convergence of
∑
cnz

n, then we have

R ⩾ min(Rf , Rg).

Proof : Let z ∈ C such that |z| < min(Rf , Rg). From Proposition 8.3.5, we know that both
∑
anz

n

and
∑
bnz

n converges absolutely, then by Theorem 6.6.3, we know that their Cauchy product
∑
cnz

n

converges absolutely, and satisfies Eq. (8.12). Additionally, this implies that R ⩾ min(Rf , Rg). □

8.3.3 Regularity

Here, let f :=
∑
anz

n be a power series with radius of convegence R > 0. We have seen in Proposition

8.3.5 that f is well defined on D(0, R).

Theorem 8.3.13 : The function f : z 7→
∑
n⩾0 anz

n is continuous on the disk of convergence D(0, R).

Proof : Fix z ∈ D(0, R). Let us consider a closed disk D(z, r) centered at z with radius r < R − |z|.

Then, for any w ∈ D(z, r), we have |w| ⩽ |w − z| + |z| ⩽ |z| + r < R, which means that D(z, r) ⊆

D(0, R). It follows Proposition 8.3.5 (3) that the power series
∑
anz

n converges normally onD(z, r).

Since the partial sums defining f are continuous (polynomial functions), we use Proposition 8.2.1 to

conclude that the limit f is continuous at z. □
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Theorem 8.3.14 (Abel’s theorem) : Let
∑
anz

n be a power series with radius of convergence R > 0.

Suppose that the series
∑
anR

n converges. Then, the function x 7→
∑
n⩾0 anx

n defined on [0, R] is

continuous. In other words, we have

∑
n⩾0

anx
n −−−−→

x→R−

∑
n⩾0

anR
n.

Proof : For every n ∈ N0, let un : [0, R] → C be defined by

∀x ∈ [0, R], un(x) = anx
n, and Rn =

∑
k⩾n+1

akR
k.

By the assumption, the series of functions
∑
un converges pointwise on [0, R]. We want to show

that this covnergence is uniform, then we can conclude by Proposition 8.2.1. By rewriting each un as

un = anR
n
(
x
R

)n, we may assume that R = 1.

Let ε > 0. Since
∑
an is convergent, we may find N ⩾ 1 such that |Rn| ⩽ ε for all n ⩾ N . For

m,n ∈ N withm > n ⩾ N , and x ∈ [0, 1], we establish the Abel’s transform using the remainders of

the convergent series
∑
ak,

m∑
k=n+1

akx
k =

m∑
k=n+1

(Rk−1 −Rk)xk =
m−1∑
k=n

Rkx
k+1 −

m∑
k=n+1

Rkx
k

= Rnx
n+1 −Rmx

m +
m−1∑
k=n+1

Rk(xk+1 − xk).

Since Rm −−−−→
m→∞

0 and (xm)m⩾0 is bounded, we have Rmxm −−−−→
m→∞

0. Moreover, we have

|Rk(xk+1 − xk)| ⩽ ε(xk − xk+1), and the series
∑
k(xk − xk+1) converges, so

∑
Rk(xk+1 − xk)

converges absolutely. Thus, for n ∈ N and x ∈ [0, 1], the remainder of the power series writes

rn(x) = Rnx
n+1 +

∑
k⩾n+1

Rk(xk+1 − xk).

For n ⩾ N and x ∈ [0, 1], we have

|Rnxn+1| ⩽ |Rn| ⩽ ε,∑
k⩾n+1

|Rk(xk+1 − xk)| ⩽
∑

k⩾n+1
ε(xk − xk+1) = εxn+1 ⩽ ε.

So |rn(x)| ⩽ 2ε for all n ⩾ N and x ∈ [0, 1]. This means that rn −−−→
n→∞

0 uniformly. By
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Proposition 8.1.17, we have shown that
∑
un converges uniformly on [0, R]. □

The following Tauber’s theorem gives a converse of the above Abel’s theorem.

Theorem 8.3.15 (Tauber’s theorem) : Let f(z) =
∑
anz

n be a power series with radius of convergence

R > 0. Suppose that f(x) −−−−→
x→R−

ℓ and nan −−−→
n→∞

0. Then, the series
∑
anR

n converges to ℓ.

Proof : Without loss of generality, we may assume that R = 1. Let us denote by (Sn)n⩾0 the partials

sums of the series
∑
an. For any n ∈ N0 and x ∈ (−1, 1), we have

Sn − f(x) =
n∑
k=1

ak(1 − xk) −
∑

k⩾n+1
akx

k.

For x ∈ (0, 1), we have

1 − xk = (1 − x)(1 + x+ · · · + xk−1) ⩽ k(1 − x).

Therefore, for any n ∈ N0 and x ∈ (0, 1), we have

|Sn − f(x)| ⩽ (1 − x)
n∑
k=1

k|ak| +
∑

k⩾n+1
|ak|xk.

Given ε > 0 and choose N ⩾ 1 such that n|an| ⩽ ε for all n ⩾ N . For any n ⩾ N , we have

∑
k⩾n+1

|ak|xk ⩽ ε
∑

k⩾n+1

xk

k
⩽ ε

n

∑
k⩾n+1

xk ⩽ ε

n(1 − x)
.

For n ⩾ N , let us choose xn = 1 − 1
n . Then, we find

|Sn − f(xn)| ⩽ 1
n

n∑
k=1

k|ak| + ε.

Since n|an| −−−→
n→∞

0, it follows from Exercise 6.1 that the first term1on the right side converges to 0.

Therefore,

lim sup
n→∞

|Sn − f(xn)| ⩽ ε.
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Since ε > 0 can be made arbitrarily small, we find

lim
n→∞

|Sn − f(xn)| = 0.

That is, limn→∞ Sn = limn→∞ f(xn) = limx→1− f(x) = ℓ. □

The following is a generalization of Theorem 6.6.3 and Exercise 6.24.

Corollary 8.3.16 : Let
∑
an and

∑
bn be convergent series. For n ∈ N0, let cn =

∑n
k=0 akbn−k.

Suppose that
∑
cn is convergent. Then,

∑
n⩾0

cn =
(∑
n⩾0

an

)(∑
n⩾0

bn

)
.

Proof : Let
∑
anz

n,
∑
bnz

n, and
∑
cnz

n be power series. Their radii of convergence are at least 1, be-

cause both (an|z|n)n⩾0 and (bn|z|n)n⩾0 are bounded for z ∈ D(0, 1). It follows from Proposition 8.3.12

that the radius of convergence of the power series
∑
cnz

n is greater or equal to 1. By Theorem 8.3.14,

we know that

∑
n⩾0

anx
n −−−−→

x→1−

∑
n⩾0

an,
∑
n⩾0

bnx
n −−−−→

x→1−

∑
n⩾0

bn, and
∑
n⩾0

cnx
n −−−−→

x→1−

∑
n⩾0

cn.

Moreover, Proposition 8.3.12 gives the following identity,

∀x ∈ (−1, 1),
∑
n⩾0

cnx
n =

(∑
n⩾0

anx
n

)(∑
n⩾0

anx
n

)

By taking the limit x → 1− in the above identity, we establish the identity we want. □

Let us also introduce the notion of differentiability in a complex variable.

Definition 8.3.17 : Let A ⊆ C and f : A → C. We say that f is C-differentiable (or simply differen-

tiable) at z0 ∈ Å if the following limit exists,

df
dz

(z0) = d
dz
f(z0) = f ′(z0) := lim

z→z0
z∈C

f(z) − f(z0)
z − z0

∈ C,

1The sum 1
n

∑n

k=1 kak is called the Cesarò sum of (nan)n⩾1.
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which is also called the C-derivative of f at z0.

Remark 8.3.18 : We may identify C as a two-dimensional real vector space. If we compare the notion of

differential from Definition 4.1.1, we may notice that the C-derivative introduced here is much stronger.

In fact, if a function f : A → C is differentiable at z0 in the sense of Definition 4.1.1, its differential is a

continuous linear map. However, if the same function is C-differentiable at z0, its C-derivative is given by

a complex number, which, seen as a differential, is a composition between a rotation and a dilation (in R2).

It is not hard to see that a composition between a rotation and a dilation is a continuous linear map, but the

converse fails to hold in general. In Complex Analysis, you will see that if a function is C-differentiable in an

open subset A ⊆ C, then it can be differentiated as many times as we want in A. Such functions are called

holomorphic functions.

A power series contains only polynomials functions, and it is not hard to check that the C-derivative of a

polynomial function is the same as its usual R-derivative. In other words, we have

∀n ∈ N0,
d(zn)

dz
= nzn−1.

Theorem 8.3.19 : The function f : D(0, R) → C, z 7→
∑
n⩾0 anz

n is of class C1. The power series∑
n⩾1 nanz

n−1 has the same radius of convergence as
∑
n⩾0 anz

n, that is

R
(∑
n⩾1

nanz
n−1

)
= R

(∑
n⩾0

anz
n
)
.

We also have

∀z ∈ D(0, R), f ′(z) =
∑
n⩾1

nanz
n−1. (8.13)

Remark 8.3.20 : This theorem is of particular interest. It means that we can always differentiate term by

term a power series, which is not the case of a general series of functions, where additional assumptions are

needed (Corollary 8.2.16).
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Proof : Let R′ be the radius of convergence of
∑
nanz

n−1. For any r ∈ [0, R′), we know from

Definition 8.3.3 that (nanrn−1)n⩾1 is bounded, so (anrn)n⩾0 is also bounded, which implies that r <

R. By taking the limit r → R′−, we find R′ ⩽ R. For the converse, let r ∈ (0, R) and r0 ∈ (r,R).

Again by Definition 8.3.3, we know that (anrn0 )n⩾0 is bounded. We have

nanr
n−1 = n(anrn−1

0 )
( r
r0

)n−1
−−−→
n→∞

0,

so we also know that (nanrn−1)n⩾1 is bounded, that is r < R′. When we take r → R−, we find R ⩽
R′. Now, we can deduce Eq. (8.13) as a direct consequence of Corollary 8.2.16 and Proposition 8.3.5.

□

Corollary 8.3.21 : The power series f(z) =
∑
n⩾0 anz

n is of class C∞ on D(0, R). For every p ∈ N0,

the p-th derivative of the power series has the same radius of convergence and writes

∀z ∈ D(0, R), f (p)(z) =
∑
n⩾p

n(n− 1) · · · (n− p+ 1)anzn−p =
∑
n⩾p

(
n

p

)
p!anzn−p.

In particular, this gives

∀p ∈ N0, ap = f (p)(0)
p!

,

and

∀z ∈ D(0, R), f(z) =
∑
p⩾0

f (p)(0)
p!

zp.

Proof : It is a direct consequence of Theorem 8.3.19 with an induction. □

Example 8.3.22 : We have the following identity,

∀z ∈ D(0, 1), 1
1 − z

=
∑
n⩾0

zn.

Theorem 8.3.19 allows us to differentiate the identity, giving us

∀z ∈ D(0, 1), 1
(1 − z)2 =

∑
n⩾1

nzn−1 =
∑
n⩾0

(n+ 1)zn. (8.14)
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By taking higher-order derivatives, for every p ∈ N, by Corollary 8.3.21, we find

∀z ∈ D(0, 1), p!
(1 − z)p+1 =

∑
n⩾0

(n+ 1) . . . (n+ p)zn or 1
(1 − z)p+1 =

∑
n⩾0

(
n+ p

p

)
zn

If we multiply Eq. (8.14) by z then differentiate again, we find

∀z ∈ D(0, 1), 1 + z

(1 − z)3 =
∑
n⩾1

n2zn−1 =
∑
n⩾0

(n+ 1)2zn.

In particular, when z = 1
2 , we find the following identity,

∑
n⩾1

n2

2n
= 6.

Corollary 8.3.21 gives us following direct consequences, which are very useful when we deal with power

series.

Corollary 8.3.23 : The power series

F : D(0, R) → C

z 7→
∑
n⩾1

an
n+ 1

zn+1

has the same radius of convergence as
∑
anz

n. Moreover, we have F ′ = f on D(0, R).

8.3.4 Coefficients of power series

Corollary 8.3.24 (Uniqueness of power series) : Let f(z) =
∑
n⩾0 anz

n and g(z) =
∑
n⩾0 bnz

n be

two power series with radius of convergence

Rf := R
(∑
n⩾0

anz
n
)
> 0, and Rg := R

(∑
n⩾0

bnz
n
)
> 0.

Suppose that there exists r > 0 and r ⩽ min(Rf , Rg) such that f ≡ g on (−r, r) ⊆ R. Then, we have

an = bn for all n ∈ N0.
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Proof : Let R = min(Rf , Rg) and consider the following functions defined on (−R,R),

∀z ∈ (−R,R), f(z) =
∑
n⩾0

anz
n, and g(z) =

∑
n⩾0

bnz
n.

It follows from Corollary 8.3.21 that both f and g are C∞ functions, and their coefficients are given by

∀n ∈ N0, an = f (n)(0)
n!

, and bn = g(n)(0)
n!

.

By the assumption that f ≡ g on (−r, r) for some r ∈ (0, R], we deduce that f (n)(0) = g(n)(0) for all

n ⩾ 0, so we also have an = bn for all n ⩾ 0. □

Example 8.3.25 : Let f : D(0, R) → C, z 7→
∑
n⩾0 anz

n be a power series with R > 0. Suppose

that f is an even function, that is f(z) = f(−z) for z ∈ (−R,R). In other words,

∀z ∈ (−R,R),
∑
n⩾0

an(−z)n =
∑
n⩾0

anz
n.

This implies that

∀n ∈ N0, (−1)nan = an.

In other words, an = 0 if n is an odd integer.

Theorem 8.3.26 (Cauchy’s formula) : Let f(z) =
∑
anz

n be a power series with radius of convergence

R > 0. Then, for any r ∈ (0, R) and n ∈ N0, we have

rnan = 1
2π

∫ 2π

0
f(rei θ)e− inθ dθ.

Proof : Let us fix r ∈ (0, R) and n ∈ N0. We have

∫ 2π

0
f(rei θ)e− inθ dθ =

∫ 2π

0

(∑
p⩾0

apr
pei(p−n)θ

)
dθ.

Since
∑

|ap|rp converges, the series of functions θ 7→
∑
apr

pei(p−n)θ converges normally on [0, 2π].

We deduce from Corollary 8.2.9 that we may interchange the order between integration and summa-
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tion. As a consequence,

∫ 2π

0
f(rei θ)e− inθ dθ =

∑
p⩾0

apr
p
∫ 2π

0
ei(p−n)θ dθ =

∑
p⩾0

apr
p(2π)1p=n = 2πrnan.

□

Remark 8.3.27 : This provides another proof of Corollary 8.3.24 if, using its notations, f ≡ g on D(0, r)

for some r ∈ (0, R).

8.3.5 Expansion in power series

In the previous subsections, we were given power series and discussed their properties. In this subsection,

we are going to see when and which functions can be written (or exapnded) as a power series.

Definition 8.3.28 : Let A ⊆ C be an open set and a function f : A → C.

• Let R > 0. If 0 ∈ A and there exists a power series
∑
anz

n such that

∀z ∈ D(0, R), f(z) =
∑
n⩾0

anz
n, (8.15)

then we say that f can be written (or expanded) as a power series around 0, or on D(0, R). In

particular, such a function needs to be C∞ at 0, which is a direct consequence of Corollary 8.3.21.

• Let z0 ∈ A. We say that f can be written (or expanded) as a power series around z0 if z 7→

f(z + z0) can be written as a power series around 0.

Proposition 8.3.29 : Let A ⊆ C be an open set containing 0 and a function f : A → C. Then, the

following properties are equivalent.

(1) f can be written as a power series around 0.

(2) There exists r > 0 such that the series of remainders (Rn)n⩾0 converges pointwise to 0 onD(0, r),

where

∀n ∈ N0, ∀z ∈ D(0, r), Rn(z) = f(z) −
n∑
k=0

f (k)(0)
k!

zk. (8.16)

When (2) holds, it means that the power series
∑ f (n)(0)

n! zn has radius of convergenceR satisfyingR ⩾ r,

and f is equal to the series on D(0, r).
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Remark 8.3.30 :

(1) To check Proposition 8.3.29 (2), we use Taylor–Lagrange or Taylor integral formula (Section 4.3.1) to

write the remainder as

Rn(z) = zn+1

(n+ 1)!
f (n+1)(θz), θ ∈ (0, 1), or Rn(z) = zn+1

∫ 1

0

(1 − t)n

n!
f (n+1)(tz) dt.

(2) We note that to check Proposition 8.3.29 (2), it is not sufficient to check that the radius of convergence

of
∑ f (n)(0)

n! is strictly positive. Actually, there are functions such that this power series has a strictly

positive radius of convergence without Eq. (8.15) holds, see Example 8.3.32 for an example. However,

if this radius of convergence is 0, it tells us that f cannot be written as a power series around 0.

Proof : There is nothing to show for (1) ⇒ (2). Suppose that (2) holds, let us show (1). Let r > 0 sat-

isfying Eq. (8.16). Let z ∈ D(0, r). The condition Rn(z) −−−→
n→∞

0 implies that f(z) =
∑
n⩾0

f (n)(0)
n! zn.

Therefore, the sequence (f
(n)(0)
n! zn)n⩾0 tends to 0, so is bounded, so the radius of convergenceR of the

corresponding power series satisfiesR ⩾ |z| (Definition 8.3.3). By taking supremum over z ∈ D(0, r),

we find R ⩾ r. □

Example 8.3.31 : The following functions can be written as a power series around 0.

(1) The exponential function z 7→ exp(z),

∀z ∈ C, ez =
∑
n⩾0

zn

n!
.

In fact, for any z ∈ C and n ⩾ 0, the n-th remainder writes

|Rn(z)| = |z|n+1

(n+ 1)!
|f (n+1)(θz)| = |z|n+1

(n+ 1)!
eθRe(z) −−−→

n→∞
0.

(2) The function z 7→ 1
1−z is defined on C\{1}, and we have

∀z ∈ D(0, 1), 1
1 − z

=
∑
n⩾0

zn.

In fact, for any z ∈ D(0, 1) and n ⩾ 0, the n-th remainder writes

|Rn(z)| =
∣∣∣ zn

1 − z

∣∣∣ ⩽ |z|n

|1 − z|
−−−→
n→∞

0.
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(3) Any polynomial function P ∈ C[X] satisfies

∀z ∈ C, P (z) =
∑
n⩾0

P (n)(0)
n!

zn.

Actually, the above power series contains only finitely many terms.

Example 8.3.32 : Let us consider the function f defined as below,

f : R → R

x 7→


e−1/x if x > 0,

0 if x ⩽ 0.

For k ∈ N0, we may compute the k-th derivative of f on (0,+∞),

∀x > 0, f (k)(x) = Pk
(1
x

)
e−1/x, (8.17)

wherePk is a polynomial satisfying deg(Pk) ⩽ 2k. Therefore, for each k ⩾ 0, wemay extend f (k) con-

tinuously to 0 by the value 0, so f is a C∞ function on R. Therefore, the power series
∑
n⩾0

f (n)(0)
n! zn

is the zero function. Its radius of convergence is +∞, and is not equal to f on (0, r) for any r > 0.

Proposition 8.3.33 : If f can be written as a power series in D(0, R) for some R > 0, then for any

z0 ∈ D(0, R), f can also be written as a power series around z0.

Proof : Let f be a function, R > 0, and a power series
∑
anz

n such that

∀z ∈ D(0, R), f(z) =
∑
n⩾0

anz
n.

Let z0 ∈ D(0, R) and r = R− |z0|. It is not hard to see that D(0, r) ⊆ D(0, R). Let z ∈ D(z0, r), we

write

∑
n⩾0

anz
n =

∑
n⩾0

an
(
z0 + (z − z0)

)n =
∑
n⩾0

an

n∑
k=0

(
n

k

)
zn−k

0 (z − z0)k

=
∑
n⩾0

∑
k⩾0

an1n⩾k

(
n

k

)
zn−k

0 (z − z0)k
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We may check that for every n ⩾ 0, the series
∑
k⩾0 an1n⩾k

(n
k

)
zn−k

0 (z − z0)k converges absolutely

(finite series). Additionally, we have

∑
n⩾0

∑
k⩾0

|an|1n⩾k

(
n

k

)
|z0|n−k|z − z0|k =

∑
n⩾0

|an|
(
|z0| + |z − z0|

)n
which converges because |z0| + |z − z0| < |z0| + r = R. Therefore, Theorem 6.7.4 allows us to

interchange the order of summations. We find,

∑
n⩾0

anz
n =

∑
k⩾0

∑
n⩾0

an1n⩾k

(
n

k

)
zn−k

0 (z − z0)k =
∑
k⩾0

(∑
n⩾k

an

(
n

k

)
zn−k

0

)
(z − z0)k,

which is a power series centered at z0. □

8.3.6 Applications to ODEs

Power series can be used to solve linear ordinary differential equations with polynomial coefficients. We

have two cases.

• We know that the solution can be written as a power series, and we look for recurrence relations

between coefficients of the power series. Then, the uniqueness of the cofficients (Corollary 8.3.24)

allows us to find this unique solution. See Example 8.3.34.

• We do not know whether the solution can be written as a power series and want to show that there

exists such a solution. We apply the same method as in the previous point, and show that the corre-

sponding power series has a strictly positive radius of convergence. This gives us the unique solution

that can be written as a power series, see Example 8.3.35. Note that this does not prove any result

about the uniqueness of the solution.

Example 8.3.34 : We want to look for a power series expansion of the following function around 0,

f : R → R

x 7→ ex
2 ∫ x

0 e
−t2 dt.

The function f can be written as a power series centered at 0 with radius of convergence equal to +∞,

because it consists of multiplication and integration of such functions. Additionally, by the fundamen-

34 Last modified: 20:41 on Tuesday 20th May, 2025



Chapter 8 Sequences and series of functions

tal theorem of calculus, we have

∀x ∈ R, f ′(x) = 2xf(x) + 1, and f(0) = 0.

Suppose that f(x) =
∑
n⩾0 anx

n. Then, we have

∀x ∈ R, f ′(x) =
∑
n⩾1

nanx
n−1, and xf(x) =

∑
n⩾0

anx
n+1 =

∑
n⩾2

an−2x
n−1.

Therefore,

∀x ∈ R, f ′(x) − 2xf(x) = a1 +
∑
n⩾2

(nan − 2an−2)xn−1.

The initial condition f(0) = 0 gives a0 = 0. By Corollary 8.3.24, we know that

a1 = 1, and ∀n ⩾ 2, an = 2
n
an−2.

Thus, by induction, we find that

∀n ⩾ 0, a2n = 0, and a2n+1 = 4nn!
(2n+ 1)!

.

We check again (even though not necessary in this example) that the power series define by this

sequence of (an)n⩾0 indeed has radius of convergence equal to +∞, so

∀x ∈ R, f(x) =
∑
n⩾0

4nn!
(2n+ 1)!

x2n+1.

Note that this solution can also be expanded around every a ∈ R as a power series.

Example 8.3.35 : Let α ∈ C. We want to look for a power series expansion of the following function

around 0,
f : (−1, 1) → C

x 7→ (1 + x)α.

This function f satisfies the following first-order linear ordinary differential equation,

∀x ∈ (−1, 1), (1 + x)f ′(x) = αf(x), and f(0) = 1.

Such a differential equation has a unique solution (Theorem 8.4.17). Suppose that f(x) =
∑
n⩾0 anx

n
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with radius of convergence R > 0. Then, we have

∀x ∈ (−R,R), f ′(x) =
∑
n⩾1

nanx
n−1 =

∑
n⩾0

(n+ 1)an+1x
n, and xf ′(x) =

∑
n⩾1

nanx
n.

Therefore,

∀x ∈ (−R,R), (1 + x)f ′(x) − αf(x) =
∑
n⩾0

(
(n+ 1)an+1 + nan − αan

)
xn.

From the initial condition f(0) = 1, we have a0 = 1. By the uniqueness of the coefficients

(Corollary 8.3.24), we find

∀n ∈ N0, an+1 = α− n

n+ 1
an.

By induction, we deduce that

∀n ∈ N0, an = α(α− 1) . . . (α− n+ 1)
n!

=
(
α

n

)
. (8.18)

By d’Alembert’s criterion, we have

∣∣∣an+1
an

∣∣∣ =
∣∣∣α− n

n+ 1

∣∣∣ −−−→
n→∞

1

Therefore, the power series
∑
anx

n defined by the cofficients in Eq. (8.18) has radius of convergence

equal to 1, and we conclude that

∀x ∈ (−1, 1), (1 + x)α =
∑
n⩾0

(
α

n

)
xn =

∑
n⩾0

α(α− 1) . . . (α− n+ 1)
n!

xn.

This generalizes the binomial expansion to the case with a complex-valued exponent.

8.4 Advanced theorems on uniform convergence

8.4.1 Arzelà-Ascoli theorem

Arzelà-Ascoli theorem is an important theorem in functional analysis, and it allows us to characterize

when a subset of continuous functions is compact. In particular, it turns out to be useful to show the exis-

tence of solution for some differential equations, see Theorem 8.4.14. First, let us introduce the notion of

equicontinuity.
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Definition 8.4.1 : Let (K, d) be a metric space. In addition, if K is a compact space, the space of

continuous functions C(K,R) is a subset of B(K,R). We have equipped B(K,R) with the supremum

norm in Definition 8.1.9, which we may induce on the subspace C(K,R). A subset F ⊆ C(K,R) is

said to be equicontinuous (等度連續) if

∀ε > 0, ∀x ∈ M, ∃δ > 0, ∀f ∈ F , y ∈ B(x, δ) ⇒ |f(x) − f(y)| < ε. (8.19)

Remark 8.4.2 : We note that the definition in Eq. (8.19) is much stronger than just requiring that all the

functions f ∈ F are continuous. Once ε > 0 and x ∈ M are fixed, this condition needs the choice of δ > 0

to be uniform in f ∈ F .

Example 8.4.3 :

(1) A subset of finitely many continuous functions is equicontinuous.

(2) For every L > 0, the set of all the L-Lipschitz continuous functions is equicontinuous.

Theorem 8.4.4 (Arzelà–Ascoli theorem) : Let (K, d) be a compact metric space and F ⊆ C(K,R) be

a subset. Then, we have the following properties.

(1) F is compact if and only if F is bounded, closed, and equicontinuous.

(2) F is precompact if and only if F is bounded and equicontinuous.

Remark 8.4.5 :

(1) We recall that a compact space is necessarily bounded and closed (Proposition 3.1.6), and a bounded

and closed set may not be compact (Remark 3.1.34), except that we are in a finite-dimensional normed

vector space (Corollary 3.2.24). If the compact metric spaceK is consisted of a finite number of points,

it is clear that C(K,R) is isomorphic to Rn for n = Card(K), which is a finite-dimensional normed

vector space, and the theorem becomes trivial. However, for a generic compact metric space K , the

space of continuous functions C(K,R) is not of finite-dimensional.

(2) FromExercise 3.21, we know that ametric space is compact if and only if it is precompact and complete.

Moreover, in Exercise 8.30, we can check that if F is equicontinuous, then so is F . Moreover, since

C(K,R) is a Banach space, we see that (2) is a direct consequence of (1).
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(3) We also note that R can be replaced by any Banach space, and the following proof can be adapted

accordingly.

Proof :

• Suppose that F is compact. We already know that it is bounded and closed, so we only need

to show that it is equicontinuous. A compact set is also relatively compact (or precompact), see

Lemma 3.1.22. Let ε > 0. We may findN ⩾ 1 and f1, . . . , fN ∈ F such that F ⊆
⋃N
i=1B(fi, ε).

Additionally, the finite set of functions {f1, . . . , fN} is equicontinuous.

Let x ∈ M . We may find δ > 0 such that

∀i = 1, . . . , N, y ∈ B(x, δ) ⇒ |fi(x) − fi(y)| ⩽ ε.

For any given f ∈ F , we may find 1 ⩽ i ⩽ N such that f ∈ B(fi, ε). Then, for any y ∈ B(x, δ),

we have

|f(x) − f(y)| ⩽ |f(x) − fi(x)| + |fi(x) − fi(y)| + |fi(y) − f(y)| ⩽ 3ε.

This allows us to conclude that F is equicontinuous.

• Suppose that F is bounded, closed, and equicontinuous. In order to show that F is compact,

it is sufficient to show that it satisfies the Bolzano–Weierstraß property (Definition 3.1.19), see

Theorem 3.1.20.

Let (fn)n⩾1 be a sequence in F . Since K is compact, we may find a dense sequence in K , that

we denote by (xn)n⩾1
2. We are going to use a diagonal argument to extract a subsequence of

(fn)n⩾1 which converges at every xk for k ⩾ 1.

– The sequence (fn(x1))n⩾1 is bounded in R, so by the Bolzano–Weierstraß theorem

(Theorem 2.2.5), wemay find a convergent subsequence, thatwe denote by (fφ1(n)(x1))n⩾1,

where φ1 : N → N is an extraction.

– Let m ⩾ 1. Suppose that we have already constructed extractions φ1, . . . , φm such that

(fψm(n)(xk))n⩾1 converges for all 1 ⩽ k ⩽ m, where ψm := φ1 ◦ · · · ◦ φm. Then, the

sequence (fψm(n)(xm+1))n⩾1 is bounded, so we may find an extraction φm+1 : N → N

such that (fψm◦φm+1(n)(xm+1))n⩾1 converges. It is clear that for 1 ⩽ k ⩽ m, the sequence

(fψm◦φm+1(n)(xk))n⩾1 still converges, being a subsequence of a convergent sequence.

– For n ⩾ 1, let ψ(n) := φ1 ◦ · · · ◦ φn(n) and gn = fψ(n). Then, (gn)n⩾1 is a subse-
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quence of (fn)n⩾1. From above, for every k ⩾ 1, the sequence (gn(xk) = fψ(n)(xk))n⩾k is

a subsequence of the convergent sequence (fψk(n)(xk))n⩾1, so the sequence (gn(xk))n⩾1

converges. We may denote by f(xk) for the above limit for every k ⩾ 1.

Now, we need to show that this convergence can be extended to every x ∈ K , and that this

convergence is uniform, so the limit is still in C(K,R).

Let us fix ε > 0.

– For every k ⩾ 1, from the convergence of the sequence (gn(xk))n⩾1, we may find

N(ε, xk) ⩾ 1 such that

∀m,n ⩾ N(ε, xk), |gm(xk) − gn(xk)| ⩽ ε. (8.20)

– By the equicontinuity of F , for every z ∈ K , we may find δz > 0 such that for every n ⩾ 1,

we have

y ∈ B(z, δz) ⇒ |gn(z) − gn(y)| ⩽ ε. (8.21)

The open balls B(z, δz) form an open covering of K , and by the compacity of K , we may

find L ⩾ 1 and z1, . . . , zL ∈ K such that

K =
L⋃
i=1

B(zi, δzi).

For every 1 ⩽ i ⩽ L, we may also find ni ⩾ 1 such that xni ∈ B(zi, δzi).

– We may take N := max{N(ε, xn1), . . . , N(ε, xnL)}. This implies that we have a uniform

Cauchy condition (Proposition 8.1.8) on xn1 , . . . , xnL ,

∀i = 1, . . . , L, ∀m,n ⩾ N, |gm(xni) − gn(xni)| ⩽ ε.

– Let x ∈ K and 1 ⩽ i ⩽ L such that x ∈ B(zi, δzi). Form,n ⩾ N , we have

|gm(x) − gn(x)| ⩽ |gm(x) − gm(zi)| + |gm(zi) − gm(xni)| + |gm(xni) − gn(xni)|

+ |gn(xni) − gn(zi)| + |gn(zi) − gn(x)|

⩽ 5ε,

2We use the precompactness of K . For every n ⩾ 1, we may find finitely many balls with radius 1
n
that cover K . The union of the

centers of these balls over all the integers n ⩾ 1 is a countable dense set in K .
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where for themiddle (thrid) term, we use Eq. (8.20); and for the other terms, we use Eq. (8.21)

and the fact that x, xni ∈ B(zi, δzi).

Therefore, for every x ∈ K , the sequence (gn(x))n⩾1 is Cauchy, and we saw from above that the

choice of N is independent from the choice of x ∈ K . From this we can deduce that (gn(x))n⩾1

converges for every x ∈ K , and this convergence is uniform, so the limit function is still an

element of C(K,R). □

8.4.2 Stone–Weierstraß theorem

The following Stone–Weierstraß theorem allows us to find sets of functions that can approximate contin-

uous functions uniformly on compact spaces.

Theorem 8.4.6 (Stone–Weierstraß theorem) : Let X be a compact metric space and K = R or C. The

space of continuous functions C(X,K) equipped with the supremum norm ‖·‖∞ is a normed vector space

and a normed algebra. Let A ⊆ C(X,K) be a subalgebra of C(X,K). Suppose that

• 1 ∈ A;

• A separates points, that is for any x 6= y ∈ X , there exists f ∈ A such that f(x) 6= f(y);

• (in the case K = C) f ∈ A if and only if f ∈ A.

Then, A is dense in C(X,K).

Example 8.4.7 : Below are some examples for which the Stone–Weierstraß theorem applies.

(1) Let I = [a, b] be a segment with K = R. The set of polynomials K[X] viewed as functions

defined on I is dense in C(I,R).

(2) Let I = [a, b] be a segment with K = R or C. The set of all the Lipschitz continuous functions

is dense in C(I,K).

(3) Let Cper(R,C) be the set of 2π-periodic continuous functions on R. The set of trigonometric

functions, which is spanned by the set {x 7→ einx : n ∈ Z}, is dense in Cper(R,C).

40 Last modified: 20:41 on Tuesday 20th May, 2025



Chapter 8 Sequences and series of functions

The proof of the Stone–Weierstraß theorem is quite involved. We are going to state a particular example of

this theorem, calledWeierstraß approximation theorem, and prove it using a more elementary approach. After

this, we need a few lemmas (Lemma 8.4.11 and Lemma 8.4.12) that allow us to prove the Stone–Weierstraß

theorem.

Theorem 8.4.8 (Weierstraß approximation theorem) : Let I = [a, b] be a segment and C(I,R) be

equipped with the supremum norm ‖·‖∞. Let P be the set of all polynomial functions. Then, P is dense

in C(I,R). In other words, for any f ∈ C(I,R), we may find a sequence of polynomials (Pn)n⩾1 such

that

‖Pn − f‖∞ −−−→
n→∞

0.

Remark 8.4.9 :

(1) It is not hard to check that the set of all polynomials P is a subalgebra of C(I,R) and it satisfies the

conditions in Theorem 8.4.6. Thus, the Weierstraß approximation theorem can be seen as a special

case of the Stone–Weierstraß theorem.

(2) It is important to take I = [a, b] to be a segment. For example, in Exercise 8.6 we have seen that this

theorem does not hold if I = R.

The original proof from Weierstraß uses convolution, that we do not discuss in this class. The proof we

give below is from Bernstein, which can be reformulated using a probabilistic language, in terms of the law

of large numbers for Bernoulli random variables.

Proof : Without loss of generality, we may assume that I = [0, 1]. For every integer 0 ⩽ k ⩽ n, let us

define
bn,k : I → R

x 7→
(
n

k

)
xk(1 − x)n−k,

and for n ∈ N0, define
Bn : C(I,R) → R[x]

f 7→
n∑
k=0

f

(
k

n

)
bn,k(x).

We are going to show that Bn(f) converges to f uniformly.
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Given ε > 0. Since f is continuous on the segment I , it is bounded. Let us takeM > 0 such that

|f(x)| ⩽ M for all x ∈ I . By the Heine–Cantor theorem (Theorem 3.1.17), we may find η > 0 such

that

∀x, y ∈ I, |x− y| < η ⇒ |f(x) − f(y)| < ε.

Then, for any n ∈ N0 and x ∈ I , we have

|Bn(f)(x) − f(x)| = |Bn(f)(x) − f(x)Bn(1)| ⩽
n∑
k=0

∣∣∣∣f(kn
)

− f(x)
∣∣∣∣bn,k(x)

⩽
∑
k∈K1

∣∣∣∣f(kn
)

− f(x)
∣∣∣bn,k(x) +

∑
k∈K2

∣∣∣∣f(kn
)

− f(x)
∣∣∣∣bn,k(x),

where

K1 =
{

0 ⩽ k ⩽ n :
∣∣∣∣kn − x

∣∣∣∣ ⩾ η

}
, and K2 =

{
0 ⩽ k ⩽ n :

∣∣∣∣kn − x

∣∣∣∣ < η

}
.

Using the uniform continuity, the second sum involving indices inK2 can be bounded from above,

∑
k∈K2

∣∣∣∣f(kn
)

− f(x)
∣∣∣∣bn,k(x) ⩽

∑
k∈K2

εbn,k(x) ⩽
n∑
k=0

εbn,k(x) = ε.

For the sum involving indices inK1, we are going to use the following square trick,

∑
k∈K1

∣∣∣∣f(kn
)

− f(x)
∣∣∣bn,k(x) ⩽ 2M

∑
k∈K1

bn,k(x) ⩽ 2M
η2

∑
k∈K1

(
k

n
− x

)2
bn,k(x)

⩽ 2M
η2

n∑
k=0

(
k

n
− x

)2
bn,k(x)

= 2M
η2
[
Bn(x2) − 2xBn(x) + x2Bn(1)

]
.

Consider the following identity,

F (a, b) = [a+ (1 − b)]n =
n∑
k=0

(
n

k

)
ak(1 − b)n−k.

Then, we may compute Bn(1), Bn(x), and Bn(x2) as follow,

Bn(1) =
n∑
k=0

bn,k(x) = F (x, x) = 1,

Bn(x) =
n∑
k=0

k

n
bn,k(x) = x

n

n∑
k=1

k

(
n

k

)
xk−1(1 − x)n−k
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= x

n

∂

∂a
F (x, x) = x

n
n[x+ (1 − x)]n−1 = x,

Bn(x2) =
n∑
k=0

(
k

n

)2
bn,k(x) =

n∑
k=0

(
k(k − 1)
n2 + k

n2

)
bn,k(x)

= x2

n2
∂2

∂a2F (x, x) + x

n2
∂

∂a
F (x, x)

= x2

n2 [n(n− 1)(x+ (1 − x))n−2] + x

n2n[x+ (1 − x)]n−1

= x2 + x(1 − x)
n

.

Therefore, we find ∑
k∈K1

∣∣∣f(k
n

)
− f(x)

∣∣∣bn,k(x) ⩽ 2M
η2

x(1 − x)
n

⩽ M

2nη2 .

Putting all the inequalities together, we obtain

|Bn(f)(x) − f(x)| ⩽ ε+ M

2nη2 .

By taking the supremum norm then lim sup over n, we find

lim sup
n→∞

‖Bn(f) − f‖∞ ⩽ ε.

Since the above holds for any arbitrary ε > 0, we deduce that lim supn→∞ ‖Bn(f) − f‖∞ = 0. □

We need to introduce the notion of lattice, and state the lattice version of the Stone–Weierstraß theorem.

This will allow us to recover the original version in Theorem 8.4.6.

Definition 8.4.10 : Let X be a compact metric space and L ⊆ C(X,R) be a subset. We say that L is

a lattice if

∀f, g ∈ L, max{f, g},min{f, g} ∈ L.

Lemma 8.4.11 : For any a > 0, there exists a sequence of polynomials that converges uniformly on

[−a, a] to the function x 7→ |x|.

Proof : There are two ways to prove this lemma. It can either be seen as a direct consequence of the

Weierstraß approximation theorem (Theorem 8.4.8), or be proven by construction.

By scaling, we may assume that a = 1. We note that for x ∈ [−1, 1], and u = 1 − x2 ∈ [0, 1], we

Last modified: 20:41 on Tuesday 20th May, 2025 43



Chapter 8 Sequences and series of functions

have

|x| =
√
x2 =

√
1 − (1 − x2) =

√
1 − u

If |u| < 1, we have
√

1 − u =
∑
n⩾0

an(−u)n, where an =
(

1/2
n

)
, (8.22)

where the power series comes from Example 8.3.35, and it has radius of convergence equal to 1. We

want to show that this power series converges uniformly for u ∈ [0, 1]. We may check that it converges

normally, then the uniform convergence follows, see Proposition 8.1.22. For this, it suffices to check

that
∑
an converges absolutely. For n ∈ N0, we have

an =
1
2(−1

2) . . . (1
2 − n+ 1)
n!

= (−1)n−1

2n
(2n− 3)!!

n!

= (−1)n−1

2n
(2n− 3)!!(2n− 2)!!

n!(2n− 2)!!
= (−1)n−1

22n−1
(2n− 2)!
n!(n− 1)!

,

and the Stirling’s formula gives us |an| ∼ cst · n−3/2. This means that
∑
an converges absolutely. □

Lemma 8.4.12 : Any closed subalgebra A ⊆ C(X,R) is a lattice.

Proof : Let A ⊆ C(X,R) be a subalgebra. Given f, g ∈ A, we have

max{f, g} = f + g

2
+ |f − g|

2
, and min{f, g} = f + g

2
− |f − g|

2
.

Therefore, it is sufficient to show that for h ∈ A, we also have |h| ∈ A to conclude. Let h ∈ A.

Due to the continuity of h and the compacity of X , we can define a := maxx∈X |h(x)| < ∞, see

Proposition 3.1.12. By Lemma 8.4.11, we may find a sequence of polynomials (Pn)n⩾1 that converges

uniformly to the absolute value function on [−a, a]. For every n ⩾ 1, define hn = Pn(h) ∈ A.

Therefore, (hn)n⩾1 is a sequence of functions that converges uniformly to |h| onX . Since A is closed,

we conclude that |h| ∈ A. □

Theorem 8.4.13 : Let X be a compact metric space with at least two points and L ⊆ C(X,R) be a

lattice. Suppose that for any x 6= y ∈ X and a, b ∈ R, there exists f ∈ L with f(x) = a and f(y) = b.

Then, L is dense in C(X,R).
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Proof : Let L ⊆ C(X,R) be a lattice. Let g ∈ C(X,R) and ε > 0. We want to construct a function

f ∈ L such that ‖f − g‖∞ ⩽ ε.

For any a, b ∈ X , we may find fa,b ∈ L such that fa,b(a) = g(a) and fa,b(b) = g(b). By the

continuity of fa,b and g, we know that there exists an open set Ua,b containing b such that fa,b ⩾
g − ε on Ua,b. Since (Ua,b)b∈X is an open covering of the compact space X , by the Borel–Lebesgue

property (Definition 3.1.3), we may find b1, . . . , bm ∈ X such that (Ua,bi
)1⩽i⩽m covers X . Let fa :=

sup1⩽i⩽m fa,bi
∈ L. Then, we have fa(a) = a and fa ⩾ g − ε on X . Similarly, by the continuity of

fa and g, there exists an open set Va containing a such that fa ⩽ g + ε on Va. Since (Va)a∈X is an

open covering of the compact space X , again by the Borel–Lebesgue property (Definition 3.1.3), we

may find a1, . . . , an ∈ X such that (Vaj )1⩽j⩽n covers X . Let f := inf1⩽j⩽n faj . Then, we may easily

check that g − ε ⩽ f ⩽ g + ε on X , so ‖f − g‖∞ ⩽ ε. This concludes that L is dense in C(X,R). □

Proof of Proof of Theorem 8.4.6: Let A ⊆ C(X,R) be a subalgebra satisfying the assumptions

in Theorem 8.4.6. We write L = A, which is still a subalgebra, because addition, multiplication, and

scalar multiplication are continuous. It follows from Lemma 8.4.12 that L is a lattice. Now, let us check

that the assumptions in Theorem 8.4.13 are satisfied.

Let x 6= y ∈ X and a, b ∈ R. By the assumptions in Theorem 8.4.6, we may find p ∈ A such that

p(x) 6= p(y). Since 1 ∈ A, we may also add c × 1 ∈ A to p, to make p(x) + c 6= 0 and p(y) + c 6= 0.

Without loss of generality, let us assume that p(x) 6= p(y), p(x) 6= 0, and p(y) 6= 0 for some p ∈ A.

Then, we may look for f ∈ A in the form f = αp+βp2, where α, β ∈ R can be chosen properly so that

f(x) = a and f(y) = b. Therefore, Theorem 8.4.13 tells us that L = C(X,R), that is A = C(X,R).

For the complex version of the theorem, we proceed as follows. Let A ⊆ C(X,C) be a subalgebra

satisfying the assumptions in Theorem 8.4.6. Let A0 ⊆ A be the set of real-valued functions in A,

which is a R-subalgebra of C(X,R). We want to check that A0 = C(X,R). First, it is not hard to

check that 1 ∈ A0. Then, for any f ∈ A, since f ∈ A, we deduce that Re(f), Im(f) ∈ A0. For any

x 6= y ∈ X , there exists f ∈ A such that f(x) 6= f(y), so we need to have Re(f)(x) 6= Re(f)(y) or

Im(f)(x) 6= Im(f)(y). This means that A0 separates points. By the real version of the theorem, we

conclude that A0 = C(X,R). For any function f ∈ C(X,C) and ε > 0, we may find g1, g2 ∈ A0 such

that

‖Re(f) − g1‖∞ ⩽ ε, and ‖Im(f) − g2‖∞ ⩽ ε.

Since A is a C-algebra, we know that g1 + i g2 ∈ A. Moreover,

‖f − (g1 + i g2)‖∞ ⩽ ‖Re(f) − g1‖∞ + ‖Im(f) − g2‖∞ ⩽ 2ε.
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This shows that A is dense in C(X,C). □

8.4.3 Peano existence theorem

As an application of the Arzelà–Ascoli theorem and the Stone–Weierstraß theorem, we have the following

Peano existence theorem, which gives us the existence of solution for differential equations.

Theorem 8.4.14 (Peano existence theorem) : Fix an integer n ⩾ 1. Let Ω ⊆ R × Rn be a non-empty

open subset, and F : Ω → Rn be a continuous function. Let t0 ∈ R and y0 ∈ Rn such that (t0, y0) ∈ Ω.

Let a, b > 0 such that

R := {(t, y) : |t− t0| ⩽ a, ‖y − y0‖ ⩽ b} ⊆ Ω.

LetM > 0 and suppose that ‖F (t, y)‖ ⩽M for (t, y) ∈ R. Then, the following differential equation


y′(t) = F (t, y(t)), ∀t ∈ I̊ ,

y(t0) = y0,

has a solution t 7→ y(t) defined on I := [t0 − a′, t0 + a′] with a′ = min{a, b
M }.

Remark 8.4.15 : It is important to note that the Peano existence theorem does not guarantee uniqueness,

see Example 8.4.16. In order to have a unique solution, the function F needs to satisfy stronger properties,

as stated in the Picard–Lindelöf theorem, also known as the Cauchy–Lipschitz theorem, see Theorem 8.4.17.

Proof : The proof consists of three parts: (1) We reformulate the solution to the differential equation

as a fixed-point problem; (2) we show the existence of the solution in the case that F is a Lipschitz

continuous function; (3) we show the existence in the general setting.

Without loss of generality, we may assume that t = 0 and y0 = 0 ∈ Rn by a translation in time and

in space.

(1) First, let us reformulate this as a solution to some fixed-point problem. Let us write X =

C(I,B(0, b)). Consider the following operator,

T : X → X

f 7→
∫ t

0 F (s, f(s)) ds.
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Let us check that for f ∈ X , the image T (f) is well defined. We first note that (s, f(s)) ∈ R for

any s ∈ I , so for any t ∈ I , we have

‖T (f)(t)‖ =
∥∥∥∥∫ t

0
F (s, f(s)) ds

∥∥∥∥ ⩽ |t|M ⩽ b.

In other words, T (f) is a function from I to B(0, b). Moreover, it follows from the fundamental

theorem of calculus that T (f) is of class C1, so we do have T (f) ∈ X . As a consequence, if y

is a fixed point of T , that is T (y) = y, we deduce that y is of class C∞. Moreover, if y is a fixed

point, by taking the derivative at t ∈ I , we find

y′(t) = (T (y))′(t) = F (t, y(t)).

Wemay also check easily that y(0) = T (y)(0) = 0. Therefore, the conclusion of Theorem 8.4.14

is equivalent to showing that T has at least one fixed point.

(2) Let us assume that F is an L-Lipschitz continuous function on R. In this case, we can easily

check that T is an (La′)-Lipschitz continuous function, so it is continuous.

We are going to define a sequence of functions (yn)n⩾1 which are elements of X . First, let y1 be

the constant zero function, which is indeed in X . For n ⩾ 1, we define yn+1 = T (yn), which is

in X from (1). By induction, we establish a sequence (yn)n⩾1 in X . Moreover, for any t, t′ ∈ I

and n ⩾ 1, we have

∥∥yn(t) − yn(t′)
∥∥ =

∥∥∥∥∫ t

t′
F (s, yn−1(s)) ds

∥∥∥∥ ⩽M |t− t′|. (8.23)

This means that (yn)n⩾1 is a sequence of equicontinuous functions. The Arzelà–Ascoli theo-

rem3allows us to find a convergent subsequence (yφ(n))n⩾1 with limit y ∈ X . We want to check

that T (y) = y.

Let us denote I+ = I ∩ R+ = [0, a′]. For every n ⩾ 1 and t ∈ I+, let us define

Mn(t) := sup
0⩽s⩽t

‖T (yn)(s) − yn(s)‖ = sup
0⩽s⩽t

‖yn+1(s) − yn(s)‖ .
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For n ⩾ 2 and s ∈ I+, we have

‖T (yn)(s) − yn(s)‖ = ‖T (yn)(s) − T (yn−1)(s)‖

=
∥∥∥∥∫ s

0

(
F (u, yn(u)) − F (u, yn−1(u))

)
du
∥∥∥∥

⩽
∫ s

0
LMn−1(u) du,

which implies that

∀t ∈ I+, Mn(t) ⩽ L

∫ t

0
Mn−1(u) du. (8.24)

We may computeM1 as below,

∀t ∈ I+, M1(t) = sup
0⩽s⩽t

‖y2(s)‖ = sup
0⩽s⩽t

∥∥∥∥∫ s

0
F (u, 0) du

∥∥∥∥ ⩽ tM.

Then, forM2, we apply Eq. (8.24) and find

∀t ∈ I+, M2(t) ⩽ L

∫ t

0
M1(u) du = t2

2
LM.

By induction, we find, for every n ⩾ 1,

∀t ∈ I+, Mn(t) ⩽ tn

n!
Ln−1M ⩽ (a′)n

n!
Ln−1M −−−→

n→∞
0.

Therefore, this allows us to conclude that (T (yφ(n))−yφ(n))n⩾1 uniformly converges to 0 on I+.

Then, a similar argument allows us to get the uniform convergence to 0 on I− := I ∩ R−, so

this convergence is uniform on I . Since yφ(n) uniformly converges to y and T is continuous, we

deduce that T (yφ(n)) uniformly converges to T (y), giving us T (y) = y.

(3) If F is only continuous, by the Stone–Weierstraß theorem (Theorem 8.4.6), we may find a se-

quence of Lipschitz continuous functions (Fn)n⩾1 that converges uniformly toF onR. For every

n ⩾ 1, let yn be the corresponding solution to the differential equation with F replaced by Fn.

Then, (yn)n⩾1 is a sequence in X . Since (Fn)n⩾1 converges to F uniformly on R, we know that

(Fn)n⩾1 can be uniformly bounded by a constant M ′ > 0. This implies that the sequence of

functions (yn)n⩾1 is equicontinuous due to the same Eq. (8.23), withM replaced byM ′. There-

fore, the Arzelà–Ascoli theorem gives us a subsequence (yφ(n))n⩾1 that converges uniformly to

y ∈ X , and we need to check that T (y) = y. To achieve this, we start by checking that the

3Theorem 8.4.4 (2) tells us that the set {yn : n ⩾ 1} is a precompact subset. It can be shown that there exists a subsequence of
(yn)n⩾1 which is a Cauchy sequence, see Exercise 8.31. Then, this subsequence converges by the completeness of X .
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functions in the sequence (s 7→ Fφ(n)(s, yφ(n)(s)))n⩾1 are equicontinuous.

Let ε > 0. For n ⩾ 1 and s, t ∈ I , we write

‖Fn(s, yn(s)) − Fn(t, yn(t))‖

⩽ ‖Fn(s, yn(s)) − F (s, yn(s))‖ + ‖F (s, yn(s)) − F (s, y(s))‖ + ‖F (s, y(s)) − F (t, y(t))‖

+ ‖F (t, y(t)) − F (t, yn(t))‖ + ‖F (t, yn(t)) − Fn(t, yn(t)‖

Since s 7→ F (s, y(s)) is continuous on the segment I , it is uniformly continuous. Similarly, the

map (t, y) 7→ F (t, y) is also uniformly continuous on R. We may take η > 0 such that

|t− s| ⩽ η ⇒ ‖F (s, y(s)) − F (t, y(t))‖ ⩽ ε,

‖(t, y) − (s, x)‖ ⩽ η ⇒ ‖F (t, y) − F (s, x)‖ ⩽ ε.

Since yφ(n) −−−→
n→∞

y uniformly and Fφ(n) −−−→
n→∞

F uniformly, there exists N ⩾ 1 such that

∀n ⩾ N,
∥∥∥yφ(n) − y

∥∥∥
∞

⩽ η, and
∥∥∥Fφ(n) − F

∥∥∥
∞

⩽ ε.

Therefore, for n ⩾ N , and s, t ∈ I such that |s− t| ⩽ η, we find

∥∥∥Fφ(n)(s, yφ(n)(s)) − Fφ(n)(t, yφ(n)(t))
∥∥∥ ⩽ 5ε

This means that (s 7→ Fφ(n)(s, yφ(n)(s)))n⩾1 is equicontinuous, so has a convergent subse-

quence, and we denote the corresponding extraction by ψ. Therefore, for t ∈ I , we have

T (yφ◦ψ(n))(t) =
∫ t

0
Fφ◦ψ(n)(s, yφ◦ψ(n)(s)) ds −−−→

n→∞

∫ t

0
F (s, y(s)) ds = T (y)(t),

which is uniform in t ∈ I by Proposition 8.2.5. We conclude that T (y) = y. □

Example 8.4.16 : Let us take n = 1, and F (t, y) =
√

|y| with initial condition (t0, y0) = (0, 0). In

other words, the differential equation we are looking at is

y′(t) =
√

|y(t)| and y(0) = 0. (8.25)

We have many different solutions to Eq. (8.25),

• y(t) = 0 for t ∈ R;
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• y(t) = t|t|
4 for t ∈ R;

• for any a > 0, y(t) = (t−a)2

4 for t ⩾ a and y(t) = 0 for t ⩽ a.

Indeed, the function x 7→
√

|x| is not locally Lipschitz continuous at 0, so does not satisfy the assump-

tions of the Picard–Lindelöf theorem (Theorem 8.4.17).

The following Picard–Lindelöf theorem, also known as Cauchy–Lipschitz theorem, gives sufficient condi-

tions for the solution to an ordinary differential equation to be unique.

Theorem 8.4.17 (Picard–Lindelöf theorem or Cauchy–Lipschitz theorem) : Let us fix the same nota-

tions as in the statement of Theorem 8.4.14. In addition, suppose that F is L-Lipschitz continuous in the

second variable in R. Then, apart from the existence provided in Theorem 8.4.14, we also have uniqueness

of the solution, in the sense that if J is an interval containing t0 and φ : J → Rn is a solution, then y

and φ conincide on I ∩ J .

Proof : We keep the notations from the proof of Theorem 8.4.14. In particular, we want to show that

the map T defined therein has a unique fixed point. More precisely, we want to show that there exists

an integerm ∈ N such that Tm is a contraction, then we may conclude by Exercise 3.24.

Let f, g ∈ X . We proceed in a similar way as in (2) in the proof of Theorem 8.4.14. For n ⩾ 1 and

t ∈ I+, let us define

Kn(t) := sup
0⩽s⩽t

‖(Tnf)(s) − (Tng)(s)‖ .

For n ⩾ 2 and s ∈ I+, we have

‖Tn(f)(s) − Tn(g)(s)‖ =
∥∥∥∥∫ s

0
F (u, Tn−1(f)(u)) − F (u, Tn−1(g)(u)) du

∥∥∥∥
⩽
∫ s

0
L
∥∥∥Tn−1(f)(u) − Tn−1(g)(u)

∥∥∥ du

⩽
∫ s

0
LKn−1(u) du,

which implies that

∀t ∈ I+, Kn(t) ⩽ L

∫ t

0
Kn−1(u) du.

We may computeK1 as below,

∀t ∈ I+, K1(t) = sup
0⩽s⩽t

∥∥∥∥∫ t

0
F (u, f(u)) − F (u, g(u)) du

∥∥∥∥ ⩽ Lt ‖f − g‖∞ .
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By induction, we find, for every n ⩾ 1,

∀t ∈ I, Kn(t) ⩽ tn

n!
Ln ‖f − g‖∞ ⩽ (a′)n

n!
Ln ‖f − g‖∞ −−−→

n→∞
0,

which tells us that Tn is a contraction map for large enough n. □

8.5 Theorems on convergence of integrals

In Proposition 8.2.5, we saw that the uniform convergence of a sequence of functions implies the uniform

convergence of their primitives. As a consequence, the sequence of integrals also converges. In practice,

however, we are more interested in the convergence of integrals. We have already seen in Example 8.2.8

that a sequence of integrals may converge without the sequence of integrands converges uniformly. Below

we are going to prove the monotone convergence theorem (Theorem 8.5.3) and the dominated convergence

theorem (Theorem 8.5.5), which are consequences of Eq. (8.26).

8.5.1 Monotone convergence theorem

We start with the following key lemma.

Lemma 8.5.1 : Let I ⊆ R be an interval. Let (un)n⩾1 be a sequence of piecewise continuous functions

from I to a Banach space (W, ‖·‖). Suppose that

(i) for each n ⩾ 1, un is integrable on I ;

(ii) the series of functions
∑
un converges pointwise to a piecewise continuous function f : I → W ;

(iii) the series
∑
n

∫
I ‖un‖ converges.

Then, f is integrable on I and

∫
I

‖f‖ ⩽
∑
n⩾1

∫
I

‖un‖ , and
∫
I
f =

∑
n⩾1

∫
I
un. (8.26)

Proof : We are going to prove this in three steps: (1) I is a segment and all the functions are continuous;

(2) I is a segment and all the functions are piecewise continuous; (3) I is an interval and all the functions

are piecewise continuous.
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(1) If I = [a, b] is a segment, and all the un’s and f are continuous functions, the proof is similar to

the Dini’s theorem (Theorem 8.1.14).

Let ε > 0 and define

∀n ⩾ 1, En = {x ∈ [a, b] : ‖f(x)‖ −
n∑
k=1

‖uk(x)‖ < ε}. (8.27)

The continuity implies that En is open for every n ⩾ 1. The pointwise convergence of
∑
un to

f implies that
⋃
n⩾1En = [a, b]. Since [a, b] is a compact set, by the Borel–Lebesgue property,

we may find N ⩾ 1 such that
⋃N
n=1En = [a, b]. Therefore, we have

∫
[a,b]

‖f‖ ⩽
∫

[a,b]

( N∑
k=1

‖uk‖ + ε
)

=
N∑
k=1

∫
[a,b]

‖uk‖ + ε(b− a) ⩽
∑
n⩾1

∫
[a,b]

‖un‖ + ε(b− a).

The above inequality holds for any arbitrary ε > 0, so we deduce that

∫
[a,b]

‖f‖ ⩽
∑
n⩾1

∫
[a,b]

‖un‖ .

(2) Next, we suppose that I = [a, b] is a segment, and all the un’s and f are piecewise continuous.

Let ε > 0. From Lemma 8.5.2, we may find continuous functions g and (vn)n⩾1 such that

g ⩽ ‖f‖ such that
∫
I

‖f‖ ⩽ ε+
∫
I
g,

∀n ⩾ 1, ‖un‖ ⩽ vn such that
∫
I
vn ⩽ ε

2n
+
∫
I

‖un‖ .

Define the following subsets as in Eq. (8.27), but for the continuous functions g and (vn)n⩾1,

∀n ⩾ 1, Gn = {x ∈ [a, b] : g(x) −
n∑
k=1

vk(x) < ε}.

Similarly, we know that there exists N ⩾ 1 such that
⋃N
n=1Gn = [a, b]. Therefore, we find

∫
I

‖f‖ ⩽ ε+
∫
I
g ⩽ ε+

∫
I

( N∑
k=1

vk + ε
)

= (b− a+ 1)ε+
N∑
k=1

∫
I
vk

⩽ (b− a+ 1)ε+
N∑
k=1

( ε
2k

+
∫
I

‖uk‖
)
⩽ (b− a+ 2)ε+

N∑
k=1

∫
I

‖uk‖

⩽ (b− a+ 2)ε+
∑
n⩾1

∫
I

‖un‖ .

Then we conclude as in the previous point.
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(3) For any subsegment J ⊆ I , from above, we have

∫
J

‖f‖ ⩽
∑
n⩾1

∫
J

‖un‖ ⩽
∑
n⩾1

∫
I

‖un‖ < ∞.

Therefore, f is integrable on I and satisfies

∫
I

‖f‖ ⩽
∑
n⩾1

∫
I

‖un‖ < ∞,

which is the first part of Eq. (8.26).

For the second part of Eq. (8.26), let us apply the first part to the remainder
∑
k⩾n+1 uk = f −∑n

k=1 uk, and we find

∫
I

∥∥∥∥∥f −
n∑
k=1

uk

∥∥∥∥∥ ⩽
∑

k⩾n+1

∫
I

‖uk‖ −−−→
n→∞

0,

since the right side in the above relation is the remainder of the convergent series
∑∫

I ‖un‖.

Then, it follows that∥∥∥∥∥
∫
I
f −

n∑
k=1

∫
I
uk

∥∥∥∥∥ =
∥∥∥∥∥
∫
I

(
f −

n∑
k=1

uk
)∥∥∥∥∥ ⩽

∫
I

∥∥∥∥∥f −
n∑
k=1

uk

∥∥∥∥∥ −−−→
n→∞

0,

which gives us the relation

∫
I
f = lim

n→∞

n∑
k=1

∫
I
uk =

∑
n⩾1

∫
I
un.

□

Lemma 8.5.2 : Let J = [a, b] be a segment of R and f ∈ PC(J,R). For every ε > 0, there exists

continuous functions f− and f+ on J such that

f− ⩽ f ⩽ f+ and
( ∫

J
f+
)

− ε ⩽
∫
J
f ⩽

( ∫
J
f−
)

+ ε.

Proof : If f is continuous, then there is nothing to prove. Suppose that f has discontinuities. Let P =

(xk)0⩽k⩽n be a partition of [a, b] such that f restricted on (xk−1, xk) can be extended to a continuous

function on [xk−1, xk] for every 1 ⩽ k ⩽ n. From Proposition 7.1.3, we know that f is bounded on
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[a, b], so we may take

M > sup
x∈J

f(x) and m < inf
x∈J

f(x).

Let δ > 0 with δ < 1
2 ‖P‖, so that we may define disjoint intervals Ji := B(xi, δ) ∩J for 0 ⩽ i ⩽ n.

We define a continuous function φ− on J as below,

φ−(x) =


m+ (M −m) |x−xi|

δ if x ∈ Ji,

M otherwise.

Then, the function f− := min(f, φ−) satisfies f− ⩽ f on J is continuous. In fact, we can see that

• if x 6= xi for all i, then f is continuous at x, and f− = 1
2(f + φ− − |f − φ−|) is also continuous

at x;

• if x = xi for some i, then φ−(x) = m < infx∈J f(x), so we may find ε > 0 such that φ− stays

strictly below f onB(x, ε). This means that f− = φ− onB(x, ε), so we get the continuity of f−

at x.

Then, let us compute the following integral,

∫
J
(f − f−) =

n∑
i=1

∫
Ji

(f − f−) ⩽
n∑
i=1

∫
Ji

(M −m) ⩽ 2δn(M −m),

where the equality is obtained from the fact that when x /∈ Ji for all i, φ−(x) = M > f(x), so

f−(x) = f(x). To conclude, for ε > 0, we may choose δ ⩽ min{ ε
2(M−m)n ,

1
4 ‖P‖}, which will give us

∫
J
(f − f−) ⩽ ε ⇔

∫
J
f ⩽

( ∫
J
f−
)

+ ε.

For the construction of f+, we proceed in a similar way. We consider the following continuous

function φ+ on J ,

φ+(x) =


M − (M −m) |x−xi|

δ if x ∈ Ji,

m otherwise.

Then, we define f+ := max(f, φ+). □

Theorem 8.5.3 (Monotone convergence theorem) : Let I ⊆ R be an interval. Let (fn)n⩾1 be a sequence

of non-negative, piecewise continuous, and integrable functions from I to R+. Suppose that
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(i) for every x ∈ I and n ⩾ 1, we have fn(x) ⩽ fn+1(x);

(ii) (fn)n⩾1 converges pointwise to a piecewise continuous function f ;

(iii)
∫
I fn converges when n → ∞.

Then, ∫
I

|fn − f | −−−→
n→∞

0, and
∫
I
fn −−−→

n→∞

∫
I
f.

Remark 8.5.4 : We note that this theorem is very similar to Dini’s theorem (Theorem 8.1.14), with the

followins differences.

(1) We make a weaker assumption in Theorem 8.5.3, which is piecewise continuity.

(2) We do not get the uniform convergence of the sequence of functions (fn)n⩾ to deduce the conver-

gence of the integrals. Actually, we do not have the uniform convergence here in general, whereas the

convergence of integrals still holds.

Proof : It is a special case of Eq. (8.26). For every n ⩾ 1, let un = fn+1 − fn ⩾ 0. We may check the

following properties.

(i) For every n ⩾ 1, un is integrable because both fn+1 and fn are integrable.

(ii)
∑
un =

∑
(fn+1 −fn) converges pointwise to a piecewise continuous function because (fn)n⩾1

converges pointwise to a piecewise continuous function.

(iii) We have
N∑
n=1

∫
I

|un| =
N∑
n=1

∫
I
(fn+1 − fn) =

∫
I
fN+1 −

∫
I
f1,

where the right side can be uniformly bounded from above due to the convergence of
∫
I fn. This

shows that
∑∫

I |un| converges.

Therefore, we may apply Eq. (8.26) to conclude that f is integrable on I and

∫
I

|fn − f | =
∫
I

∣∣∣∑
k⩾n

uk
∣∣∣ ⩽ ∑

k⩾n

∫
I

|uk|.

The right side in the above inequality is the remainder of a convergent series, so goes to 0 when n goes

to ∞. □
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8.5.2 Dominated convergence theorem

Theorem 8.5.5 (Dominated convergence theorem) : Let I ⊆ R be an interval and W be a Banach

space. Let (fn)n⩾1 be a sequence of piecewise continuous functions from I toW . Suppose that

(i) There exists a piecewise continuous non-negative integrable function φ : I → R+ such that ‖fn‖ ⩽
φ for every n ⩾ 1.

(ii) The seuqnece (fn)n⩾1 converges pointwise to a piecewise continuous function f : I → W .

Then, each fn and f are integrable on I and we have

lim
n→∞

∫
I

‖fn − f‖ −−−→
n→∞

0, and lim
n→∞

∫
I
fn =

∫
I
f.

Proof : Suppose that the theorem holds when (W, ‖·‖) = (R, | · |), (fn)n⩾1 are non-negative functions,

and f ≡ 0 is the zero function. For all n ⩾ 1, let hn = ‖fn − f‖, which is still a piecewise continuous

function on I . Then, hn ⩽ 2φ and (hn)n⩾1 converges pointwise to the zero function. So we find

∥∥∥∥∫
I
fn −

∫
I
f

∥∥∥∥ ⩽
∫
I

‖fn − f‖ =
∫
I
hn −−−→

n→∞

∫
I

0 = 0.

Now, let us prove the theoremwith the assumption that (W, ‖·‖) = (R, |·|), (fn)n⩾1 are non-negative

functions, and f is the zero function. For every n ⩾ 1 and p ⩾ n, let

fn,p := max{fn, fn+1, . . . , fp},

which is still a piecewise continuous function and satisfies fn,p ⩽ φ.

• Fix n ⩾ 1. Since (fn,p)p⩾n is an increasing sequence, the sequence (In,p)p⩾n defined by In,p =∫
I fn,p is increasing. Since In,p ⩽

∫
I φ for all p ⩾ n, the sequence (In,p)p⩾n converges, so it

satisfies Cauchy’s property. We may find pn ⩾ 1 such that

|In,p − In,q| ⩽ 2−n, ∀p, q ⩾ pn.

It is possible to make a choice of (pn)n⩾1 such that it is an extraction (strictly increasing se-

quence).

• For n ⩾ 1, let gn = fn,pn . We note that gn converges pointwise to 0 (Cauchy’s criterion at each
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point of I). For any n ⩾ 1, we have

|gn+1 − gn| + (gn+1 − gn) =


0 if gn+1 − gn ⩽ 0,

2(gn+1 − gn) otherwise.

Additionally, for any n ⩾ 1, we also have gn+1 − gn = fn+1,pn+1 − fn,pn ⩽ fn,pn+1 − fn,pn and

0 ⩽ fn,pn+1 − fn,pn . Therefore, we find

∀n ⩾ 1, |gn+1 − gn| ⩽ 2(fn,pn+1 − fn,pn) − (gn+1 − gn).

• For n ⩾ 1, let un = gn − gn+1. Then, we have

∀n ⩾ 1,
∫
I

|un| ⩽ 2|In,pn+1 − In,pn | +
∫
I
gn −

∫
I
gn+1 ⩽ 21−n +

∫
I
gn −

∫
I
gn+1.

By taking a summation, we find,

∀p ⩾ n ⩾ 1,
p∑

k=n

∫
I

|uk| ⩽
p∑

k=n
21−k +

∫
I
gn −

∫
I
gp+1 ⩽ 2 +

∫
I
gn.

In the above formula, we see that the upper bound does not depend on p. Since the left side

contains only positive terms in the series, we deduce that the series
∑
k⩾n

∫
I |uk| converges.

Fromwhatwe have shown above, and the fact that gn converges pointwise to 0, we have
∑
k⩾n uk = gn.

This allows us to apply Eq. (8.26),

∀n ⩾ 1, 0 ⩽
∫
I
fn ⩽

∫
I
gn =

∫
I

(∑
k⩾n

uk
)

=
∑
k⩾n

∫
I
uk.

The rightmost term in the above formula is the remainder of an absolutely convergent series, so its limit

when n tends to ∞ is zero. This shows that
∫
I fn −−−→

n→∞
0. □

Example 8.5.6 : For every n ∈ N, consider the function

fn : (1,+∞) → R

t 7→ 1+tn
1+tn+2

and In =
∫ ∞

1
fn(t) dt.

We can check the following properties.
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• For every n ∈ N, the function fn is piecewise continuous.

• For every t > 1, we have

fn(t) = 1 + tn

1 + tn+2 ∼ 1
t2
, when n → ∞.

So the sequence fn converges pointwise to the function t 7→ 1
t2 , which is piecewise continuous

on (1,+∞).

• (Domination assumption) For every n ∈ N and t > 1, we have

|fn(t)| = 1 + tn

1 + tn+2 ⩽ tn + tn

tn+2 = 2
t2
.

The function t 7→ 2
t2 is integrable on (1,+∞), so the domination assumption is satisfied. There-

fore, we may apply the dominated convergence theorem from Theorem 8.5.5, giving us

In −−−→
n→∞

∫ ∞

1

dt
t2

= 1.

Example 8.5.7 : For every n ∈ N, consider the function

fn : [0, 1) → R

t 7→ n2tn−1
and In =

∫ 1

0
fn(t) dt.

For every n ∈ N, the function fn is continuous and integrable on [0, 1). For every t ∈ [0, 1), we have

fn(t) −−−→
n→∞

0, which implies that the sequence (fn)n⩾1 converges pointwise on [0, 1) to the zero

function. However, we have

∀n ∈ N, In =
[
ntn

]1
0 = n.

This shows that the order of the limit and the integration procedure cannot be interchanged,

lim
n→∞

∫ 1

0
fn(t) dt 6=

∫ 1

0
lim
n→∞

fn(t) dt = 0.

The reason is that the domination assumption is not satisfied.

To be more precise, if φ is a function that dominates all the fn’s, then for t ∈ [0, 1), we need to have

φ(t) ⩾ fn(t) for all n ⩾ 1. In particular, for t ∈ [0, 1), we may choose n = b 2
| ln t|c, then, for t → 1−,
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we have the following relation,

ln fn(t) = 2 lnn+ (n− 1) ln t

⩾ 2 ln
( 2

| ln t|
− 1

)
+
( 2

| ln t|
− 1

)
ln t

= − ln t− 2 ln | ln t| + O(1).

This means that when t → 1−, we have

fn(t) ⩾ cst
t| ln t|2

,

which implies that φ is not integrable around 1−.

8.5.3 Applications: integrals with an additional parameter

We give a few important applications of the dominated convergence theorem. Let us consider a general

interval I ⊆ R, with endpoints a and b satisfying −∞ ⩽ a < b ⩽ +∞, and a Banach space (W, ‖·‖).

Theorem 8.5.8 (Continuity under integration) : Let (M,d) be a metric space and a map f : M × I →

W satisfying the following conditions.

(i) For every x ∈ M , the map f(x, ·) : t 7→ f(x, t) is piecewise continuous on I .

(ii) For every t ∈ I , the map f(·, t) : x 7→ f(x, t) is continuous onM .

(iii) (Domination assumption)There exists a non-negative, piecewise continuous, and integrable function

φ : I → R+ such that ‖f(x, t)‖ ⩽ φ(t) for all x ∈ M and t ∈ I .

Then, the map

F : M → W

x 7→
∫ b

a
f(x, t) dt

is well-defined and continuous onM .

Proof : The assumption (iii), the domination assumption, shows that the function f(x, ·) is integrable

for every x ∈ M , so the map F is well defined. For a given x ∈ M , to check that F is continuous at x,
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we need to check that for any sequence (xn)n⩾1 with values inM ,

xn −−−→
n→∞

x ⇒ F (xn) −−−→
n→∞

F (x).

Let x ∈ M and (xn)n⩾1 be a sequence inM such that xn −−−→
n→∞

x. For every n ⩾ 1, we may define

the function
fn : I → V

t 7→ f(xn, t).

Due to the assumption (ii), we know that fn(t) = f(xn, t) −−−→
n→∞

f(x, t) for every t ∈ I , where

t 7→ f(x, t) is a piecewise continuous function by the assumption (i). This means that the assumption

(ii) in Theorem 8.5.5 is satisfied. Then, the assumption (iii) here corresponds to the assumption (i) in

Theorem 8.5.5, so we can apply Theorem 8.5.5 to the sequence of functions (fn)n⩾1. This shows that

lim
n→∞

F (xn) = lim
n→∞

∫
I
f(xn, t) dt =

∫
I
f(x, t) dt = F (x),

which allows us to conclude. □

Theorem 8.5.9 (Differentiability under integration) : LetM ⊆ R be an interval and amap f : M×I →

W satisfying the following conditions.

(i) For every x ∈ M , the map f(x, ·) : t 7→ f(x, t) is piecewise continuous and integrable on I .

(ii) For every t ∈ I , the map f(·, t) : x 7→ f(x, t) is of class C1 onM .

(iii) The partial derivative ∂f
∂x is well defined and satisfies the assumptions from Theorem 8.5.8.

Then, the map

F : M → W

x 7→
∫ b

a
f(x, t) dt

is of class C1 onM , and we have

∀x ∈ M, F ′(x) =
∫ b

a

∂f

∂x
(x, t) dt. (8.28)

Proof : The proof is similar to that of Theorem 8.5.8. Let x ∈ M and (xn)n⩾1 be a sequence with
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values inM\{x} that converges to x. For every n ⩾ 1, define

gn : I → W,

t 7→ f(xn, t) − f(x, t)
xn − x

,

which is a piecewise continuous function. For each n ⩾ 1, gn is also integrable on I , being a linear

combination of integrable functions.

The sequence (gn)n⩾1 of functions converges pointwise to ∂f
∂x (x, ·). Moreover, the mean-value the-

orem (Eq. (4.3)) tells us that for every n ⩾ 1 and t ∈ I , there exists yn = yn(t) between x and xn such

that

gn(t) = f(xn, t) − f(x, t)
xn − x

= ∂f

∂x
(yn, t) and ‖gn(t)‖ =

∥∥∥∥∂f∂x (yn, t)
∥∥∥∥ ⩽ φ(t),

where φ is the domination function given by the assumption (iii) for ∂f∂x from Theorem 8.5.8. Then, we

may apply Theorem 8.5.5 to conclude that

lim
n→∞

∫
I
gn(t) dt =

∫
I

∂f

∂x
(x, t) dt,

and the left side of the above formula rewrite,

lim
n→∞

∫
I
gn(t) dt = lim

n→∞
F (xn) − F (x)

xn − x
.

This shows that F is differentiable at x and its derivative does satisfy Eq. (8.28). To conclude, we note

that the assumption (iii) guarantees that the right side of Eq. (8.28) is continuous, so F is of class C1. □

Example 8.5.10 (Gamma function) : We recall the Gamma function defined in Example 7.1.21,

∀x > 0, Γ(x) =
∫ +∞

0
tx−1e−t dt.

By applying Theorem 8.5.8 and Theorem 8.5.9, we can check that Γ is a function of class C∞, and its

derivative writes

∀n ∈ N0,∀x > 0, Γ(n)(x) =
∫ ∞

0
(log t)ne−ttx−1 dt.

More precisely, let us consider the function

f : R∗
+ × R∗

+ 7→ R, (x, t) 7→ tx−1e−t.
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We can check the following properties.

• For any fixed t > 0, the function x 7→ f(x, t) is C∞, and we have

∀k ∈ N0, ∀x, t > 0, ∂kf

∂xk
(x, t) = (ln t)ktx−1e−t.

• For any fixed x > 0 and k ∈ N0, the function t 7→ ∂kf
∂xk (x, t) is piecewise continuous.

• (Domination assumption) Let k ∈ N0 and [a, b] ⊆ (0,+∞) be a segment. For all x ∈ [a, b], we

have

∀t ∈ (0, 1],
∣∣∣∣∂kf∂xk

(x, t)
∣∣∣∣ = | ln t|ktx−1e−t ⩽ | ln t|kta−1e−t,

∀t ∈ (1,+∞),
∣∣∣∣∂kf∂xk

(x, t)
∣∣∣∣ = | ln t|ktx−1e−t ⩽ | ln t|ktb−1e−t.

Let φ be defined on R∗
+ by

φ(t) = | ln t|kta−1e−t + | ln t|ktb−1e−t,

which is an integrable function on R∗
+. And we clearly have

∀x ∈ [a, b], ∀t > 0,
∣∣∣∣∂kf∂xk

(x, t)
∣∣∣∣ ⩽ φ(t).

62 Last modified: 20:41 on Tuesday 20th May, 2025


	8 Sequences and series of functions
	8.1 Notions of convergence
	8.1.1 Sequences of functions
	8.1.2 Series of functions

	8.2 Properties of the uniform limit
	8.2.1 Continuity
	8.2.2 Integation
	8.2.3 Derivatives

	8.3 Power series
	8.3.1 Definitions and radius of convergence
	8.3.2 Operations on power series
	8.3.3 Regularity
	8.3.4 Coefficients of power series
	8.3.5 Expansion in power series
	8.3.6 Applications to ODEs

	8.4 Advanced theorems on uniform convergence
	8.4.1 Arzelà-Ascoli theorem
	8.4.2 Stone–Weierstraß theorem
	8.4.3 Peano existence theorem

	8.5 Theorems on convergence of integrals
	8.5.1 Monotone convergence theorem
	8.5.2 Dominated convergence theorem
	8.5.3 Applications: integrals with an additional parameter



