Sequences and series of functions

Let A be a set, and (M, d) be a metric space. We denote by F (A, M) the space of functions from A to
M, and by B(A, M) the space of bounded functions from A to M. Instead of a metric space, we may also
consider a vector spaces W over K = R or C, so that we have the 4 operation. This vector space is equipped
with a norm that we denote by ||-||.

In this chapter, we are interested in sequences and series of functions, which can also be seen as sequences

and series with terms in F(A, M) or F(A,W).

8.1 Notions of convergence

We discuss different notions of convergence for sequences of functions, then for series of functions.

8.1.1 Sequences of functions

For a sequence of functions, we have different notions of convergence. Below we are going to discuss the
pointwise convergence (Definition 8.1.1), and a stronger notion of convergence, called uniform convergence
(Definition 8.1.4).

Definition 8.1.1:Let (f,,)n>1 be a sequence of functions from A to M, that is, they are elements of

F(A,M).

« Let f € F(A, M). We say that the sequence (f,,),>1 converges pointwise (ZEFUEN) to f if
for every x € A, we have f,(x) — f(z)in (M,d).

« We say that the sequence (f,,),>1 converges pointwise if there exists f € F(A, M) such that
(fn)n>1 converges pointwise to f.

« Let B C Abe asubset. We say that (f,,),>1 converges pointwise on B if ((f,)|5)n>1 converges
pointwise.

Example 8.1.2: Let us consider the sequence of functions ( f;,)n>1 defined by

VYn>=1, fo: [0,1] — R
T — "

The sequence of functions (f,)n>1 converges pointwise to the indicator function f = 13 on [0, 1].
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Remark 8.1.3:
(1) If a sequence (fy,)n>1 converges pointwise, then its limit function f is unique.

(2) Let (fn)n>1 be a pointwise convergent sequence of functions. Suppose that these functions take values
, then the limit does not depend on the norm, because a
hen the limit d depend on th b 11

in a finite dimensional vector space (W, ||-
the norms are equivalent in W.

(3) Properties such as linearity, product, inequality, monotonicity, etc., are preserved for the pointwise
convergence of functions.

(4) We see that in Example 8.1.2, the continuity at 1 is not preserved in the limit. Indeed, for all n € N, the
function f,, is continuous, but the limit function f is not continuous at 1. In other words, the following
two iterated limits are different,

lim lim f,(x) = ilﬁml flz)y=0#1= Jim 1= lim lim fn(z).

z—1n—00 n—oo x—1

We have already encountered a similar example in Example 6.7.2.

(5) Analytic properties such as continuity and differentiability are not preserved for the pointwise con-
vergence. We will define the notion of uniform convergence below (Definition 8.1.4), and will see that
analytic properties can be preserved if this convergence occurs (Proposition 8.2.1).

Definition 8.1.4 : Let (f,,),>1 be a sequence of functions from A to M.
. Let f € F(A, M). We say that the sequence (f,,)>1 converges uniformly 3R to f if
Ve>0,3IN =1, Vn> N, Ve e A, d(fu(x),f(z)) <e. (8.1)
« We say that the sequence (fy,)n>1 converges uniformly if there exists f € F(A, M) such that
(fn)n>1 converges uniformly to f.

« Let B C Abe asubset. We say that (f,,),>1 converges uniformly on B if ((f»)|5)n>1 converges
uniformly.

Remark 8.1.5 : We may rewrite the definition of pointwise convergence using quantifiers. We say that
(fn)n>1 converges pointwise to f if

Vee A, Ve>0,3IN >1,Vn= N, d(fn(z),f(z)) <e. (8.2)

If we compare Eq. (8.1) and Eq. (8.2), we see that the choice of N depends on z € A in the case of pointwise
convergence, but does not depend on x € A in the case of uniform convergence. This is the reason why the
convergence characterized by the condition Eq. (8.1) is called uniform convergence. This remark easily leads
to the following corollary.

Corollary 8.1.6 : If the sequence of functions ( f,)n>1 converges uniformly to f, then it converges point-
wise to f.
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Chapter 8 Sequences and series of functions

Remark 8.1.7 : Due to the uniqueness of the pointwise limit (Remark 8.1.3), we deduce the uniqueness
of the uniform limit of a sequence of functions. To show that a sequence of functions (f;,),>1 converges
uniformly, we may start by computing its pointwise limit f, then show that ( f,,),>1 converges uniformly to

f

Proposition 8.1.8 (Cauchy’s criterion for uniform convergence) : Suppose that (M, d) is a complete
metric space. Let (fy,)n>1 be a sequence of functions in F (A, M). Then, (fn)n>1 converges uniformly if
and only if it satisfies the uniform Cauchy condition, that is

Ve > 0,3IN > 1,Vm,n > N,Vx € A, d(fn(x), fm(x)) <e.

Proof : Given € > 0. Let NV > 1 such that the uniform Cauchy condition holds, that is
Vm,n > N,Vz € A, d(fu(x), fm(z)) <e. (8.3)

For each = € A, we see that (f,(z))n>1 is a Cauchy sequence, so it converges to some limit that we
denote by f(x). By taking the limit m — oo in Eq. (8.3), we find

Vn > Nz e A, d(fa(@), f(2) <,

which is the characterization of ( f;,),>1 uniformly converging to f from Eq. (8.1). O

Definition 8.1.9 : The notion of uniform convergence can be described using a distance (or a norm).

« Let (M, d) be a metric space and B(A, M) be the set of bounded functions from A to M. We
may equip B(A, M) with the following distance

Vi, g€ B(A M), ds(f 9)=dsalf.g):= Sup d(f(x),g(x)), (8.4)

called the distance of uniform convergence. A sequence of bounded functions ( f,,),>1 converges
uniformly to f is equivalent to the convergence of ( f,,),>1 to f with respect to the distance d.

« Let (W, ||-]|) be a normed vector space and B(A, W) be the set of bounded functions from A to
W. We may equip B(A, W) with the following norm

Ve BAW), [fle=flleca:= sup 1F @) (8.5)

called the norm of uniform convergence. A sequence of bounded functions (fy,),>1 converges
uniformly to f is equivalent to the convergence of (fy)n>1 to f with respect to the norm ||-|| .

Proposition 8.1.10: Let (W, ||-||) be a Banach space. Then, the following properties hold.

(1) The space of bounded functions B(A, W) equipped with the norm ||-|| ., defined in Eq. (8.5), is a
Banach space.

(2) A sequence (fn)n>1 of B(A, W) converges uniformly to f € B(A,W) if and only if (fn)n>1
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Chapter 8 Sequences and series of functions

converges to f under the norm |||, given in Eq. (8.5), that is || f, — fl| —=0.

Proof :

(1) It is not hard to check that [|-||, defines a norm on the vector space B(A, W). To check that
it is complete, let us be given a sequence (fy,)n>1 in B(A, W), which is Cauchy with respect to
the norm ||-|| . For every x € A, we know that (f,,(¢)),>1 is a Cauchy sequence in the Banach
space (W, ||-||), so it converges to some limit f(z) := lim,, o fn (). Since (f,)n>1 is Cauchy in
(B(A, W), |||l o), there exists M > 0 such that || ||, < M for all n > 1. Therefore, for every
xz € A, we have || f(x)]| = lim, o0 || fn(2)]] < M, s0 | f|l,, < M, thatis f € B(A,W). In the
end, it is not hard to check that || f,, — f]| — - 0,50 we conclude that (B(A, W) ) is

complete.

Moo

(2) It is exactly a rewriting of Eq. (8.1) in the normed vector space (W, ||-||) with help of the new

norm defined in Eq. (8.5). 0

Example 8.1.11 : Consider the sequence of functions (f},),>1 defined by
VneN, Vzel0,1], fu(z)=2"(1-2x).

It is not hard to see that (f,)n>1 converges pointwise to the zero function. For every n € N, the
function f,, is of class C*°, so we may take its derivative to find its extrema on [0, 1]. We have

n

/ n— n+1
Vr e [0,1], fn(x)=nx 1(1— - x)

_n_

n+1

n

747> 1] with maximum at z,, =

Therefore, the function f,, is increasing on [0, —~] and decreasing on |

n .
T that is

1 n o\ 1
Ve € 0.1, fa@) < falen) = —5 () <o s

Therefore, the sequence (f,,)n>1 converges uniformly to the zero function on [0, 1].

Remark 8.1.12 :If a sequence of functions (f,)n>1 converges pointwise to f, in order to show that this
convergence is not uniform, we may look at the negation of Eq. (8.1), which writes

Je>0,VN=>1,In=>N3x e A d(fu(x), f(z)) >e.

In other words, we need to find a sequence (z,),>1 with values in A and an extraction ¢ : N — N such that
the sequence (d(fy(n)(Zn), f(¥n)))n>1 is bounded away from 0.
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Chapter 8 Sequences and series of functions

Example 8.1.13 : Let us consider the following sequence of functions,

z+/n

VneN, V>0, f,(z)= e

It is easy to see that the sequence of functions (f,,)n>1 converges pointwise to the zero function. To
show that it does not converge uniformly, we follow Remark 8.1.12. Let x,, = n for n > 1. Then, we

have
1
ntvn 1,

Vn e N n(Tn) —0=

We conclude that the convergence f, — f is pointwise but not uniform.
n—,oo

The following theorem tells us which additional assumptions we may add to upgrade a pointwise conver-
gence to a uniform convergence.

Theorem 8.1.14 (Dini’s theorem) : Let (K, d) be a compact space, and ( f,)n>1 be a sequence of con-
tinuous functions from K to R. Suppose that

(i) the sequence is increasing, that is for every x € K andn € N, we have f,,(x) < fni1(x);

(ii) the sequence (fy,)n>1 converges pointwise to a continuous function f : K — R.

Then, the sequence (f,,)n>1 converges uniformly to f.

Proof: For every n € N, let us define the continuous function g, = f — f,, > 0. By the assumption (i),
the sequence of functions (g, )n>1 is decreasing. Given € > 0, we define F,, = {x € K : g,(z) < ¢}
for n € N. For every n € N, since g, is continuous, the set E,, is open; since the sequence (g, )n>1 is
decreasing, the sequence (E},),>1 is increasing. Due to the assumption (ii), we find that {,», E,, = K.
Since K is compact, by the Borel-Lebesgue property (Definition 3.1.3), there exists N > 1 such that
Eyx =UY_| E, = K. This means that for any n > N and z € K, we have |f,(z) — f(z)| <e. O

Remark 8.1.15 : There is another version of Dini’s theorem, stated as below. Let I = [a, b] be a segment
and (f,)n>1 be a sequence of (not necessarily continuous) functions from I to R. Suppose that

(i) for each m > 1, the function f, is increasing on I;
(ii) the sequence (fy)n>1 converges pointwise to a continuous function f : I — R.

Then, the sequence ( f,,)n>1 converges uniformly to f. See Exercise 8.7 for a proof.

8.1.2 Series of functions

In this section, let (uy,),>1 be a sequence of functions from A to W, where (W, ||-||) is a Banach space.

Definition 8.1.16:

» We say that the series of functions ) u,, converges pointwise if for every x € A, the series
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Chapter 8 Sequences and series of functions

> up () converges. We write

P R w
T Y os Un(T).

« The function defined by S,,(z) = > y_; ug(z) for x € A is called the n-th partial sum of the

series of functions > u,,.

« Ifthe series of functions ) u,, converges pointwise, then the n-th remainderis given by R,,(z) =
Y iyt Uk(z) for x € A.

« We say that the series of functions ) u,, converges uniformly if the partial sums (S,),>0 con-
verges uniformly.

Proposition 8.1.17 : The series of functions ) u,, converges uniformly if and only if
(i) the series Y uy,, converges pointwise, and

(ii) the sequence of remainders (R, )n>0 converges uniformly to the zero function.

Proof : Let Y u, be a series of functions, (S),)n>0 be its partial sums, and (R,,),>0 be its remainders.

« Suppose that Y u,, converges uniformly to u, which means that (.S,),>0 converges uniformly to
u, and it follows from Corollary 8.1.6 that this convergence takes place pointwise. The uniform
convergence means that ||S,, — /| — 0, since u — Sp = R,, we see that it is equivalent to

n—oo

1Bnlloe 75 O

« Suppose that (i) and (ii) holds, and denote by u the pointwise limit of > u,. Since R,, = u —
Sy, from its uniform convergence to zero, we find ||.S,, — u/| — 0 which is the uniform
n—oo

convergence of (S, )n>0 to u.

O

Example 8.1.18 :Let us consider the series of functions > (G ) 2™ where each term is a function
defined on [0, 1]. We are gomg to show that this series of functlons converges uniformly. For every
x € [0, 1], the sequence (%~ ") n>1 is non-increasing with limit zero. It follows from Theorem 6.4.2 that

the series Z ~——z" converges, and the remainder R, () satisfies

n+1 1

X
vz e[0,1], |R < <—)

which does not depend on = € [0, 1]. This implies that the convergence of the series of functions is
uniform.
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Chapter 8 Sequences and series of functions

Remark 8.1.19 : We note that saying that a sequence of functions ( f,,),>1 converges uniformly is equivalent
to saying that the series of functions Y (f,+1 — fn) converges uniformly.

Proposition 8.1.20 (Cauchy’s condition) : A series of functions > u,, converges uniformly if and only
if for every € > 0, there exists N > 1 such that

Vn>=N,Vk 21, |lupt1+- -+ Untillo < e

This is the Cauchy’s condition in the case of a series of functions.

Proof : This is very similar to Corollary 6.1.11. From Proposition 8.1.10 (1), we know that
(B(A,W),||-l,) is a Banach space, in which a sequence converges if and only if it is Cauchy. O

Definition 8.1.21:Let u, € B(A, W) for every n > 1. We say that the series of functions ) u,,
converges normally (IEFRUEN) on A if the series Y |Juy ||, 4 converges.

Proposition 8.1.22: Suppose that (W, ||-||) is a Banach space. Lety  uy,, be a series of bounded functions
from A to W that converges normally on A. Then, the following properties hold.

(1) For everya € A, the series Y _ uy(a) converges absolutely.

(2) The series of functions ) u,, converges uniformly.

Proof :

(1) Let a € A. For every n > 1, we have ||un(a)| < ||un|lo. Since D7 ||un|, is convergent, we
deduce that " u,(a) converges absolutely.

(2) Foreveryn,k > 1and z € A, we have
[un(z) + -+ tngr ()| < fJun(@)]| 4 - + [Junr (@) | < lJunllog + -+ unsrllo -

Therefore, the Cauchy’s condition for the series }_ ||uy|| ., implies the Cauchy’s condition for the
series Y uy (), uniformly for all # € A. This means that the series of functions > u,, converges
uniformly.

O

Remark 8.1.23 : Let us assume that (W, ||-||) is a Banach space, and u,, € B(A, W) for all n > 1. A series
of functions ) u,, can also be seen as a series with terms in the Banach space (B(A, W), ||-||.,), meaning
that the normal convergence of the series of functions ) u,, is the same as the absolute convergence of the
series ) u,, with terms u,, € B(A, W). This allows us to find an alternative proof to (2), by noting that from
Theorem 6.1.16, we deduce that the series > u,, converges in B(A, W), that is the series of functions > uy,
converges uniformly.
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Example 8.1.24 : Let us define a sequence of functions ( f,,),>1 on [0, 1] as below,

1 x
fi=1 and Vn>1,Vre[0,1], fori(z)=1+ 5/ fa(t)dt.
0

For any n > 1 and z € [0, 1], we have

frra@) = @] = 3| [ ualt) = £u(0)
§ ;/Om an-‘rl - anoodt

1
< B | fns1 = frlloo s

implying || fo+2 = fatilloo < & | fa+1 — fullso- Therefore, by induction, we find
1
V=1, |[[fat1 — falleo < o1 1f2 = filloo -
It follows that the series Y (fn+1 — fn) converges normally, so uniformly, and the sequence (f)n>1

converges also uniformly.

Example 8.1.25 : Let us consider the series of functions | %x" defined on [0, 1]. We have seen

L for n > 1, and the series

that this series of functions converges uniformly on [0, 1] (Example 8.1.18).
n

« However, it does not converge normally on [0, 1], because ||u, ||, =

> % diverges.
« It does converge normally on [0, a] for any a € [0, 1), because H(un)‘[o’a}

o

. n
and the series ) “- converges.

8.2 Properties of the uniform limit
In this section, we are going to discuss some analytic properties of the limit of a convergent sequence of

functions. We are going to consider metric spaces (X, dx ) and (M, d;y), and a sequence of functions (fy, )n>1
in B(X, M).

8.2.1 Continuity
Proposition 8.2.1: Suppose that (f,)n>1 is a sequence of functions from X to M and converges uni-

formly to f. If f,, is continuous at a for everymn > 1, then f is continuous at a.

Proof : Let £ > 0. Due to the uniform convergence of (fy,)n>1 to f, we may find N > 1 such that

¥n > NV e X, dul(falx), f(z) <e.
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Since fy is continuous at a, we may find § > 0 such that

Vye X, dx(z,y)<d = dul(fn(x), fn(y) <e

Therefore, for any y € X such that dx (z,y) < J, we have

dy (f(2), f(y)) < dar(f(2), I (@) + dar (v (), (W) + du(Fn(y), fy)) < 3e.

This shows that f is continuous at a. O

Corollary 8.2.2: Let (f,,)n>1 be a sequence of continuous functions from X to M. If (f,,)n>1 converges
uniformly to f on X, then f is continuous on X.

Proof : It is a direct consequence of Proposition 8.2.1. g

Corollary 8.2.3: Let Y u,, be a series of continuous functions from [a, b] to a Banach space (W, ||-|). If
the series Y u,, converges uniformly on [a, b], then the limit function }_ u,, is continuous on [a, b].

Proof : It is a direct consequence of Corollary 8.2.2 by taking (X,dx) = ([a,b], |- |) and (M, dy) =
(W I-1D)- m

Example 8.2.4: Let us consider the series of functions ) _, - u,, defined on R as below,

l.n

H.
» For each x > 0, the series ), - un () converges, and we denote the limit by u(z).

+ The convergence of the series ), - uy, to u is not uniform. In fact, for every NV > 1, we have

N—-1
Z up(z) — Z Up ()
n=0

n=0

« For any M > 0, the convergence of the series ), - u, to u on [0, M] is uniform. To see this,
we write, for any x € [0, M],

N-1
> un(@) = ) un(@)
n=0

n=0

= Zun(x) <

n=>N

which gives us a uniform upper bound of the remainder which does not depend on .

« In consequence, the limit function u is continuous on [0, M| for every M > 0, so it is also
continuous on R .

This examples illustrates that to get the continuity of the limit function, we do not necessarily need
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the uniform convergence on the whole domain of definition. Since the continuity is a local regularity,
it is sufficient to show the uniform convergence on, for example, all the segments.

8.2.2 Integation

Let I C R be an interval such that [ # @. Consider a sequence ( fy)n>1 of functions from I to a Banach
space (W, |[-]))-

Proposition 8.2.5: Let (f,,)n>1 be a sequence of continuous functions that converges uniformly to f on
every segment of I. Let a € I, and define the following primitives,

go(z):/;f(t)dt . gpn(m):/axfn(t)dt, Vn > 1.

Then, the sequence (@ )n>1 converges uniformly to ¢ on every segment of I.

Remark 8.2.6 : The conclusion of Proposition 8.2.5 menas that we may interchange the order of the limit
and integration,

T xT
lim /a Fult)dt = /a Tim_fu (1) dt.

n—oo

Proof : Let [c,d] C I be a segment of I containing a. Since ( f,,),>1 converges uniformly on [c, d] to
f, it follows from Corollary 8.2.2 that f is also continuous on [c, d]. Therefore, the primitives ¢ and
¢©n, with n > 1 are well defined on [c, d]. For every n > 1 and = € [c, d], we have

[n () — ()|l =

[ty - 1) @

<z —alllfn = flloojeq < 1d = cllfa = Fllooeq —=2 O

n—o0

The convergence to 0 in the above bound does not depend on = € [c, d], so we have established the
uniform convergence of (¢, ),>1 to ¢ on [c,d]. O

Example 8.2.7 : Let (f,)n>1 be a sequence of real-valued continuous functions on [0, 1] that con-
verges uniformly to f. This means that (f,),>1 is bounded in B([0, 1], R), so we may find M > 0
such that || f, ||, < M for all n > 1. Then, we have

Vo € [0,1],  [fu(2)’ — f(2)?] < 2M|fa(2) — f(2)]-

This means that (f2),,>1 converges uniformly to f2, so we have

/Olfim/olf?
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Chapter 8 Sequences and series of functions

Example 8.2.8: Let us consider the sequence of functions ( f,)n>1 on [0, 1], defined by
Ve e [0,1], fu(z)=2".

This sequence of functions converges pointwise to the indicator function f = 1; (Example 8.1.2)
which is not continuous, so this convergence is not uniform (Proposition 8.2.1). However, the sequence
of integrals converges,

/Olfn(x)dxz ! —)O:/Ollll(x)dx.

n-+1 n—oo

This shows that the notion of uniform convergence is much stronger than the convergence of integrals.
Actually, later in Section 8.5, we will see in a more general context, how to obtain the convergence of
integrals without having the uniform convergence.

Corollary 8.2.9: Let )" u,, be a series of continuous functions from [a, b] to a Banach space (W, ||-|). If
the series y_ uy, converges normally on [a,b], then, for x € [a, b], we have

/ax (;un(t)) dtzg1 </axun(t)dt> :q}inéoé (/:uk(t)dt>,

where the limit on the right side is uniform on [a, b].

Remark 8.2.10 : Corollary 8.2.9 gives us conditions under which we are allowed to interchange the order
of integration and series. In such a circumstance, sometimes we also say that “we may integrate the series

term by term”.

We also have a more general statement for the behavior of a uniformly convergent sequence of functions
in the context of Riemann-Stieltjes integration. The following theorem states that (1) the Riemann-Stieltjes
integrability is preserved by the uniform convergence, and (2) the sequence of primitives also converges

uniformly.

Theorem 8.2.11: Let o« € BY([a,b]). Let (fn)n>1 be a sequence of bounded functions from [a, b] to
R such that f,, € R(a;a,b) forallm > 1. Suppose that (f)n>1 converges uniformly to a function
f :]a,b] = R, and define

9@) = [ 1)dalt) and gu(e) = [ 00 dat), Vn>1

Then, the following properties hold.
(1) f € R(c;a,b).

(2) The sequence (g, )n>1 converges uniformly to g on |a, b].
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Proof : By the decomposition theorem of functions with bounded variation, see Theorem 5.1.17 and
Corollary 5.3.16, it is enough to show the statement for a strictly increasing function . We have seen
a similar argument in the proof of Theorem 5.3.21.

(1) Let us prove that f satisfies Riemann’s condition with resepct to « on [a, b] (Definition 5.3.8).
Let &€ > 0. The uniform convergence of (f,,)n>1 to f allows us to find N > 1 such that

1f(2) = fa(2)]] < alh) — ala)’ Va € [a,b],Vn > N.
This means that for any partition P € P([a, b]), we have
Up(f = fn,e)l <e and |Lp(f - fn, @) <e (8.6)
Since fy € R(a;a,b), we may find a partition P. € P([a, b]) such that
VP2 P, Up(fn,a)—Lp(fn,a) <e. (8.7)
Therefore, for any P O P., we have

Up(f,a) = Lp(f, o) <Up(f — fn,a) = Lp(f — fn,a) + Up(fn,a) — Lp(fn, )
<|Up(f = fn, )|+ |Lp(f — fn,a)| + [Up(fn,a) — Lp(fn, )]
< 3¢

from Eq. (8.6) and Eq. (8.7). This shows that f € R(«a;a,b).

(2) Forn > N and x € [a, b], we have

|gn (@ / [fu(&)=f ()] da(t) < || fn = flloo [(@)—a(a)] <[ fn = fllo [(b)—ala)];

where the upper bound does not depend on z, and converges to 0 when n — oo.

O

Corollary 8.2.12: Let o € BY([a,b]). Let >_ uy, be a series of bounded functions from [a, b] to R such
that u, € R(a;a,b) foralln > 1. Suppose that the series Y, u,, converges uniformly on [a,b]. Then,
the following properties hold.

(1) >, un € R(asa,b).
(2) Forz € [a,b], we have
/ (;un > _n; </:un(t)dda(t)) :T}E%oé </:uk(t)dda(t)>,

where the convergence on the right side is uniform in x € [a, b].
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8.2.3 Derivatives

Let I C R be an interval such that ] # @. Consider a sequence ( f,,)n>1 of functions from I to a Banach
space (W, [|-[}).

Theorem 8.2.13 : Let us make the following assumptions.
(i) For everyn > 1, the function f,, : [ — W is of class C'.
(ii) The sequence (fy,)n>1 converges pointwise to f € F (I, W).
(iii) The sequence (f)n>1 converges uniformly to g € F(I, W) on every segment of I.
Then, the following properties hold.
(1) The function f is of class C! and f' = g.

(2) The sequence (fy)n>1 converges uniformly on every segment of I.

Proof : Let a € I. From (ii), we know that f,(a) — f(a).

(1) First, we note that since (f] ),>1 converges uniformly to g on every segment of I, it follows from
Corollary 8.2.2 that g is continuous on I. By Proposition 8.2.5, for x € I, we have

/a:p = lim / I (t hm (fa(x) = fala)) = f(z) — f(a).

7L—>OO

This shows that .
Vael, f@)=f@+ [ gty

Since g is continuous, we deduce that f is of class C! and f’ = g.

(2) To show the uniform convergence of (fy,)n>1 to f, let us proceed as follows. For every n > 1
and = € I, the fundamental theorem of calculus gives us

[fn(z) = ()] <

"t - 1@ + 5@ - f@1.

The first term on the right side converges uniformly to 0 by Proposition 8.2.5, and the second
term converges to 0 due to the assumption (ii). Therefore, the above rate of convergence does
not depend on x € I, so (f)n>1 converges uniformly to f.

0

Remark 8.2.14 : From the above proof, we see that the assumption (ii) can be softened to

(ii’) there exists a € I such that f,(a) — f(a).

Corollary 8.2.15:Let p > 1 be an integer, and (f,)n>1 be a sequence of CP functions from I to W.
Suppose that
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(i) for every 0 < k < p — 1, the sequence (fT(Lk))n>1 converges pointwise;
(ii) the sequence (fy(,,p))n% converges uniformly on every segment of I.
Then, the pointwise limit f := lim,, o fr is of class CP, and for 0 < k < p, we have

veel, f®(z)= lim f¥ ().

n—o0

Proof : This can be shown by induction using Theorem 8.2.13. O

Corollary 8.2.16 : Let (u,),>1 be a sequence of C* functions from I to W. Suppose that
(i) the series )  u,, converges pointwise;
(ii) the series > u,, converges uniformly on every segment of I.

Then, the function y",,~1 uy, is of class C' and

< Z un)l = z/: ul,. (8.3)

Example 8.2.17 : We claim that the Riemann zeta function s + ((s) is of class C*, and

> lnn

Vs>1, ('(s)=— o (8.9)

n=1
For every n > 1, let u,, : s — n™% whichisaC ! function with derivative given by

1
Vs>1, u(s)=— nn

ns

The series of functions Y u,, converges pointwise to (. Fixb > a > 1, let us show that ) u/, converges
normally on [a, b], so also uniformly. Let us choose ¢ € (1, a). We have

@] =t =0 ().

ne ne¢

Since Y n~° converges (Proposition 6.2.6), we deduce that > u,, converges normally on [a, b]. There-
fore, Eq. (8.8) gives us Eq. (8.9).

Corollary 8.2.18 : Let p > 1 be an integer, and (u,)n>1 be a sequence of CP functions from I to W.
Suppose that

(i) foreveryO < k < p — 1, the series Zugzk) converges pointwise;

(»)

(ii) the series Y uy ’ converges uniformly on every segment of I.
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Then, the function En>1 Uy, is of class CP and for 0 < k < p, we have

( > un> o =Y ul®). (8.10)
n=1

n=>1

Example 8.2.19 : We follow the same notations as in Example 8.2.17, we find, for every n,p > 1,

that
(Inn)P

Vs >1, uP(s)=(=1) o

n

Let us fix b > a > 1. We show in the same way that ) u,(f’ ) converges normally on [a, b] for all p > 0,
so also converges uniformly and pointwise. We apply Corollary 8.2.18 to conclude that s — ((s) is
of class CP for all p > 0, so it is of class C*°. Moreover, Eq. (8.10) gives us

p(Inn)?

Vs> 1,¥p>1, (P(s)=3 (-1)

Example 8.2.20: Let (W, ||-||;;,) be a Banach space. We have seen in Theorem 3.2.18 that L.(W) :=
L.(W, W) equipped with the operator norm ||-|| is a Banach space, and is also a normed algebra
(Definition 6.6.1), that is the operator norm satisfies the submultiplicative property. Givenu € L.(W),
we may define the following function

We may denote u,(t) = Lru” foralln > 0 and t € R.

n!

« It is straightforward to check that &,(t) is well defined for all ¢t € R, because

" t"

weR, >l < 3o T llull™ = exp ().

n>0 n: n=0

« A similar argument as in Example 8.2.4 shows that for any M > 0, the series of functions
> n>0 Un converges uniformly on [—M, M] to &,.

« We have ug(t) = 1 forall t € R. For every n € N, we have

n—1
VteER, u,(t)= (tu” =u - up—1(t).

n—1)!
This shows that the series of functions _,,~ u;, = 3,51 U, = ., U- Uy, cONverges pointwise
to u - £,(t). This convergence is also uniform on every [—M, M| for M > 0.

+ Let us fix M > 0 and apply the uniform convergence of }_,,~ uy, and Y-, - u;, on [—M, M] to
conclude that &, is of class C! on [~ M, M| and £/,(t) = u - E,(t) for t € (—M, M). This allows
us to conclude that &, is of class C! on R and &/, (t) = u - £,(t) for all t € R.
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« From the relation & = u - &,, we deduce that if £, is of class CF for some k > 1, then so is &,
meaning that &, needs to be of class C**!. As a consequence, &, is of class C*.

8.3 Power series

In this section, we are going to study a particular form of series of functions, called power series. We
restrict ourselves to real-valued and complexed-valued power series, but you need to keep in mind that all
the notions are still valid if we replace (R, | -|) or (C, |- |) by a normed algebra.

8.3.1 Definitions and radius of convergence

We define a few topological notions in (C, | - |). An open ball centered at ¢ with radius r > 0 is also called
an open disk centered at ¢ with the same radius 7, denoted D(c,r) := B(c,r). We also define the notion of
closed disks in the same way.

Definition 8.3.1: Let (a,)n,>0 be a sequence of complex numbers and ¢ € C.

« A series of functions of the form Y, . an(z — ¢)™ is called a power series (B#fREX) centered at
¢, where z € C is the variable of the functions.

« If the sequence (ay, ), is real-valued and ¢ € R, we may use = € R as the variable of the power
series, and write } - an(x — ¢)". Then, this power series takes values in R.

We are going to develop some theories for power series centered at ¢ = 0. For a general power series
centered at ¢ € C, all the corresponding notions and properties can be obtained by a shift z +— z + ¢. The
properties and theorems are stated in terms of complex-valued power series, but you should also know that
the exact same proofs apply to the real-valued power series.

Proposition 8.3.2 (Abel’slemma) : Let > a, 2" be a power series and zy € C be such that the sequence
(anz{)n>0 is bounded. Then, the following properties hold.

(1) Forevery z € C with |z| < |z

, the series Y, a, 2™ is absolutely convergent.

(2) For everyr € (0, |z
D(0,7) := B(0,r).

), the series of functions Y a,z" is normally convergent in the closed disk

Proof : Let M > 0 be such that |ay||20|™ < M for every n > 0. For z € C such that |z| < |2
have

, We
n z n n z n

Yn >0, |anz |:H |an|| 20| <M’— ,
20 20

where the right-hand side is a convergent series (geometric series with ratio strictly smaller than 1). OJ
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Definition 8.3.3:Let > a,2" be a power series. The following quantity
R=R(Y_anz") :=sup{r > 0: (Jan|r")n>0 is bounded} € [0, +oc]

is called the radius of convergence (WHIHTE) of 3 a, 2™

Remark 8.3.4 : We note that if we add phases to the sequence (a,,),>0 defining the power series > a,,2",
its radius of convergence remains unchanged.

Proposition 8.3.5: Let ) a,2" be a power series and R be its radius of convergence. Then, we have the
following properties.

(1) For z € C with |z| < R, the series > a, 2" converges absolutely.
(2) Forz € C with |z| > R, the series > a,2" diverges.
(3) Forr € [0, R), the series >_ a,2" converges normally on the closed disk D(0, ).

And the open disk D(0, R) is called the disk of convergence (WHLIEI#E) of the power series 3" a,2™.

Remark 8.3.6:

(1) When R = +o0, the power series )  a, 2" converges for every z € C, so it defines a function from C
to C. Such a function is called an entire function (B¥K£X).

(2) When R < 400, on the boundary of the disk of convergence, that is when z € 9D(0, R), the power
series may have any possible behavior, see Example 8.3.9.

Proof :
(1) It is a direct consequence of Proposition 8.3.2 (1).

(2) For z € C\D(0, R), since (|an||z|")n>0 is not bounded, we do not have a,,z" — 0,50 the
n—oo

series Y an 2™ diverges.

(3) Itis a direct consequence of Proposition 8.3.2 (2).

Proposition 8.3.7 (D’Alembert’s criterion, ratio test) : Let > a,, 2" be a power series, and R be its radius
of convergence. Suppose that the following limit exists,

. An+1
0 := lim |—2F
n—oo | ap,

| € [0,+00].

Then, R = ¢~ 1.
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Proof : It is a direct consequence of Theorem 6.3.1. O

Proposition 8.3.8 (Cauchy’s criterion, root test) : Let ) a,,2" be a power series, and R be its radius of

convergence. Let
A := limsup |a,|'/" € [0, +00].

n—o0

Then, R = %

Proof : It is a direct consequence of Corollary 6.3.8. (]

Example 8.3.9: The following three series have the same radius of convergence 1, that can be obtained
by either the ratio test or the root test. However, they have totally different behaviors on the boundary
of the disk of convergence.

(1) The series > 2" has radius of convergence 1. For z € C with |z| = 1, the series )_ 2" never
converges.

(2) The series > fTZ has radius of convergence 1. For z € C with |z| = 1, the series ) Z—Z converges

normally, so converges.

. Zn . _ . Zﬂ’ .
(3) The series ) - has radius of convergence 1. For z = 1, the series ) - diverges. For z € C

such that [2| = 1 and z # 1, the series 3_ 2~ converges by Example 6.4.9.

8.3.2 Operations on power series

Proposition 8.3.10: Let f(z) = . apz™ and g(z) = Y b, 2™ be power series with radius of convergence
Ry and R. Let R be the radius of convergence of _(a,, + by)z". Then,

R > min(Ry, Ry).

Moreover, if Ry # R,, we have R = min(Ry, Ry). For any z € C with |z| < min(Ry, Ry), we also

have
Z(an +by)2" = Z anz™ + Z b,2". (8.11)

n=0 n=0 n=0

Proof : Let z € C such that |z| < min(Ry, Ry). It follows from Proposition 8.3.5 that both >~ a,,2"
and ) b, 2" converges absolutely, so the series Y (a, + b,)z" also converges absolutely. This means
that Eq. (8.11) holds. Moreover, this also implies that R > min(Ry, Ry).

Suppose that Ry # R, for example, Ry < Ry. Let z € Csuchthat Ry < |z| < Ry. Since (b,2"),,
is bounded and (a,2™),>1 is unbounded, we deduce that ((a, + bn)z”)n>1 is unbounded, so |z| >
By taking infimum over z € C satisfying Ry < |z| < Ry, we find that Ry > R.

0O IV
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Definition 8.3.11:Let Y a,2" and }_ b, 2" be power series. Their Cauchy product is the power series
> ¢y 2", where the coefficients (¢, ),>1 are given by

n
Yn >0, c,= Z arbp—_i-
k=0

Proposition 8.3.12: Let f(z) = Y a2 and g(z) = Y b, 2" be power series with radius of convergence
Ry and Ry. Let Y ¢, 2" be their Cauchy product. For every z € C with |z| < min(Ry, Ry), we have

f(2)g(z) = (T;anz”> (nz;()bnz"> = nzgo (kzijoakbn_k> 7" = n%:()cnz”. (8.12)

In particular, if R is the radius of convergence of > ¢, 2", then we have

R > min(Ry, Ry).

Proof : Let z € C such that |z| < min(Ry, Ry). From Proposition 8.3.5, we know that both >~ a,, 2"
and Y b, 2" converges absolutely, then by Theorem 6.6.3, we know that their Cauchy product Y ¢, 2™
converges absolutely, and satisfies Eq. (8.12). Additionally, this implies that R > min(Ry, Ry). g

8.3.3 Regularity

Here, let f := " a, 2" be a power series with radius of convegence R > 0. We have seen in Proposition
8.3.5 that f is well defined on D(0, R).

Theorem 8.3.13 : The function f : z + Y~ a,2" is continuous on the disk of convergence D(0, R).

Proof : Fix z € D(0, R). Let us consider a closed disk D(z,r) centered at 2z with radius 7 < R — |z|.
Then, for any w € D(z,r), we have |w| < |w — z| + |2] < |2| + r < R, which means that D(z,r) C
D(0, R). It follows Proposition 8.3.5 (3) that the power series Y a,,2"™ converges normally on D(z, ).
Since the partial sums defining f are continuous (polynomial functions), we use Proposition 8.2.1 to
conclude that the limit f is continuous at z. O

Theorem 8.3.14 (Abel’s theorem) : Let > a,2" be a power series with radius of convergence R > 0.
Suppose that the series ) a, R" converges. Then, the function x +— Y -qa,x" defined on [0, R] is
continuous. In other words, we have

Z anx” ——— Z anR".

n=0 Cati n=0
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Proof : For every n € Ny, let u,, : [0, R] — C be defined by

Ve € [0,R], up(z)=ayz", and R, = Z apRF.
k>n+1

By the assumption, the series of functions Y u,, converges pointwise on [0, R]. We want to show
that this covnergence is uniform, then we can conclude by Proposition 8.2.1. By rewriting each w,, as
n(x\"
Uy, = apR" ()", we may assume that R = 1.
Let ¢ > 0. Since Y _ a,, is convergent, we may find N > 1 such that |R,,| < e foralln > N. For
m,n € Nwithm >n > N, and = € [0, 1], we establish the Abel’s transform using the remainders of
the convergent series > ay,

m m m
Z akxk = Z (Rk 1— Rk Z Rkl' Z kak
k=n+1 k=n+1 k=n+1
= Rpx"™ — Ra™ + Z b — gk,

k=n+1

Since R,, —— 0 and (2;,)m>0 is bounded, we have R,,z™ ——— 0. Moreover, we have
m—00 m—r0o0

|Rp,(xF*! — 2F)| < e(aF — 2F*1), and the series ;. (2% — 2**1) converges, so 3 Ry (xF ! — zF)
converges absolutely. Thus, for n € N and x € [0, 1], the remainder of the power series writes

ra(z) = Rpa" ™+ ) Ry(aMt —2F).

k>n+1
Forn > N and z € [0, 1], we have
IRz < |Ry| <,
Z |Rk;(.’,1:'k+1 _ xk)‘ < c .’L'k N .lek+1) _ 6.1‘n+1 <e.

So |rp(x)] < 2¢forallm > N and # € [0,1]. This means that 7, — 0 uniformly. By
n—oo

Proposition 8.1.17, we have shown that ) u,, converges uniformly on [0, R]. |

The following Tauber’s theorem gives a converse of the above Abel’s theorem.

Theorem 8.3.15 (Tauber’s theorem) : Let f(z) = > a, 2" be a power series with radius of convergence
R > 0. Suppose that f(x) —R> ¢ and na, — 0. Then, the series Y a, R™ converges to /.
z—R— n—r00

Proof : Without loss of generality, we may assume that R = 1. Let us denote by (.S),),>0 the partials
sums of the series Y ay,. Forany n € Ng and z € (—1,1), we have

(x) = Zak(l — ) — Z apx®.
k=1

k>n+1
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For z € (0,1), we have
-z =1 -2)1+z+ - +2"1) <k —2).

Therefore, for any n € Ny and € (0,1), we have

1S, — f(z)] < (1 —2) Zk\ak\—i— > gl

k>n+1
Given ¢ > 0 and choose N > 1 such that n|a,| < ¢ foralln > N. For any n > N, we have
Z lag|zF < e Z Z zk (1 — )
k>n+1 k>n+1 k>n+1

Forn > N, let us choose z,, = 1 — l Then, we find
|Sp — Zk’ak’—i-é

Since n|ay,| — 0, it follows from Exercise 6.1 that the first term'on the right side converges to 0.
n—odo

Therefore,
limsup |S, — f(zn)| < e.

n—oo

Since € > 0 can be made arbitrarily small, we find

Jim [S,, — f(za)| = 0.
That is, lim,, 00 Sy, = limy, 00 f(2) = limg—y1— f(z) = £

The following is a generalization of Theorem 6.6.3 and Exercise 6.24.

Corollary 8.3.16 : Let > a,, and Y_ b, be convergent series. Forn € Ny, let ¢, = > 1_oarbp—k.
Suppose that Y ¢, is convergent. Then,

S e = (zan)(zbn)

n=0 n=0 n=>0

Proof: Let > a,2", > b,2", and ) ¢, 2" be power series. Their radii of convergence are at least 1, be-
cause both (a,|2|")n>0 and (by|2|™)n>0 are bounded for z € D(0, 1). It follows from Proposition 8.3.12
that the radius of convergence of the power series ) _ ¢, 2" is greater or equal to 1. By Theorem 8.3.14,

we know that

Zanx . Zan, anx —>an, and chx —>ch

n=0 n=0 n>0 n>0 n=0 n=0

'The sum % Zzzl kay is called the Cesard sum of (nan)n>1.
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Moreover, Proposition 8.3.12 gives the following identity,

Vo e (—1,1), ch:c” = <Z anx"> (Zanx">

n=0 n=0 n=0

By taking the limit x — 1— in the above identity, we establish the identity we want. (|

Let us also introduce the notion of differentiability in a complex variable.

Definition 8.3.17:Let A C Cand f : A — C. We say that f is C-differentiable (or simply differen-
tiable) at zp € A if the following limit exists,

d d AR A
dfic(Z()) = @f(ZO) = f/(ZO) = zii—ér%] f(z—zo(())

e C,

which is also called the C-derivative of f at 2.

Remark 8.3.18 : We may identify C as a two-dimensional real vector space. If we compare the notion of
differential from Definition 4.1.1, we may notice that the C-derivative introduced here is much stronger.
In fact, if a function f : A — C is differentiable at zy in the sense of Definition 4.1.1, its differential is a
continuous linear map. However, if the same function is C-differentiable at zy, its C-derivative is given by
a complex number, which, seen as a differential, is a composition between a rotation and a dilation (in RQ).
It is not hard to see that a composition between a rotation and a dilation is a continuous linear map, but the
converse fails to hold in general. In Complex Analysis, you will see that if a function is C-differentiable in an
open subset A C C, then it can be differentiated as many times as we want in A. Such functions are called
holomorphic functions.

A power series contains only polynomials functions, and it is not hard to check that the C-derivative of a
polynomial function is the same as its usual R-derivative. In other words, we have
d(z")

VnGNO, ?:TLZ

n—1

Theorem 8.3.19 : The function f : D(0,R) — C, z — Y, ~qan2" is of class C!. The power series
> n>1nan 2"~ has the same radius of convergence as y,,~ an2", that is

R(T; nanz”_1> = R( Z anz").

n>0

We also have
Vz€ D(0,R), f'(z)=> nanz"". (8.13)

n=>1
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Remark 8.3.20 : This theorem is of particular interest. It means that we can always differentiate term by
term a power series, which is not the case of a general series of functions, where additional assumptions are
needed (Corollary 8.2.16).

Proof : Let R’ be the radius of convergence of > na,2""!. For any r € [0, R'), we know from
Definition 8.3.3 that (na,r" !),>1 is bounded, so (@, 7"),>0 is also bounded, which implies that r <
R. By taking the limit » — R'—, we find R’ < R. For the converse, let r € (0, R) and r¢ € (r, R).
Again by Definition 8.3.3, we know that (a,r{)n>0 is bounded. We have

na,r" ' = n(a r”_l)(iyl_l —0
n = nTo )

so we also know that (nan'rnfl)n% is bounded, that is r < R’. When we take r — R—, we find R <
R’. Now, we can deduce Eq. (8.13) as a direct consequence of Corollary 8.2.16 and Proposition 8.3.5.

g

Corollary 8.3.21 : The power series f(z) = >_,~0anz" is of class C** on D(0, R). For every p € N,
the p-th derivative of the power series has the same radius of convergence and writes

Vze D(0,R), fP(z)= dnn—1)--(n—p+1)apz" P = (Z)p!anz"p.

n=p nzp

In particular, this gives

® (0o
VpENo, ap = f '( ),
p!
and )
_ M0,
Vz € D(0,R), f(z)= Z p .
p=0
Proof : It is a direct consequence of Theorem 8.3.19 with an induction. d
Example 8.3.22 : We have the following identity,
Vz € D(0,1) ! :Zz"
? 9y 1 — *
n=>0
Theorem 8.3.19 allows us to differentiate the identity, giving us
1
V2 e D(0,1), ———5= Z nz"1 = Z(n +1)2". (8.14)
(1 - Z) n>1 n=0
By taking higher-order derivatives, for every p € N, by Corollary 8.3.21, we find
Vz € D(0,1) L:Z(n—i—l) (n+p)z" or 1—Z<n+p>z"
9 ) (1 _ Z)p+1 50 (1 — Z)P-H 30 p
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If we multiply Eq. (8.14) by z then differentiate again, we find

1
Vz e D(0,1), +Z ZnQ n-l Z(n—l—l)Qz”.

1 _-Z n=1 n=0

In particular, when z = % we find the following identity,

Corollary 8.3.21 gives us following direct consequences, which are very useful when we deal with power

series.

Corollary 8.3.23 : The power series

F: D(0,R) — C
an  pt1
2 =y 2
n>1n+1

has the same radius of convergence as >, a,2". Moreover, we have F' = f on D(0, R).

8.3.4 Coefficients of power series

Corollary 8.3.24 (Uniqueness of power series) : Let f(2) = Y50 an2" and g(z) = 3,50 bn2" be
two power series with radius of convergence

Ry := R(n%%anz”) >0, and R, := R(n%%bnz") > 0.

Suppose that there exists v > 0 and r < min(Ry, Ry) such that f = g on (—r,r) C R. Then, we have

an = by, foralln € Ny.

Proof : Let R = min(Ry, R,) and consider the following functions defined on (—R, R),

Vze (—R,R), f(z)= Zanz”, and g(z Z bp2".

n>0 n=>0

It follows from Corollary 8.3.21 that both f and g are C* functions, and their coefficients are given by

F(0)

n

9™ (0)
n!

vn € Ng, a,= and b, =

By the assumption that f = g on (—r, ) for some 7 € (0, R], we deduce that (") (0) = ¢(™(0) for all
n > 0, so we also have a,, = b,, for alln > 0. O

24 Last modified: 20:41 on Tuesday 20" May, 2025



Chapter 8 Sequences and series of functions

Example 8.3.25:Let f : D(0,R) — C, z — 3,50 a,2" be a power series with R > 0. Suppose
that f is an even function, that is f(z) = f(—z) for z € (—R, R). In other words,

Vz € (—R, R), Z an(—2)" = Z anz".

n=0 n=>0

This implies that
Vn € Ny, (—1)"a, = an.

In other words, a,, = 0 if n is an odd integer.

Theorem 8.3.26 (Cauchy’s formula) : Let f(z) = Y an2" be a power series with radius of convergence
R > 0. Then, for anyr € (0, R) andn € Ny, we have

n 1 2 i0\ —inf
7 / f(ret?)e de.
0

T or

Proof : Let us fix € (0, R) and n € Ny. We have

2m . . 2w .
f(ret®)e=in? dg = / (Z aprpel(p”)9> dé.
0

0 p>0

Since Y |a,|rP converges, the series of functions 6 — > a,rP? e!(P=) converges normally on [0, 27].
We deduce from Corollary 8.2.9 that we may interchange the order between integration and summa-

tion. As a consequence,

2w X . 27
f(ret?)e im0 qg = Z aprp/ eP~m? 4 = Z apr? (2m) 1=y = 21" ay,.

0 p>0 p>0

Remark 8.3.27 : This provides another proof of Corollary 8.3.24 if, using its notations, f = g on D(0,r)
for some r € (0, R).

8.3.5 Expansion in power series

In the previous subsections, we were given power series and discussed their properties. In this subsection,
we are going to see when and which functions can be written (or exapnded) as a power series.

Definition 8.3.28 : Let A C C be an open set and a function f : A — C.

« Let R > 0. If 0 € A and there exists a power series > a, 2" such that

Vze D(0,R), f(z)= Z anz", (8.15)

n=0

then we say that f can be written (or expanded) as a power series around 0, or on D(0, R). In
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particular, such a function needs to be C* at 0, which is a direct consequence of Corollary 8.3.21.

« Let zp € A. We say that f can be written (or expanded) as a power series around z if z +—
f(z + 20) can be written as a power series around 0.

Proposition 8.3.29 : Let A C C be an open set containing 0 and a function f : A — C. Then, the
following properties are equivalent.

(1) f can be written as a power series around 0.

(2) There exists r > 0 such that the series of remainders (R, )n>0 converges pointwise to 0 on D(0, 1),
where

Vn € No,Vz € D(0,r), Ru(z)= f(z)— zn: (8.16)
k=0

When (2) holds, it means that the power series ) f ) 2" has radius of convergence R satisfying R >
and f is equal to the series on D(0, ).

Remark 8.3.30:
(1) To check Proposition 8.3.29 (2), we use Taylor-Lagrange or Taylor integral formula (Section 4.3.1) to

write the remainder as

R _ et (n+1) 0 0 0.1 R _ .n+1 ! (1 B t)n (n+1) d
n(2) = mf (02), 6€(0,1), or Ry(z)==x /0 Tf (tz)dt.
(2) We note that to check Proposition 8.3.29 (2), it is not sufficient to check that the radius of convergence

of © M) is strictly positive. Actually, there are functions such that this power series has a strictly
positive radlus of convergence without Eq. (8.15) holds, see Example 8.3.32 for an example. However,
if this radius of convergence is 0, it tells us that f cannot be written as a power series around 0.

Proof : There is nothing to show for (1) = (2). Suppose that (2) holds, let us show (1). Let > 0 sat-
isfying Eq. (8.16). Let z € D(0, 7). The condition R, (2) —=0 implies that f(z) = >",> f“;)‘(()) 2"
n o0 = .
f(")( 0) n

Therefore, the sequence (=—7—2"),>0 tends to 0, so is bounded, so the radius of convergence R of the
corresponding power series satlsﬁes R > |z| (Definition 8.3.3). By taking supremum over z € D(0, r),
we find R > r. O

Example 8.3.31: The following functions can be written as a power series around 0.

(1) The exponential function z — exp(z),

2"
VzeC, ¢€° z}:;
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In fact, for any z € C and n > 0, the n-th remainder writes
| Z|n+1
(n+1)!

n+1
‘f(n—l—l)(az)‘ _ |Z| eGRc(z) 0.

B2 = Crm i~

(2) The function z — 2 is defined on C\{1}, and we have

vz € D(0,1), . =) "

In fact, for any z € D(0,1) and n > 0, the n-th remainder writes

2"

’1 — Z’ n—00

Ra2)l = [ <

(3) Any polynomial function P € C[X] satisfies

P™(0)

n!

2"

VzeC, P(z)= Z

n=>0

Actually, the above power series contains only finitely many terms.

Example 8.3.32: Let us consider the function f defined as below,

f: R — R
e 1/ ifr >0,
Tr
0 ifx <0.

For k € Ny, we may compute the k-th derivative of f on (0, +00),

1

ve >0, f®()= Pk(—)efl/‘r, (8.17)
x

where Py, is a polynomial satisfying deg(Py) < 2k. Therefore, for each k > 0, we may extend f (%) con-

. . . . (n)
tinuously to 0 by the value 0, so f is a C> function on R. Therefore, the power series ) _, - ! n!(o) 2"

is the zero function. Its radius of convergence is +00, and is not equal to f on (0, ) for any r > 0.

Proposition 8.3.33 : If f can be written as a power series in D(0, R) for some R > 0, then for any
20 € D(0, R), f can also be written as a power series around z.

Proof : Let f be a function, R > 0, and a power series > a,,2" such that

Vze D(0,R), f(z)= Z anz".

n=0

Let zp € D(0, R) and r = R — |2p|. It is not hard to see that D(0,r) C D(0, R). Let z € D(zg,r), we
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write

Z an 2" = Z an(z0 + (2 — 20))" = Z an, Z (Z) zgfk(z — 2)"

n>0 n=0 n>0 k=0
n _
= Z Z anly>g (k) 2y Bz — o)k
n>0 k>0

n)zn—k

We may check that for every n > 0, the series Y~ anly>i(3) 20 (2 — 20)* converges absolutely

(finite series). Additionally, we have
n _
35 ot ) ol 1z = sl = X bl o]+ 12 2"
n>0 k>0 n=0

which converges because |z9| + |z — 20| < |20| + 7 = R. Therefore, Theorem 6.7.4 allows us to
interchange the order of summations. We find,

Z anz" = Z Z anly>g <Z> (2 — z)* = Z ( Z an, (Z) ng) (z — 20)F,

n=0 k>0n>0 k>0 \n>k

which is a power series centered at zg. O

8.3.6 Applications to ODEs

Power series can be used to solve linear ordinary differential equations with polynomial coefficients. We

have two cases.

« We know that the solution can be written as a power series, and we look for recurrence relations
between coefficients of the power series. Then, the uniqueness of the cofficients (Corollary 8.3.24)
allows us to find this unique solution. See Example 8.3.34.

« We do not know whether the solution can be written as a power series and want to show that there
exists such a solution. We apply the same method as in the previous point, and show that the corre-
sponding power series has a strictly positive radius of convergence. This gives us the unique solution
that can be written as a power series, see Example 8.3.35. Note that this does not prove any result
about the uniqueness of the solution.

28

Example 8.3.34 : We want to look for a power series expansion of the following function around 0,

f: R — R
z - e foxe_t2 dt.

The function f can be written as a power series centered at 0 with radius of convergence equal to 400,
because it consists of multiplication and integration of such functions. Additionally, by the fundamen-
tal theorem of calculus, we have

Ve e R, f'(z)=2zf(x)+1, and f(0)=0.
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Suppose that f(x) = 3~ a,z". Then, we have

VreR, f'(z Z napz" !, and xf(x) = Z anpx"tt = Z Apox™ "

n>1 n=0 n=2

Therefore,

Ve eR, fl(x)—2xf(z) —al—i—Znan 2a1p_2)z" L.

n>2

The initial condition f(0) = 0 gives ap = 0. By Corollary 8.3.24, we know that

2
ap=1, and VYn>2, a,=—an_2.
n

Thus, by induction, we find that

4"

Vn > 0, agn = 0, and ao2n+1 = m

We check again (even though not necessary in this example) that the power series define by this
sequence of (a,,)n>0 indeed has radius of convergence equal to 400, so

Ve eR, f(z)= Z Ln!a:Q"H.
=0 (2n+1)!

Note that this solution can also be expanded around every a € R as a power series.

Example 8.3.35:Let a € C. We want to look for a power series expansion of the following function
around 0,

f: (-1,1) — C
x = (1+z)*
This function f satisfies the following first-order linear ordinary differential equation,

Vo e (—-1,1), (1+2)f'(x)=af(x), and f(0)=

Such a differential equation has a unique solution (Theorem 8.4.17). Suppose that f(z) = >_,, 5 anz"
with radius of convergence R > 0. Then, we have

Vo € (=R, R), f'(z)= Z na,z" "t = Z(n + Dapp12”, and zf'(x Z napx"

n>1 n=0 n=1

Therefore,

Vz € (—R,R), (1+2z)f(z)—af(z)= Z (n+4 1)ant1 + nap, — aay)x™.

n>0
From the initial condition f(0) = 1, we have ap = 1. By the uniqueness of the coefficients
(Corollary 8.3.24), we find
a—n
Vn € Np, = .
n 05 Qn+1 7l+_1an
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By induction, we deduce that

Wn e No, an:a(a—l)...(a—n%—l):(a)' (8.18)

n! n

By d’Alembert’s criterion, we have

‘an+1’

‘O&—TL
an,

n-+11 n=oo

Therefore, the power series ) a,z" defined by the cofficients in Eq. (8.18) has radius of convergence
equal to 1, and we conclude that

Ve (-1,1), (1+2)*=Y (O‘)xn -y ola — 1)--7-“(04 —ntl) .

n=0 n=0

This generalizes the binomial expansion to the case with a complex-valued exponent.

8.4 Advanced theorems on uniform convergence
8.4.1 Arzela-Ascoli theorem

Arzela-Ascoli theorem is an important theorem in functional analysis, and it allows us to characterize
when a subset of continuous functions is compact. In particular, it turns out to be useful to show the exis-
tence of solution for some differential equations, see Theorem 8.4.14. First, let us introduce the notion of
equicontinuity.

Definition 8.4.1:Let (K, d) be a metric space. In addition, if K is a compact space, the space of
continuous functions C(K, R) is a subset of B(K,R). We have equipped B(K, R) with the supremum
norm in Definition 8.1.9, which we may induce on the subspace C(K,R). A subset F C C(K,R) is
said to be equicontinuous (FEELE) if

Ve >0,V € M,36 >0,Vf e F, yeBxd) = |flx)—flyl<e (8.19)

Remark 8.4.2 : We note that the definition in Eq. (8.19) is much stronger than just requiring that all the
functions f € F are continuous. Once ¢ > 0 and x € M are fixed, this condition needs the choice of § > 0
to be uniformin f € F.

Example 8.4.3:
(1) A subset of finitely many continuous functions is equicontinuous.

(2) For every L > 0, the set of all the L-Lipschitz continuous functions is equicontinuous.
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Theorem 8.4.4 (Arzela—Ascoli theorem) : Let (K, d) be a compact metric space and F C C(K,R) be
a subset. Then, we have the following properties.

(1) F is compact if and only if F is bounded, closed, and equicontinuous.

(2) F is precompact if and only if F is bounded and equicontinuous.

Remark 8.4.5:

(1) We recall that a compact space is necessarily bounded and closed (Proposition 3.1.6), and a bounded
and closed set may not be compact (Remark 3.1.34), except that we are in a finite-dimensional normed
vector space (Corollary 3.2.24). If the compact metric space K is consisted of a finite number of points,
it is clear that C(K, R) is isomorphic to R" for n = Card(K), which is a finite-dimensional normed
vector space, and the theorem becomes trivial. However, for a generic compact metric space K, the
space of continuous functions C( K, R) is not of finite-dimensional.

(2) FromExercise 3.21, we know that a metric space is compact if and only if it is precompact and complete.
Moreover, in Exercise 8.30, we can check that if F is equicontinuous, then so is F. Moreover, since
C(K,R) is a Banach space, we see that (2) is a direct consequence of (1).

(3) We also note that R can be replaced by any Banach space, and the following proof can be adapted
accordingly.

Proof :

« Suppose that F is compact. We already know that it is bounded and closed, so we only need
to show that it is equicontinuous. A compact set is also relatively compact (or precompact), see
Lemma 3.1.22. Lete > 0. Wemay find N > land fy,. .., fy € F suchthat 7 C Y, B(fi, ).
Additionally, the finite set of functions { fi,. .., fv } is equicontinuous.

Let x € M. We may find § > 0 such that
Vi=1,...,N, yeB(d) = |[filz)-filyl<e

For any given f € F, we may find 1 < ¢ < N such that f € B(f;, ). Then, for any y € B(z,9),
we have

[f (@) = F)l < |f(2) = filo)| + |fi(z) = fily)| + | fi(y) — f(y)] < 3e.

This allows us to conclude that F is equicontinuous.

« Suppose that F is bounded, closed, and equicontinuous. In order to show that F is compact,
it is sufficient to show that it satisfies the Bolzano-Weierstrafy property (Definition 3.1.19), see
Theorem 3.1.20.

Let (fn)n>1 be a sequence in F. Since K is compact, we may find a dense sequence in K, that
we denote by (x,,),>1%. We are going to use a diagonal argument to extract a subsequence of
(fn)n>1 which converges at every zj, for k > 1.

- The sequence (fn(z1))n>1 is bounded in R, so by the Bolzano-Weierstrafl theorem
(Theorem 2.2.5), we may find a convergent subsequence, that we denote by (f,,, (n)(1))n>1,
where 1 : N — N is an extraction.
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— Let m > 1. Suppose that we have already constructed extractions ¢, ..., @, such that
(o () (Tk) )n>1 converges for all 1 < k < m, where ¢, := 1 0 -+ 0 y,. Then, the
sequence (fy,,(n)(Tm+1))n>1 is bounded, so we may find an extraction ¢y,41 : N — N
such that (fy, 0041 (n) (Tm+1))n>1 converges. It is clear that for 1 < k < m, the sequence
(fmopm1(n) (Tk))n>1 still converges, being a subsequence of a convergent sequence.

-~ Forn > 1, let ¥(n) := p10---0@py(n) and g = fy). Then, (gn)n>1 is a subse-
quence of (f;,)n>1. From above, for every k > 1, the sequence (g5, (zx) = fy(n)(Tk))n>k is
a subsequence of the convergent sequence (fy, (n)(7k))n>1, so the sequence (gn(Tk))n>1
converges. We may denote by f(xy) for the above limit for every k > 1.

Now, we need to show that this convergence can be extended to every x € K, and that this
convergence is uniform, so the limit is still in C(K, R).

Let us fix e > 0.

— For every k > 1, from the convergence of the sequence (g,(x))n>1, we may find
N(e,x) > 1 such that

Vm,n > N(e,zk), |gm(xk) — gn(zk)| < €. (8.20)

— By the equicontinuity of F, for every z € K, we may find 6, > 0 such that for every n > 1,
we have

Yy € B(2,6:) = |gu(2) —gn(y)| <e. (8.21)

The open balls B(z,d,) form an open covering of K, and by the compacity of K, we may
find L > 1and z1,..., 21 € K such that

For every 1 < i < L, we may also find n; > 1 such that z,,, € B(z;,05,).

- We may take N := max{N(e,zy,),..., N(g,zy,)}. This implies that we have a uniform
Cauchy condition (Proposition 8.1.8) on xy,,,..., %y, ,

Vi=1,...,L,¥Ym,n >N, |gm(zn;)— gn(xn,)| <e.
- Letz € K and 1 < i < L such that x € B(z;,0,,). For m,n > N, we have

9m (%) — gn(@)] < |gm (@) = gm(2i)] + [gm(2i) = gm(@n,)| + |9 (@n,) — gn(@n,)]
+19n(Tn;) — gn(2i)| + |gn(2i) — gn(z)]
< %,

where for the middle (thrid) term, we use Eq. (8.20); and for the other terms, we use Eq. (8.21)
and the fact that x, z,,, € B(z;, 05, ).

Therefore, for every x € K, the sequence (g, ()),>1 is Cauchy, and we saw from above that the
choice of N is independent from the choice of z € K. From this we can deduce that (g, (x))n>1
converges for every x € K, and this convergence is uniform, so the limit function is still an

*We use the precompactness of K. For every n > 1, we may find finitely many balls with radius % that cover K. The union of the
centers of these balls over all the integers n > 1 is a countable dense set in K.
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element of C(K,R).

8.4.2 Stone—Weierstrafd theorem

The following Stone-Weierstraf3 theorem allows us to find sets of functions that can approximate contin-
uous functions uniformly on compact spaces.

Theorem 8.4.6 (Stone-Weierstraf3 theorem) : Let X be a compact metric space and K = R or C. The
space of continuous functions C(X, K) equipped with the supremum norm ||-|| . is a normed vector space
and a normed algebra. Let A C C(X,K) be a subalgebra of C(X,K). Suppose that

«le A
« A separates points, that is for any x # y € X, there exists f € A such that f(z) # f(y);
. (inthecase K = C) f € Aifand onlyif f € A.

Then, A is dense in C(X, K).

Example 8.4.7 : Below are some examples for which the Stone-Weierstrafl theorem applies.

(1) Let I = [a,b] be a segment with K = R. The set of polynomials K[X] viewed as functions
defined on [ is dense in C(I, R).

(2) Let I = [a,b] be a segment with K = R or C. The set of all the Lipschitz continuous functions
is dense in C(I, K).

(3) Let Cper(R, C) be the set of 27-periodic continuous functions on R. The set of trigonometric
functions, which is spanned by the set {x — €'"* : n € Z}, is dense in Cper(R, C).

The proof of the Stone-Weierstrafd theorem is quite involved. We are going to state a particular example of
this theorem, called Weierstrafl approximation theorem, and prove it using a more elementary approach. After

this, we need a few lemmas (Lemma 8.4.11 and Lemma 8.4.12) that allow us to prove the Stone-Weierstraf3
theorem.

Theorem 8.4.8 (Weierstrafl approximation theorem) : Let I = [a, b] be a segment and C(I,R) be
equipped with the supremum norm ||-|| . Let P be the set of all polynomial functions. Then, P is dense
in C(I,R). In other words, for any f € C(I,R), we may find a sequence of polynomials (P,,)n>1 such
that

1P = flloo 7557 0-

Remark 8.4.9:

(1) It is not hard to check that the set of all polynomials P is a subalgebra of C(I,R) and it satisfies the

conditions in Theorem 8.4.6. Thus, the Weierstrafy approximation theorem can be seen as a special
case of the Stone-Weierstrafl theorem.

(2) It is important to take I = [a, b] to be a segment. For example, in Exercise 8.6 we have seen that this

Last modified: 20:41 on Tuesday 20" May, 2025 33



Chapter 8 Sequences and series of functions

theorem does not hold if I = R.

The original proof from Weierstrafl uses convolution, that we do not discuss in this class. The proof we
give below is from Bernstein, which can be reformulated using a probabilistic language, in terms of the law
of large numbers for Bernoulli random variables.

Proof : Without loss of generality, we may assume that I = [0, 1]. For every integer 0 < k < n, let us
define

bn,k N R
T (n) (1 — z)" 7k,
k
and for n € Ny, define
B,: C(I,R) — R[]

- k
I O () DHCL

We are going to show that B, (f) converges to f uniformly.

Given ¢ > 0. Since f is continuous on the segment I, it is bounded. Let us take M > 0 such that
|f(x)| < M for all z € I. By the Heine—Cantor theorem (Theorem 3.1.17), we may find 7 > 0 such
that

Ve,yel, |lr—yl<n = |f(z)-fly)l<e
Then, for any n € Ny and = € I, we have
k
f<n>—f($)

B (f)(x) = f(2)| = [Ba(f) () = f(2)Ba()] < Y

k=0
k k
< S G) - f@ftuster+ 5 |1(5) - F@)punto)
keK, n keKo n
where
k k
Klz{Oékgn:’—:r 277}, and ng{ngén:‘—x <77}.
n n

Using the uniform continuity, the second sum involving indices in K can be bounded from above,

> (%) - s@

keKo

n

byk(x) < Z ebp k() < Z ebp () = €.

keKo k=0

For the sum involving indices in K, we are going to use the following square trick,

2
> 7(5) - 1@ pusta) < 201 2 buala) < 2 b (£ -2) busto)
k=0
2M

= 7 [Ba(@®) = 228, (@) + 2 Bu(1)].
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Consider the following identity,

F(a,b) =[a+ (1 —-0b)]" = Zn: (Z) ak(1 — bk,

k=0

Then, we may compute B, (1), B,(z), and B,,(2?) as follow,

k=0
Bu(z) =Y %bn,k@) -y k@ (1 — )
k=0 k=1
= ZaaaF(x,az) = %n[:p +(1—2)" =g,
n 2
k=0 k=0
z? 02 x
=3 88&2F(x,:v) + —QQF(:E, x)
x? x
= = D@+ 1 —2))" ]+ Snlz+ (1 —2)"
N z(l— :U)

Therefore, we find
k 2M x(1 —x M
S #(E) - s@furte) < =D < AL
ke K, n n n

Putting all the inequalities together, we obtain

M
2nn?’

[Bn(f)(z) = f(z)] < e+
By taking the supremum norm then lim sup over n, we find
limsup || B, (f) — fll <.

n—oo

Since the above holds for any arbitrary € > 0, we deduce that limsup,,_,, || Bn(f) — fll,o =0. O

We need to introduce the notion of lattice, and state the lattice version of the Stone—Weierstrafy theorem.
This will allow us to recover the original version in Theorem 8.4.6.

Definition 8.4.10 : Let X be a compact metric space and £ C C(X,R) be a subset. We say that L is
a lattice if

Vf,g € L, max{f,g},min{f, g} € L.
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Lemma 8.4.11 : For any a > 0, there exists a sequence of polynomials that converges uniformly on
[—a, a] to the function x — |z|.

Proof : There are two ways to prove this lemma. It can either be seen as a direct consequence of the
Weierstraf3 approximation theorem (Theorem 8.4.8), or be proven by construction.
By scaling, we may assume that @ = 1. We note that for z € [~1,1],and u = 1 — 22 € [0, 1], we

have
2] =Va2=/1-(1-22)=VI—u

Vi—u= Z an(—u)", where a, = <1/2>, (8.22)

n=>0 n

If |u| < 1, we have

where the power series comes from Example 8.3.35, and it has radius of convergence equal to 1. We
want to show that this power series converges uniformly for u € [0, 1]. We may check that it converges
normally, then the uniform convergence follows, see Proposition 8.1.22. For this, it suffices to check
that > a,, converges absolutely. For n € Ny, we have
(=) G-n+1) (=" (2n-3)
ap = =
n! 2n n!
(=)™t @2n-3)N2n-2)1t  (-1)"! (2n—2)!
2n nl(2n—2)1! 221 pl(n — 1)

and the Stirling’s formula gives us |a,| ~ cst - n~%/2. This means that 5 a,, converges absolutely. [J

Lemma 8.4.12: Any closed subalgebra A C C(X,R) is a lattice.

Proof : Let A C C(X,R) be a subalgebra. Given f, g € A, we have

f+g+V—m

f+g9 |f—4
2 2 '

2 2

max{f,g} = and min{f,g} =
Therefore, it is sufficient to show that for h € A, we also have |h| € A to conclude. Let h € A.
Due to the continuity of h and the compacity of X, we can define a := max,cx |h(x)] < oo, see
Proposition 3.1.12. By Lemma 8.4.11, we may find a sequence of polynomials (P, ),>; that converges
uniformly to the absolute value function on [—a,a]. For every n > 1, define h, = P,(h) € A.
Therefore, (hy,)n>1 is a sequence of functions that converges uniformly to || on X. Since A is closed,
we conclude that |h| € A. O

Theorem 8.4.13 : Let X be a compact metric space with at least two points and L C C(X,R) be a
lattice. Suppose that for any x # y € X and a,b € R, there exists f € L with f(x) = a and f(y) = b.
Then, L is dense in C(X,R).
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Proof : Let L C C(X,R) be a lattice. Let g € C(X,R) and ¢ > 0. We want to construct a function
f € Lsuchthat | f — gl <e.

For any a,b € X, we may find f,; € L such that f,,(a) = g(a) and f,(b) = g(b). By the
continuity of f,; and g, we know that there exists an open set U, containing b such that f,; >
g — e on Ugp. Since (Ugp)pex is an open covering of the compact space X, by the Borel-Lebesgue
property (Definition 3.1.3), we may find by, ..., b, € X such that (U,,)1<i<m covers X. Let f, :=
SUP1<icm fap; € L. Then, we have fy(a) = a and f, > g — € on X. Similarly, by the continuity of
fa and g, there exists an open set V, containing a such that f, < g + ¢ on V. Since (V})qex is an
open covering of the compact space X, again by the Borel-Lebesgue property (Definition 3.1.3), we
may find a1, ..., a, € X such that (Vg,)1<j<n covers X. Let f := inf1<j<n fo;. Then, we may easily

J

checkthatg —e < f < g+eonX,so|f— g, < e. This concludes that £ is dense in C(X,R). [

Proof of Proof of Theorem 8.4.6: Let A C C(X,R) be a subalgebra satisfying the assumptions
in Theorem 8.4.6. We write £ = A, which is still a subalgebra, because addition, multiplication, and
scalar multiplication are continuous. It follows from Lemma 8.4.12 that L is a lattice. Now, let us check
that the assumptions in Theorem 8.4.13 are satisfied.

Let x # y € X and a,b € R. By the assumptions in Theorem 8.4.6, we may find p € A such that
p(z) # p(y). Since 1 € A, we may also add ¢ x 1 € A to p, to make p(x) + ¢ # 0 and p(y) + ¢ # 0.
Without loss of generality, let us assume that p(z) # p(y), p(z) # 0, and p(y) # O for some p € A.
Then, we may look for f € A in the form f = ap+ p?, where o, 3 € R can be chosen properly so that
f(x) = aand f(y) = b. Therefore, Theorem 8.4.13 tells us that £ = C(X, R), thatis A = C(X, R).

For the complex version of the theorem, we proceed as follows. Let A C C(X, C) be a subalgebra
satisfying the assumptions in Theorem 8.4.6. Let A9 C A be the set of real-valued functions in A4,
which is a R-subalgebra of C(X,R). We want to check that Ay = C(X,R). First, it is not hard to
check that 1 € Ag. Then, for any f € A, since f € A, we deduce that Re(f),Im(f) € Ag. For any
x # y € X, there exists f € A such that f(x) # f(y), so we need to have Re(f)(z) # Re(f)(y) or
Im(f)(x) # Im(f)(y). This means that Ay separates points. By the real version of the theorem, we
conclude that Ay = C(X,R). For any function f € C(X,C) and & > 0, we may find g1, g2 € Ag such
that

[Re(f) — gillc <= and  [Im(f) - gall <=

Since A is a C-algebra, we know that g; +1ig2 € A. Moreover,
1f = (91 +192)lloe < [Re(f) = g1l + Tm(f) = g2l < 2e.

This shows that A is dense in C(X, C). O

8.4.3 Peano existence theorem

As an application of the Arzela—Ascoli theorem and the Stone—Weierstrafy theorem, we have the following
Peano existence theorem, which gives us the existence of solution for differential equations.

Theorem 8.4.14 (Peano existence theorem) : Fix an integer n > 1. Let Q@ C R X R™ be a non-empty
open subset, and F' : Q2 — R"™ be a continuous function. Let ty € R and yo € R" such that (to,yo) € .
Let a,b > 0 such that

R :={(t,y): [t —to|l < a,lly —yol <b} C Q.
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Let M > 0 and suppose that || F'(t,y)|| < M for (t,y) € R. Then, the following differential equation

{?/(t)ZF(t,y(t)), vtel,
y(to) = Yo,

has a solution t — y(t) defined on I := [ty — d/,to + '] witha’ = min{a, & }.

Remark 8.4.15 : It is important to note that the Peano existence theorem does not guarantee uniqueness,
see Example 8.4.16. In order to have a unique solution, the function F' needs to satisfy stronger properties,
as stated in the Picard-Lindel6f theorem, also known as the Cauchy-Lipschitz theorem, see Theorem 8.4.17.

38

Proof : The proof consists of three parts: (1) We reformulate the solution to the differential equation
as a fixed-point problem; (2) we show the existence of the solution in the case that F' is a Lipschitz
continuous function; (3) we show the existence in the general setting.

Without loss of generality, we may assume that t = 0 and yp = 0 € R” by a translation in time and
in space.

(1) First, let us reformulate this as a solution to some fixed-point problem. Let us write X' =
C(I,B(0,b)). Consider the following operator,

T: X — X
fom JyF(s, f(s))ds.

Let us check that for f € X, the image T'(f) is well defined. We first note that (s, f(s)) € R for
any s € I, so for any ¢t € I, we have

< |t|M < b.

Il =| [ P re)as

In other words, T'(f) is a function from I to B(0, b). Moreover, it follows from the fundamental
theorem of calculus that 7(f) is of class C!, so we do have T'(f) € X. As a consequence, if ¥
is a fixed point of 7', that is T'(y) = y, we deduce that y is of class C>°. Moreover, if y is a fixed
point, by taking the derivative at ¢ € I, we find

Y () = (T(y)'(t) = F(t.y(t)).

We may also check easily that y(0) = T'(y)(0) = 0. Therefore, the conclusion of Theorem 8.4.14
is equivalent to showing that T has at least one fixed point.

(2) Let us assume that F' is an L-Lipschitz continuous function on R. In this case, we can easily
check that T is an (La’)-Lipschitz continuous function, so it is continuous.

We are going to define a sequence of functions (yy,),>1 which are elements of X. First, let y; be
the constant zero function, which is indeed in X'. For n > 1, we define y,,+1 = T(y»), which is
in X from (1). By induction, we establish a sequence (y,,),>1 in X. Moreover, for any t,t € I
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and n > 1, we have

t
[yn(t) = yn(t)|| = H/t F(s,yn-1(s))ds| < Mt —1'|. (8.23)

This means that (y,)n>1 is a sequence of equicontinuous functions. The Arzela-Ascoli theo-

rem’allows us to find a convergent subsequence (Yp(n) Jn=1 With limit y € X'. We want to check
that T'(y) = v.

Let us denote I, = I NR; = [0,d/]. Foreveryn > 1 and t € I, let us define

My (t) := sup [[T(yn)(s) = yn(s)[ = sup |lyn+1(s) = yn(s)l-

0<s<t 0<s<t

Forn > 2 and s € I, we have

1T (Y2 )(8) = yn ()l = 1T (yn)(5) — T (yn—1)(s)|l
H/ (u, yn(w)) — Fu, yp—1(w))) du

< / LM, (u) du
0

t
Vie L., My(t)<L / M1 (u) du. (8.24)
0

which implies that

We may compute M; as below,

vt € IJrv Ml(t) = sup ||y2 ’ = Sup < tM.

0<s<t 0<s<t

/Fu()du

Then, for My, we apply Eq. (8.24) and find
Vtely, L/ M;i(u —LM.

By induction, we find, for every n > 1,

n nn
LLn_lMg(a) - 1M—>0

n! n! n—00

Ve Iy, My(t) <

Therefore, this allows us to conclude that (7'(Y,(n)) = Yp(n))n>1 uniformly converges to 0 on I;..
Then, a similar argument allows us to get the uniform convergence to 0 on /_ := I NRR_, so
this convergence is uniform on I. Since y,,(,,) uniformly converges to y and T is continuous, we
deduce that T'(y,(,,)) uniformly converges to T'(y), giving us T'(y) = y.

(3) If F'is only continuous, by the Stone-Weierstrafy theorem (Theorem 8.4.6), we may find a se-
quence of Lipschitz continuous functions (F},),>1 that converges uniformly to ' on R. For every
n = 1, let y,, be the corresponding solution to the differential equation with F' replaced by Fj,.
Then, (yn)n>1 is a sequence in X'. Since (F7,),>1 converges to I uniformly on R, we know that
(Fy)n>1 can be uniformly bounded by a constant M’ > 0. This implies that the sequence of

>Theorem 8.4.4 (2) tells us that the set {y,, : n > 1} is a precompact subset. It can be shown that there exists a subsequence of
(yn)n>1 which is a Cauchy sequence, see Exercise 8.31. Then, this subsequence converges by the completeness of X'
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functions (y,,)n>1 is equicontinuous due to the same Eq. (8.23), with M replaced by M’. There-
fore, the Arzela-Ascoli theorem gives us a subsequence (¥, (,,))n>1 that converges uniformly to
y € X, and we need to check that T'(y) = y. To achieve this, we start by checking that the
functions in the sequence (s — Fi,(,)(S, Yp(n)(S)))n>1 are equicontinuous.

Lete > 0. Forn > 1 and s,t € I, we write

1E5 (8, yn(8)) = Fn(t, yn ()]
< (s, yn(s)) = F(s,yn()Il + 1 F (s, yn(s)) = F(s,y(s))| + [[F(s,y(s)) = F(t,y(t))]
+ 1@ y(#) = Fyn @) + [FE yn(t)) = Fult, ya (@]

Since s — F'(s,y(s)) is continuous on the segment I, it is uniformly continuous. Similarly, the
map (t,y) — F(t,y) is also uniformly continuous on R. We may take 1 > 0 such that

no= |[[F(s,y(s) — Fty@)l <
n = [F(ty) - F(s2) <e.

|t — s

1t y) = (s, @)

Since Y, ) T Y uniformly and F,(,,) —— F uniformly, there exists NV > 1 such that
n—oo

NN

Vn > N, Hyw(n) — yHOO <n, and HFw(n) — FHOO <e
Therefore, for n > N, and s,t € I such that |s — t| < 7, we find
| Fitan 5,9y (5)) = Fopm (15 () | < 52

This means that (s +— Fi (S, Yp(n)(5)))n=1 is equicontinuous, so has a convergent subse-
quence, and we denote the corresponding extraction by . Therefore, for ¢ € I, we have

T(yﬁpow(n))(t) = At F(poq/;(n) (57 ygoow(n)( )) ds —— tF(S y( )) ds = T(y) (t)a

n—o0 0

which is uniform in ¢ € I by Proposition 8.2.5. We conclude that 7'(y) = .

O
Example 8.4.16 : Let us take n = 1, and F'(t,y) = /|y| with initial condition (to,yo) = (0,0). I
other words, the differential equation we are looking at is
y'(t) = /ly(t)] and y(0)=0. (8.25)

We have many different solutions to Eq. (8.25),
« y(t)=0fort € R;
. y(t) = % fort € R;
o forany a > 0, y(t) = (t=a) a) fort >aandy(t) =0fort <a

Indeed, the function x — /|z| is not locally Lipschitz continuous at 0, so does not satisfy the assump-
tions of the Picard-Lindel6f theorem (Theorem 8.4.17).
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The following Picard-Lindel6f theorem, also known as Cauchy-Lipschitz theorem, gives sufficient condi-
ions for the solution to an ordinary differential equation to be unique.

-

Theorem 8.4.17 (Picard-Lindelof theorem or Cauchy-Lipschitz theorem) : Let us fix the same nota-
tions as in the statement of Theorem 8.4.14. In addition, suppose that F' is L-Lipschitz continuous in the
second variable in R. Then, apart from the existence provided in Theorem 8.4.14, we also have uniqueness
of the solution, in the sense that if J is an interval containing to and ¢ : J — R" is a solution, then y
and @ conincide on I N J.

Proof : We keep the notations from the proof of Theorem 8.4.14. In particular, we want to show that
the map 7' defined therein has a unique fixed point. More precisely, we want to show that there exists
an integer m € N such that 7™ is a contraction, then we may conclude by Exercise 3.24.

Let f,g € X. We proceed in a similar way as in (2) in the proof of Theorem 8.4.14. Forn > 1 and
t € I, let us define

Kn(t) := sup [[(T"f)(s) = (T"g)(s)] -

0<s<t

Forn > 2 and s € I, we have

7 (1)(s) = T(@) &) = | [Pl T () w) = Pl T (g) )
< [ L -1 g )| du
< /0S LK, _1(u)du,

which implies that
t
Vel Ku(t)< L/ K1 (u) du.
0

We may compute K as below,

vtel,, Ki(t)= sup <Lt f =9l -

0<s<t

[ P ) = P, gl du

By induction, we find, for every n > 1,

tn (a/)n
LT = gl <

n

Viel, Kn(t)< L' f = 9loe —20,

n! n—00

which tells us that 7™ is a contraction map for large enough n. g

8.5 Theorems on convergence of integrals

In Proposition 8.2.5, we saw that the uniform convergence of a sequence of functions implies the uniform
convergence of their primitives. As a consequence, the sequence of integrals also converges. In practice,
however, we are more interested in the convergence of integrals. We have already seen in Example 8.2.8
that a sequence of integrals may converge without the sequence of integrands converges uniformly. Below
we are going to prove the monotone convergence theorem (Theorem 8.5.3) and the dominated convergence
theorem (Theorem 8.5.5), which are consequences of Eq. (8.26).
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8.5.1 Monotone convergence theorem

We start with the following key lemma.

Lemma 8.5.1: Let I C R be an interval. Let (uy,),>1 be a sequence of piecewise continuous functions
from I to a Banach space (W, ||-||). Suppose that

(i) foreachn > 1, u, is integrable on I;
(ii) the series of functions ) u,, converges pointwise to a piecewise continuous function f : I — W;
(iii) the series Y, [ ||unl|| converges.

Then, f is integrable on I and

S < il and [ 1= [ un (8:26)

n>1 n>1

Proof: We are going to prove this in three steps: (1) I is a segment and all the functions are continuous;
(2) I is a segment and all the functions are piecewise continuous; (3) / is an interval and all the functions
are piecewise continuous.

(1) If I = [a, b] is a segment, and all the u,,’s and f are continuous functions, the proof is similar to
the Dini’s theorem (Theorem 8.1.14).

Let € > 0 and define
V=1, E,={z€lab]:|f(x)] - Z Jur(2)]| < e} (8.27)

The continuity implies that F, is open for every n > 1. The pointwise convergence of > u,, to
[ implies that |J,,~, B, = [a,b]. Since [a,b] is a compact set, by the Borel-Lebesgue property,
we may find N > 1 such that JY_, E,, = [a, b]. Therefore, we have

/[a,b]”ng/, (ZHU’“HJrg Z/ l[u]l + (b — a)

The above inequality holds for any arbitrary € > 0, so we deduce that

Iy IR

n=1

<Yl 40— a).

n>1

(2) Next, we suppose that I = [a, ] is a segment, and all the u,,’s and f are piecewise continuous.
Let ¢ > 0. From Lemma 8.5.2, we may find continuous functions g and (vy,),>1 such that

g <|fIl such that /”f” <5+/97

Vn > 1, ||luy| < v, such that /vn < +/HUnH

42 Last modified: 20:41 on Tuesday 20" May, 2025



Chapter 8 Sequences and series of functions

Define the following subsets as in Eq. (8.27), but for the continuous functions g and (v, )n>1,
n
Vn>1, G,={x¢€]lab]: Z x) < e}

Similarly, we know that there exists N > 1 such that UY_; G,, = [a, b]. Therefore, we find
N N
/”f” <5+/9<5+/(ka+8) z(b—a—l—l)s—i-Z/vk
I I I =1 el I

N N
€
<w—a+ne+§j@g+/www)<w—a+me+§;ﬁwm
k=1
<-a+2+ 3 [l
n>1
Then we conclude as in the previous point.
(3) For any subsegment J C I, from above, we have
SIS [ uall <3 [ enll < oc.
n>1 n>1

Therefore, f is integrable on [ and satisfies

S <X [l < o,

n=1

which is the first part of Eq. (8.26).

For the second part of Eq. (8.26), let us apply the first part to the remainder >, ux = f —
> k-1 ug, and we find

n
F=> k| <
I k=1

> [l =0,

k>n+1

since the right side in the above relation is the remainder of the convergent series > [ [|uy]|.
Then, it follows that

[15

which gives us the relation

<

f(r-2m)

/f_nlg’%oz/“k_z/“"

n>1
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Lemma 8.5.2:Let J = [a,b] be a segment of R and f € PC(J,R). For every e > 0, there exists
continuous functions f_ and f. on J such that

fo<f<f+ and (Aﬁ)—séﬁfg(LﬁJ+a

Proof : If f is continuous, then there is nothing to prove. Suppose that f has discontinuities. Let P =
(k)o<k<n be a partition of [a, b] such that f restricted on (xy_1,x)) can be extended to a continuous
function on [xg_1, x| for every 1 < k < n. From Proposition 7.1.3, we know that f is bounded on
[a, b], so we may take
M >sup f(x) and m < inf f(z).
zeJ zed

Let § > O with § < 1 ||P||, so that we may define disjoint intervals .J; := B(z;,0) N J for 0 < i < n.

We define a continuous function ¢_ on J as below,

m+ (M —m)z=2l iy e g,
¢_<x>—{ M=mS

M otherwise.
Then, the function f_ := min(f, ¢_) satisfies f_ < f on J is continuous. In fact, we can see that
o if x # x; for all 7, then f is continuous at x, and f_ = %(f +¢_ —|f —¢—]) is also continuous
at x;

« if x = z; for some i, then ¢_(z) = m < inf,c; f(x), so we may find € > 0 such that ¢_ stays
strictly below f on B(z,¢). This means that f_ = ¢_ on B(z, €), so we get the continuity of f_
at z.

Then, let us compute the following integral,

/](f—f—)—izn;/Ji(f—f—)<é[}i<M—m)<25n(M—m)7

where the equality is obtained from the fact that when x ¢ J; for all i, ¢_(z) = M > f(x), so
f-—(x) = f(x). To conclude, for ¢ > 0, we may choose § < min{m, 1 [|1P||}, which will give us

Lﬁ—ﬂd<s-@ Lfé(Lﬁ)+a

For the construction of fi, we proceed in a similar way. We consider the following continuous
function ¢ on J,
M—(M—m)@ ifx e J,

m otherwise.

pt(z) = {

Then, we define fi := max(f, ¢+). O
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Theorem 8.5.3 (Monotone convergence theorem): Let I C R be an interval. Let (fy,)n>1 be a sequence
of non-negative, piecewise continuous, and integrable functions from I to R .. Suppose that

(i) foreveryx € I andn > 1, we have f,,(x) < fni1(x);
(ii) (fn)n>1 converges pointwise to a piecewise continuous function f;
(iii) [; fn converges whenn — oco.

Then,
—oo / —00 / i
/I‘f | n If n If

Remark 8.5.4 : We note that this theorem is very similar to Dini’s theorem (Theorem 8.1.14), with the
followins differences.

(1) We make a weaker assumption in Theorem 8.5.3, which is piecewise continuity.

(2) We do not get the uniform convergence of the sequence of functions (fy,),> to deduce the conver-
gence of the integrals. Actually, we do not have the uniform convergence here in general, whereas the
convergence of integrals still holds.

Proof : It is a special case of Eq. (8.26). For every n > 1, let u,, = fn4+1 — fn = 0. We may check the
following properties.

(i) For every n > 1, u, is integrable because both f, 1 and f,, are integrable.

(i) Y up = > (fn+1— fn) converges pointwise to a piecewise continuous function because ( f;,)n>1
converges pointwise to a piecewise continuous function.

(iii) We have N .
;/llun\ :n;l/[(fn-i—l — fn) :/IfN—H _/ffl’

where the right side can be uniformly bounded from above due to the convergence of [; f,,. This
shows that ) [; |uy| converges.

Therefore, we may apply Eq. (8.26) to conclude that f is integrable on I and

/[’fn—fIZ/I‘Zuk‘<]§l/l\uk\-

k>n

The right side in the above inequality is the remainder of a convergent series, so goes to 0 when n goes
to oo. O

8.5.2 Dominated convergence theorem
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Theorem 8.5.5 (Dominated convergence theorem) : Let I C R be an interval and W be a Banach
space. Let (fn)n>1 be a sequence of piecewise continuous functions from I to W. Suppose that

(i) There exists a piecewise continuous non-negative integrable function ¢ : I — R such that|| f,| <
@ foreverymn > 1.

(ii) The seugnece (f)n>1 converges pointwise to a piecewise continuous function f : I — W.

Then, each f,, and f are integrable on I and we have

hm/llfn fll —=0, and nlgngo/fn—/f

Proof : Suppose that the theorem holds when (W, ||-||) = (R, |-]|), (fn)n>1 are non-negative functions,
and f = 0 is the zero function. For alln > 1, let hy, = || f,, — f||, which is still a piecewise continuous
function on I. Then, h,, < 2¢ and (hy,),>1 converges pointwise to the zero function. So we find

T By Ay pa—

.|*1)s (fn)n>1 are non-negative

Now, let us prove the theorem with the assumption that (W, ||-||) = (
functions, and f is the zero function. For every n > 1 and p > n, let

fn,p = max{fn, Jrttses fp}7

which is still a piecewise continuous function and satisfies f,, , < .

« Fix n > 1. Since (fyp)p>n is an increasing sequence, the sequence (I, )p>n defined by I, , =
J; fnp is increasing. Since I, < [;¢ for all p > n, the sequence (I, p)p>n converges, so it
satisfies Cauchy’s property. We may find p,, > 1 such that

Inp —Ingl <277, Vp,q >y

It is possible to make a choice of (p,)n>1 such that it is an extraction (strictly increasing se-
quence).

« Forn > 1,let g, = fp,. We note that g,, converges pointwise to 0 (Cauchy’s criterion at each
point of I). For any n > 1, we have

0 if gny1 — gn <0,

_ + — =
‘gn—&-l gn| (gn-i-l gn) {2(gn+1 _ gn) otherwise.

Additionally, for any n > 1, we also have gn1 — gn = fot1pni1 — fapn < fropnis — fop, and
0 < fapns1 — frpn- Therefore, we find

Vn > 1, |gn+1 - gn‘ < Z(fnyer»l - fn,pn) - (9n+1 - gn)-

o Forn > 1, let up = g, — gn+1. Then, we have

/‘un’ < 2’In7pn+1 - In,pn| + /gn - /gn—H < 21— +/9n - /Qn—i-l-
I I I I I
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By taking a summation, we find,

p . p
Vp=n>1, Z/IIW;KZZl_kJr/Ign—/Igp+1<2+/Ign.
k=n k=n

In the above formula, we see that the upper bound does not depend on p. Since the left side
contains only positive terms in the series, we deduce that the series Y_,~,, [; |ux| converges.

From what we have shown above, and the fact that g,, converges pointwise to 0, we have ) ;. ugp = gn.
This allows us to apply Eq. (8.26),

¥n > 1, o</lfn</19n=/l(,§“’f):,§1/1“’“'

The rightmost term in the above formula is the remainder of an absolutely convergent series, so its limit
when 7 tends to oo is zero. This shows that [; f, —=0 O
n—oo

Example 8.5.6 : For every n € N, consider the function

(1, 4+00) — R ©0
R t ) T and L= / Fult) dt.
14¢n+2 1

We can check the following properties.
« For every n € N, the function f,, is piecewise continuous.

« For every t > 1, we have

14+t 1

:WNt?? Whenn—>OO.

fn(t)
So the sequence f,, converges pointwise to the function ¢ t%’ which is piecewise continuous
on (1, +00).
+ (Domination assumption) For every n € N and ¢t > 1, we have

L+t "t 2

|f"(t)| = 1 4 ¢nt2 I

The function ¢t — t% is integrable on (1, +00), so the domination assumption is satisfied. There-
fore, we may apply the dominated convergence theorem from Theorem 8.5.5, giving us

oo dt
fnm/l z =1

Example 8.5.7 : For every n € N, consider the function

fo: [0,1) - R _/1
P and I, = ; fn(t)dt.
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For every n € N, the function f,, is continuous and integrable on [0, 1). For every ¢ € [0, 1), we have
fu(t) —= 0 which implies that the sequence (fy,)n>1 converges pointwise on [0, 1) to the zero
n—oo

function. However, we have
VneN, I,= [nt”](l) =n.

This shows that the order of the limit and the integration procedure cannot be interchanged,

1 1
nlgrolo/o fa(t)dt # /0 Jim f(t) dt = 0.
The reason is that the domination assumption is not satisfied.

To be more precise, if ¢ is a function that dominates all the f,,’s, then for t € [0, 1), we need to have
o(t) = fn(t) for all m > 1. In particular, for ¢ € [0, 1), we may choose n = I-\1121t|J’ then, for t — 1—,
we have the following relation,

Infp(t) =2lnn+ (n—1)Int

2 2
T —1)+ (m—l)lnt

=—Int—2In|Int| + O(1).

22111(

This means that when ¢t — 1—, we have

cst
l) 2 -9
f(t) t|Int|?

which implies that ¢ is not integrable around 1—.

8.5.3 Applications: integrals with an additional parameter

We give a few important applications of the dominated convergence theorem. Let us consider a general
interval I C R, with endpoints a and b satisfying —oco < a < b < +00, and a Banach space (W, ||-||).

Theorem 8.5.8 (Continuity under integration) : Let (M, d) be a metric space and a map f : M x I —
W satisfying the following conditions.

(i) For everyx € M, the map f(z,-) : t — f(x,t) is piecewise continuous on I.
(ii) Foreveryt € I, the map f(-,t) : x — f(z,t) is continuous on M.

(iii) (Domination assumption) There exists a non-negative, piecewise continuous, and integrable function
@ : I — Ry such that || f(z,t)|| < @(t) forallz € M andt € I.

Then, the map
F: M — w

x /bf(;v,t)dt

is well-defined and continuous on M.
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Proof : The assumption (iii), the domination assumption, shows that the function f(z, -) is integrable
for every z € M, so the map F' is well defined. For a given x € M, to check that F' is continuous at x,
we need to check that for any sequence (zy,),>1 with values in M,

n—0o0 n—oo

Let x € M and (x,,)n>1 be a sequence in M such that x,, —— x. For every n > 1, we may define
n—oo

the function
fn: I — v

t —  f(xn,t).
Due to the assumption (ii), we know that f,,(t) = f(zp,t) — f(z,t) for every t € I, where
n—oo

t — f(x,t) is a piecewise continuous function by the assumption (i). This means that the assumption
(ii) in Theorem 8.5.5 is satisfied. Then, the assumption (iii) here corresponds to the assumption (i) in
Theorem 8.5.5, so we can apply Theorem 8.5.5 to the sequence of functions ( f,,)n>1. This shows that

hmFacn—hm/fxn, t)dt = /fxt F(z),

n—oo

which allows us to conclude. O

Theorem 8.5.9 (Differentiability under integration) : Let M C R be an intervalandamap f : M x1 —
W satisfying the following conditions.

(i) For everyx € M, the map f(z,-) : t — f(z,t) is piecewise continuous and integrable on I.
(ii) For everyt € I, the map f(-,t) : x + f(x,t) is of class C* on M.
(iii) The partial derivative % is well defined and satisfies the assumptions from Theorem 8.5.8.

Then, the map
F: M —

xb—>/xt

is of class C! on M, and we have

baf

Vee M, F'(z)= 83:(

1) dt. (8.28)

Proof : The proof is similar to that of Theorem 8.5.8. Let z € M and (x,),>1 be a sequence with
values in M \{z} that converges to x. For every n > 1, define

gn: I — W,
¢ f(l'rut) — f($,t)

b
Ty — X

which is a piecewise continuous function. For each n > 1, g, is also integrable on I, being a linear
combination of integrable functions.

The sequence (gy,),>1 of functions converges pointwise to af (x,-). Moreover, the mean-value the-
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orem (Eq. (4.3)) tells us that for every n > 1 and t € I, there exists y,, = y,(t) between x and x,, such

that
f(xmt) _f(xvt) af

gn(t) = Ty — @ ~ Ox

L) and ol = [0 < 0

where ¢ is the domination function given by the assumption (iii) for % from Theorem 8.5.8. Then, we
may apply Theorem 8.5.5 to conclude that

| rof
Jim [ oudt= [ S ar,

and the left side of the above formula rewrite,

lim [ g,(t)dt = lim Flan) = Fz)

n—o0 Jr n—00 Ty — T

This shows that F' is differentiable at x and its derivative does satisfy Eq. (8.28). To conclude, we note
that the assumption (iii) guarantees that the right side of Eq. (8.28) is continuous, so F is of class C'. [J

Example 8.5.10 (Gamma function) : We recall the Gamma function defined in Example 7.1.21,
+oo
Ve >0, I'(x)= / t" et dt.
0

By applying Theorem 8.5.8 and Theorem 8.5.9, we can check that I is a function of class C*°, and its
derivative writes

Vn € No,Vz >0, T™(z)= /Ooo(log t)me~ =L dt.
More precisely, let us consider the function
fiRE xR = R, (7,t) > 7 e
We can check the following properties.

« For any fixed ¢ > 0, the function x — f(z,t) is C*°, and we have

okf

Vk € Ny, Vz,t >0, W(Z’t):

(Int)kem—te .

« For any fixed x > 0 and k € Ny, the function ¢ — d—f(a; t) is piecewise continuous.
(0

« (Domination assumption) Let k£ € Ny and [a, b] C 00) be a segment. For all z € [a, b], we

have
kf z—1 —t kia—1 —t
vt € (0,1], . k(m t)‘—]lnt\ t < [Int|®t
kf kiz—1 ft k b—1 ft
vt € (1,4+00), (z, t)’ = |Int|"t < |Int|®t

8k
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Let ¢ be defined on R by
o(t) = |IntFt2te™ 4 |Int|Ftb~le !,

which is an integrable function on R’ . And we clearly have

vrelab], V>0, x(:r,t)‘ < ().
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