
9 Fourier series

9.1 Definitions
The goal of this section is to introduce the notion of Fourier series, whose partial sums correspond to

trigonometric polynomials.

9.1.1 Trigonometric polynomials

Definition 9.1.1 : Let N ∈ N0. A function f : R → C is said to be a trigonometric polynomial (三角
多項式) if it satisfies one of the following equivalent identities.

• There exists a finite sequence (cn)−N⩽n⩽N of complex numbers such that

∀x ∈ C, f(x) =
N∑

n=−N

cnei nx.

• There exists finite sequences (an)0⩽n⩽N and (bn)1⩽n⩽N of complex numbers such that

∀x ∈ C, f(x) = a0
2

+
N∑

n=1

(
an cos(nx) + bn sin(nx)

)
.

Remark 9.1.2 :
(1) In Definition 9.1.1, the coefficients (an)0⩽n⩽N , (bn)1⩽n⩽N , and (cn)−N⩽n⩽N are related by the fol-

lowing relations,

∀m = 0, . . . , N, am = cm + c−m, and ∀m = 1, . . . , N, bm = i(cm − c−m). (9.1)

This is due to the relation ei θ = cos θ + i sin θ for θ ∈ R.
(2) It is not hard to see that a trigonometric polynomial P (x) =

∑N
n=−N cnei nx is continuous and 2π-

periodic. Moreover, its coefficients can be recovered by

∀n ∈ N0, cn = 1
2π

∫ 2π

0
P (x)e− i nx dx.

Definition 9.1.3 :

• A trigonometric series (三角級數) is a series of functions in the variable x ∈ R of one of the
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following forms, ∑
n∈Z

cnei nx, or a0
2

+
∑
n⩾1

(
an cos(nx) + bn sin(nx)

)
.

• A trigonometric series is said to be convergent at x ∈ R if one of the following partial sums (so
both) converges,

( N∑
n=−N

cnei nx
)

N⩾0
, or

(
a0
2

+
N∑

n=1

(
an cos(nx) + bn sin(nx)

))
N⩾0

. (9.2)

Remark 9.1.4 :
(1) From the relations in Eq. (9.1), it is not hard to see that if one of the partial sums in Eq. (9.2) converges,

then the other one converges.
(2) For a fixed x ∈ R, the way the convergence of trigonometric series at x is defined is weaker than the

existence of the double limit

lim
q→+∞
p→−∞

q∑
n=p

cnei nx.

Proposition 9.1.5 : The following properties holds.

• If
∑

n⩾1 cn and
∑

n⩾1 c−n converge absolutely, then the trigonometric series
∑

n∈Z cnei nx con-
verges normally on R.

• If
∑

n⩾1 an and
∑

n⩾1 bn converge absolutely, then the trigonometric series a0
2 +∑

n⩾1
(
an cos(nx) + bn sin(nx)

)
converges normally on R.

The corresponding trigonometric series defines a continuous and 2π-periodic function.

Proof : For any x ∈ R, we have

∀n ∈ N, |cnei nx| = |cn|, |an cos(nx) + bn sin(nx)| ⩽ |an| + |bn|.

Therefore, the normal convergence follows directly. Since each of the function in the series is contin-
uous and 2π-periodic, the same properties also hold for the series of functions. □

Proposition 9.1.6 : If the sequences (cn)n⩾1 and (c−n)n⩾1 are real and decrease to 0, then

• the trigonometric series
∑

n∈Z cnei nx converges pointwise on R\2πZ; and

• uniformly on all the intervals [2kπ + α, 2(k + 1)π − α] with k ∈ Z and α ∈ (0, π).
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Proof : This is a direct consequence of the Abel’s transform and the Dirichlet’s test, see
Proposition 6.4.5 and Theorem 6.4.7. □

9.1.2 Fourier series
In what follows, we are interested in 2π-periodic functions. In particular, let us introduce the following

two vector spaces,
• Cper(R,C) the space of 2π-periodic continuous functions from R to C; and
• PCper(R,C) the space of 2π-periodic piecewise continuous functions from R to C.

Definition 9.1.7 : Let f ∈ PCper(R,C) be a 2π-periodic and piecewise continuous function on R. Its
Fourier coefficients are defined as below,

∀n ∈ Z, cn(f) = 1
2π

∫ 2π

0
f(t)e− i nt dt,

∀n ∈ N0, an(f) = 1
π

∫ 2π

0
f(t) cos(nt) dt,

∀n ∈ N, bn(f) = 1
π

∫ 2π

0
f(t) sin(nt) dt.

The Fourier series corresponding to f is the trigonometric series given by

∑
n∈Z

cn(f)ei nx, or a0(f)
2

+
∑
n⩾1

(
an(f) cos(nx) + bn(f) sin(nx)

)
.

In particular, we denote the n-th partial sum of the Fourier series of f by

Sn(f)(x) =
n∑

k=−n

ck(f)ei kx, or Sn(f)(x) = a0(f)
2

+
n∑

k=1

(
ak(f) cos(kx) + bk(f) sin(kx)

)
.

Remark 9.1.8 :
(1) We note that the Fourier series of f and f do not necessarily define the same function. Indeed, we

have not yet discussed the convergence of the Fourier series.
(2) The coefficients (cn(f))n∈Z, (an(f))n⩾0, and (bn(f))n⩾1 are related in the same way as in Eq. (9.1).
(3) Since f is 2π-periodic, we may change the domain of integration to any interval of length 2π.
(4) If f is an even function, then the coefficients bn(f) are zero; if f is an odd function, then the coefficients

an(f) are zero.

In what follows, we will write the trigonometric series and Fourier series using the exponential functions
instead of trigonometric functions. The two writings are equivalent, but the former one is more compact and
easier to write.

Last modified: 10:48 on Saturday 7th June, 2025 3



Chapter 9 Fourier series

Proposition 9.1.9 : If f(x) =
∑

cnei nx is a trigonometric series that converges uniformly on R, then
cn = cn(f) for all n ∈ Z.

Proof : If a series of functions converges uniformly, then its integral on any segment also converges,
and can be computed term by term, see Proposition 8.2.5. Additionally, we know that

1
2π

∫ 2π

0
ei kx dx = 1k=0, ∀k ∈ Z.

This allows us to conclude that

cn(f) = 1
2π

∫ 2π

0

∑
k∈Z

ckei(k−n)x dx =
∑
k∈Z

ck
1

2π

∫ 2π

0
ei(k−n)x dx = cn.

□

9.1.3 Kernels and convolution
The partial sums of a Fourier series can be rewritten using a convolution between the function itself and

the Dirichlet’s kernel.

Definition 9.1.10 (Dirichlet’s kernel) : For n ∈ N0, we define

∀t ∈ R\2πZ, Dn(t) =
n∑

k=−n

ei kt =
sin

( (2n+1)t
2

)
sin

(
t
2
) . (9.3)

The sequence of functions (Dn)n⩾0 is called Dirichlet’s kernel.

Remark 9.1.11 : The last equality in Eq. (9.3) can be obtained by a geometric summation,

n∑
k=−n

ei kt = e− i nt ei(2n+1)t − 1
ei t − 1

= ei 2n+1
2 t − e− i 2n+1

2 t

ei t
2 − e− i t

2
=

sin
( (2n+1)t

2
)

sin
(

t
2
) .

Below are some properties of the Dirichlet’s kernel. They can be checked by direct computations.

Proposition 9.1.12 : The Dirichlet’s kernel (Dn)n⩾0 satisfies the following properties.

(1) For each n ⩾ 0, the function Dn is even.

(2) For each n ⩾ 0, the function Dn is 2π-periodic.

(3) For each n ⩾ 0, we have 1
2π

∫ 2π
0 Dn(t) dt = 1.
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Definition 9.1.13 : For two 2π-periodic and piecewise continuous functions f, g : R → C, we define
their convolution (捲積) , denoted f ⋆ g, as below,

∀x ∈ R, (f ⋆ g)(x) = 1
2π

∫ 2π

0
f(x − t)g(t) dt. (9.4)

Below are some properties of the convolution that can be checked easily.

Proposition 9.1.14 : For 2π-periodic and piecewise continuous functions f, g, h : R → C, the following
properties hold.

(1) (Linearity) For λ ∈ C, we have f ⋆ (g + λh) = f ⋆ g + λ(f ⋆ h).

(2) (Commutativity) (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h).

(3) (Symmetry) f ⋆ g = g ⋆ f .

We may rewrite the partial sums of a Fourier series using convolution.

Proposition 9.1.15 : Let f : R → C be a 2π-periodic and piecewise continuous function on R. Then,
Sn(f) = Dn ⋆ f for every n ∈ N0.

Proof : Let n ∈ N0. We write the n-th partial sum of the Fourier series
∑

cn(f)ei nx as below,

Sn(f)(x) =
n∑

k=−n

ck(f)ei kx = 1
2π

n∑
k=−n

( ∫ 2π

0
f(t)e− i kt dt

)
ei kx

= 1
2π

∫ 2π

0
f(t)

( n∑
k=−n

ei k(x−t)
)

dt = (Dn ⋆ f)(x).

□

9.2 Quadratic properties
The most important result of this section is the Parseval’s identity (Theorem 9.2.7). Before discussing this

result, we are going to see the quadratic structure that arises naturally from the way the Fourier series is
defined, which is a pre-Hilbert space.

9.2.1 Pre-Hilbert spaces
Pre-Hilbert spaces generalize the notion of Euclidean spaces from R to C, and from finite-dimensional

spaces to infinite-dimensional spaces.

Definition 9.2.1 : Let V be a K-vector space where K = R or C. A bilinear form 〈·, ·〉 : V × V → K
is an inner product (內積) if it satisfies

(i) (Positive definiteness) 〈x, x〉 ⩾ 0 with equality if and only if x = 0.
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(ii) (Conjugate symmetry) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .

(iii) (Linearity) 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉 for all a, b ∈ R and x, y, z ∈ V .

If 〈·, ·〉 is an inner product, then it induces a norm (so a distance) given by

‖x‖2 :=
√

〈x, x〉, ∀x ∈ V.

Then, the normed space (V, 〈·, ·〉) is called a pre-Hilbert space. Additionally, if this normed space is
complete, it is called a Hilbert space. This generalizes the notion of inner product and Euclidean spaces
defined in Definition 2.1.10.

Definition 9.2.2 : Let us denote by D the vector space consisting of functions in PCper(R,C) satis-
fying

∀x ∈ R, f(x) = 1
2

[
f(x−) + f(x+)

]
. (9.5)

We define the following inner product on D,

(f, g) 7→ 〈f, g〉 := 1
2π

∫ 2π

0
f(t)g(t) dt. (9.6)

Then, D is a pre-Hilbert space equipped with the norm ‖f‖2 :=
√

〈f, f〉 for f ∈ D. We note that
(en : x 7→ ei nx)n∈Z is a family of orthonormal functions in D with respect to the inner product 〈·, ·〉
defined above.

Remark 9.2.3 :
(1) We note that D contains 2π-periodic continuous functions from R to C, that is Cper(R,C) ⊆ D.
(2) The main reason why we require the condition Eq. (9.5) for the functions in the space D is to ensure

that Eq. (9.6) satisfies the definiteness. Actually, it is not hard to see that a function f ∈ PCper(R,C)
that only has finitely many non-zero points satisfies 〈f, f〉 = 0. In order to talk about a normed vector
space, we refer to the space D; but in Section 9.2.2, we will see that the Parseval’s identity holds for
more general functions.

Proposition 9.2.4 : For n ∈ N0, let Pn = Span(ek)−n⩽k⩽n be the linear span of (ek)−n⩽k⩽n, and write
pn for the orthogonal projection on Pn. For any fixed n ∈ N0, the following properties are satisfied.

(1) We have Pn ⊕ P⊥
n = D, and the orthogonal projection pn gives the n-th partial sum of the Fourier

series,

∀f ∈ D, pn(f) :=
n∑

k=−n

ck(f)ek = Sn(f).

(2) We have

inf
g∈Pn

‖f − g‖2
2 = ‖f − Sn(f)‖2

2 = 1
2π

∫ 2π

0
|f(t)|2 dt −

n∑
k=−n

|ck(f)|2. (9.7)
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Proof :

(1) Let us fix f ∈ D and n ∈ N0. We note that for any −n ⩽ k ⩽ n, we have ck(f) = 〈ek, f〉 =
〈ek, Sn(f)〉, so 〈ek, f − Sn(f)〉 = 0. Since (ek)−n⩽k⩽n spans Pn, it means that f − Sn(f) ∈
P⊥

n . We may write f = Sn(f) + (f − Sn(f)) with Sn(f) ∈ Pn, so we conclude that f ∈
Pn + P⊥

n . Therefore, we have D = Pn + P⊥
n . It remains to check that Pn ∩ P⊥

n = {0}. Let
g =

∑n
k=−n gkek ∈ P⊥

n , then we find gk = 〈ek, g〉 = 0 for all −n ⩽ k ⩽ n. This means that
gk = 0 for −n ⩽ k ⩽ n, that is g = 0.

(2) From above, we know that Sn(f) = pn(f). Since Sn(f) ⊥ (f − Sn(f)), we have ‖Sn(f)‖2
2 +

‖f − Sn(f)‖2
2 = ‖f‖2

2, which shows the second equality in Eq. (9.7). Moreover, for any g ∈ Pn,
we have

‖f − g‖2
2 = ‖(f − Sn(f)) + (Sn(f) − g)‖2

2 = ‖f − Sn(f)‖2
2+‖Sn(f) − g‖2

2 ⩾ ‖f − Sn(f)‖2
2 ,

which shows the first equality in Eq. (9.7).
□

Remark 9.2.5 :
(1) The first equality in Eq. (9.7) shows that the partial sum Sn(f) is the best approximation of f in terms

of quadratic variation among the trigonometric polynomials of degree less than or equal to n.
(2) Eq. (9.7) shows that for f ∈ D, we have

∀n ∈ N0,
n∑

k=−n

|ck(f)|2 ⩽ 1
2π

∫ 2π

0
|f(t)|2 dt.

This implies the convergence of the series
∑

n∈Z |ck(f)|2 and the following relation, called Bessel’s
inequality, ∑

n∈Z
|cn(f)|2 ⩽ 1

2π

∫ 2π

0
|f(t)|2 dt.

Corollary 9.2.6 : Let P = Span(en)n∈Z be the vector space of trigonometric polynomials. For f ∈ D,
we have

inf
g∈P

‖f − g‖2
2 = 1

2π

∫ 2π

0
|f(t)|2 dt −

∑
n∈Z

|cn(f)|2.

9.2.2 Parseval’s identity
Parseval’s identity is a result about L2-isometry, see Remark 9.2.8 for a more detailed discussion.

Theorem 9.2.7 (Parseval’s identity) : Let f ∈ PCper(R,C) be a 2π-periodic and piecewise continuous
function. Then, the series

∑
n∈Z |cn(f)|2,

∑
n∈Z |an(f)|2, and

∑
n∈Z |bn(f)|2 converge and we have

∑
n∈Z

|cn(f)|2 = |a0(f)|2

4
+ 1

2
∑
n⩾1

|an(f)|2 + 1
2

∑
n⩾1

|bn(f)|2 = 1
2π

∫ 2π

0
|f(t)|2 dt. (9.8)
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Proof : Let f ∈ PCper(R,C). We may modify the value of f at finitely many points to make it become
a function in D, without changing its Fourier coefficients (cn(f))n∈Z and the integral 1

2π

∫ 2π
0 |f(t)|2 dt.

Let us denote this modification by f .
FromCorollary 9.2.6, it is sufficient to show that infg∈P ‖f − g‖2

2 = 0. Let ε > 0. A similar construc-
tion as in the proof of Lemma 8.5.2 gives us a 2π-periodic continuous function g such that ‖f − g‖2 ⩽ ε.
Then, the Stone–Weierstraß theorem (Example 8.4.7 (3)) gives us a trigonometric polynomial h ∈ P
such that ‖g − h‖2 ⩽ ε. As a consequence, we find ‖f − g‖2 ⩽ 2ε, so infg∈P ‖f − g‖2

2 ⩽ 4ε2. Since
ε > 0 can be taken to be arbitrarily small, we can conclude. □

Remark 9.2.8 :
(1) Let us define the space ℓ2(Z,C) as below,

ℓ2(Z,C) :=
{

a = (an)n∈Z :
√∑

n∈Z
|an|2 < +∞

}
,

equipped with the inner product 〈·, ·〉,

∀a, b ∈ ℓ2(Z,C), 〈a, b〉 :=
∑
n∈Z

anbn.

It is not hard to check that (ℓ2(Z,C), 〈·, ·〉) is a pre-Hilbert space. A similar approach as in Exercise
3.30 shows that this space is complete, so is a Hilbert space.

(2) The above Parseval’s identity states that the Fourier mapping

F : PCper(R,C) → ℓ2(Z,C)
f 7→ (cn(f))n∈Z

is an isometry (Definition 2.5.16) when restricted on the image. More precisely, the space PCper(R,C)
is isometric to a subspace of ℓ2(Z,C), which is given by the image of PCper(R,C) under F . This is the
reason why we sometimes refer to this result as “L2-isometry” property for the Fourier series.

(3) If we look at Eq. (9.8), its right side is well defined for any square-integrable functions, that is functions
f : [0, 2π] → C such that the following integral exists in the sense of Lebesgue (not discussed in our
lecture), ∫ 2π

0
|f(t)|2 dt < +∞.

The collection of such functions is denoted by L2([0, 2π]). In fact, the Parseval’s identity holds for all
such functions.

(4) Additionally, the Riesz–Fischer theorem shows that L2([0, 2π]) is complete, so is a Hilbert space. As a
direct consequence, the Fourier mapping F defined on L2([0, 2π]) is a bijection, which implies that F
is an isometry betwteen L2([0, 2π]) and ℓ2(Z,C).

Corollary 9.2.9 : Let f ∈ PCper(R,C) be a 2π-periodic and piecewise continuous function. The Parse-
val’s identity (Theorem 9.2.7) gives readily following consequences.

(1) We have lim|n|→∞ cn(f) = 0.
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(2) If cn(f) = 0 for all n ∈ Z, then f ≡ 0.

Remark 9.2.10 : The Riemann–Lebesgue lemma states that,∫ 2π

0
f(t)ei nt dt −−−−→

|n|→∞
0,

where the variable n is a real number. However, the result in Corollary 9.2.9 (1) needs n to be restricted on
integers.

9.3 Convergence results
We remind that for a given function f ∈ Cper(R,C), its Fourier series is just a formal definition, and is

not necessarily equal to the function f itself, see Remark 9.1.8. In this section, we are going to discuss two
convergence results, the Jordan–Dirichlet theorem in Section 9.3.1 and the Fejér’s theorem in Section 9.3.2.

9.3.1 Jordan–Dirichlet theorem
The Jordan–Dirichlet theorem gives a sufficient condition for the Fourier series to converge pointwise. In

particular, it leads to a result for periodic piecewise C1 functions, see Corollary 9.3.2; and a stronger result
for periodic, continuous, and piecewise C1 functions, see Theorem 9.3.4.

Theorem 9.3.1 (Jordan–Dirichlet theorem) : Let f ∈ PCper(R,C) be a 2π-periodic and piecewise
continuous function on R. Let t0 ∈ R be such that

h 7→ 1
h

[
f(t0 + h) + f(t0 − h) − f(t0+) − f(t0+)

]
(9.9)

is bounded around 0. Then the following series converges and satisfies

∑
n∈Z

cn(f)ei nt0 = 1
2

[
f(t0+) + f(t0−)

]
.

Proof : Up to the translation t 7→ t+t0, wemay assume that t0 = 0. For n ∈ N0, let sn =
∑n

k=−n ck(f)
and un = sn − 1

2
[
f(0+) + f(0−)

]
. We need to show that un −−−→

n→∞
0.

For n ∈ N, we have

2πsn =
n∑

k=−n

∫ π

−π
f(t)ei kt dt =

∫ π

−π
f(t)Dn(t) dt,

where Dn is the Dirichlet’s kernel defined in Definition 9.1.10. Use the parity of Dn from
Proposition 9.1.12 (1), we deduce that

2πsn =
∫ π

0

[
f(t) + f(−t)

]
Dn(t) dt,
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Moreover, Proposition 9.1.12 (3) allows us to write

π
[
f(0+) + f(0−)

]
=

∫ π

0

[
f(0+) + f(0−)

]
Dn(t) dt.

By defining
∀t ∈ (0, 2π), g(t) = 1

sin
(

t
2
)[

f(t) + f(−t) − f(0+) − f(0−)
]
,

we find
2πun =

∫ π

0
g(t) sin

((2n + 1)t
2

)
dt. (9.10)

We note that g is piecewise continuous on (0, 2π) and bounded around 0 by the assumption in Eq. (9.9),
so g is integrable on (0, 2π). Then, it is not hard to see1from Corollary 9.2.9 (1) that the right side of
Eq. (9.10) goes to 0 when n → ∞. □

Corollary 9.3.2 : Let f : R → C be a 2π-periodic and piecewise C1 function on R2. Then for every
x ∈ R, ∑

n∈Z
cn(f)ei nx = 1

2
[
f(x+) + f(x−)

]
.

In particular, if f is continuous at x, then∑
n∈Z

cn(f)ei nx = f(x).

Proof : Let 0 = x0 < x1 < · · · < xm = 2π such that for every 1 ⩽ k ⩽ m, f can be extended by
continuity into a C1 function on [xk−1, xk], this means that f ′ is continuous on [xk−1, xk]. Therefore,
the function defined in Eq. (9.9) is bounded for every t0 ∈ R. So the result follows directly from
Theorem 9.3.1. □

Lemma 9.3.3 : Let f : R → C be a 2π-periodic, continuous, and piecewise C1 function on R. Define
φ : R → C by

∀t ∈ R, φ(t) =
{

f ′(t) if f is differentiable at t,
1
2
(
f ′(t+) + f ′(t−)

)
otherwise.

Then, the Fourier coefficients satisfy cn(φ) = i ncn(f) for all n ∈ Z.

1We need the Riemann–Lebesgue lemma for half-integers. We can either apply a more general result from Remark 9.2.10 that we
did not prove, or adapt the result from Corollary 9.2.9 (1) by writing sin

( (2n+1)
2 t

)
= sin t cos( t

2 ) + cos t sin( t
2 ).

2The definition is similar to that of piecewise continuous functions in Definition 7.1.1. We say that f : [a, b] → R is a piecewise
C1 function if there exist a = x0 < x1 < · · · < xm = b such that for every 1 ⩽ k ⩽ m, f is C1 on (xk−1, xk), and can be
extended by continuity to [xk−1, xk] into a C1 function.
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Proof : Let 0 = x0 < x1 < · · · < xm = 2π such that for every 1 ⩽ k ⩽ m, f can be extended by
continuity into a C1 function on [xk−1, xk]. Let us fix n ∈ Z. For 1 ⩽ k ⩽ m, an integration by parts
gives ∫ xk

xk−1

φ(t)e− i nt dt =
[
f(t)e− i nt

]xk

t=xk−1
+ i n

∫ xk

xk−1

f(t)e− i nt dt.

By taking a summation over 1 ⩽ k ⩽ m, we find∫ 2π

0
φ(t)e− i nt dt =

[
f(t)e− i nt

]2π

t=0
+ i n

∫ 2π

0
f(t)e− i nt dt.

In other words,
cn(φ) = i ncn(f). □

Theorem 9.3.4 : Let f : R → C be a 2π-periodic, continuous, and piecewise C1 function on R. Then the
Fourier series of f converges normally to f on R.

Proof : Let us define φ as in Lemma 9.3.3, then it follows that cn(φ) = i ncn(f) for all n ∈ Z. Then,
we may apply the AM–GM inequality to find

∀n ∈ Z\{0}, |cn(f)| =
∣∣∣∣cn(φ)

n

∣∣∣∣ ⩽ 1
2

(
|cn(φ)|2 + 1

n2

)
.

The Parseval’s identity (Theorem 9.2.7) implies the convergence of
∑

|cn(φ)|2, from which we de-
duce that

∑
|cn(f)| converges. Then, Proposition 9.1.5 implies that the Fourier series of f converges

normally, and Corollary 9.3.2 shows that the Fourier series is equal to f . □

9.3.2 Fejér’s theorem
Fejér’s theorem states that a periodic continuous function can be approximate uniformly by the Cesàro

means of the partial sums of its corresponding Fourier series.

Definition 9.3.5 (Fejér’s kernel) : We define the Fejér’s kernel via the Dirichlet’s kernel introduced
in Definition 9.1.10. For n ∈ N0, we define

∀t ∈ R\2πZ, Fn(t) = 1
n + 1

n∑
k=0

Dk(t) = 1
n + 1

(sin
(

n+1
2

)
t

sin t
2

)2
. (9.11)

The sequence (Fn)n⩾0 is called Fejér’s kernel.

Proposition 9.3.6 : The Fejér’s kernel satisfies the following properties.

(1) For n ∈ N0 and x ∈ R, we have Fn(x) ⩾ 0.

(2) For n ∈ N0, we have 1
2π

∫ π
−π Fn(x) dx = 1.
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(3) For any fixed δ > 0, we have
lim

n→∞

∫
δ⩽|x|⩽π

Fn(x) dx = 0.

Proof : The first two properties are easy to check. Indeed, they follow directly from the properties of
the Dirichlet’s kernel, see Proposition 9.1.12. Let us check (3). For a fixed δ > 0, we observe that∫

δ⩽|x|⩽π
Fn(x) dx ⩽ 1

n + 1

∫
δ⩽|x|⩽π

dt

sin2 (
t
2
) −−−→

n→∞
0.

□

Theorem 9.3.7 (Fejér’s theorem) : Let f : R → C be a 2π-periodic and continuous function on R. For
n ∈ N0, let

Sn(f) : x 7→
n∑

k=−n

ck(f)ei kx, σn(f) = 1
n + 1

n∑
k=0

Sk(f).

Then, the sequence of functions (σn(f))n⩾0 converges uniformly to f on R.

Remark 9.3.8 :
(1) We note that the sequence (σn(f))n⩾1 consists of Cesàro means of the sequence (Sn(f))n⩾0.
(2) This is a constructive proof of the Stone–Weierstraß theorem in the case of trigonometric polynomials,

see Example 8.4.7 (3).

Proof : We are going to rewrite (σn(f))n⩾0 using the Fejér’s kernel, and the properties in
Proposition 9.3.6. Given n ⩾ 0 and x ∈ R. We may write

σn(f)(x) = 1
n + 1

n∑
k=0

Sk(f)(x) = 1
n + 1

n∑
k=0

(Dn ⋆ f)(x) = (Fn ⋆ f)(x).

Then,

σn(f)(x) − f(x) = 1
2π

∫ π

−π
f(x − t)Fn(t) dt − f(x) = 1

2π

∫ π

−π

[
f(x − t) − f(x)

]
Fn(t) dt.

Let us fix ε > 0. Using the continuity of f on [−π, π], we know that it is uniformly continuous
and bounded. We choose δ > 0 such that for x, y ∈ [−π, π], the condition |x − y| ⩽ δ implies
|f(x) − f(y)| ⩽ ε; and M > 0 such that ‖f‖∞ ⩽ M . Then, we find

|σn(f)(x) − f(x)| ⩽ 1
2π

∫
|t|⩽δ

|f(x − t) − f(x)|Fn(t) dt + 1
2π

∫
δ⩽|t|⩽π

|f(x − t) − f(x)|Fn(t) dt

⩽ ε

2π

∫
|t|⩽δ

Fn(t) dt + M

π

∫
δ⩽|t|⩽π

Fn(t) dt

⩽ ε + M

π

∫
δ⩽|t|⩽π

Fn(t) dt.
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The above inequality does not depend on x ∈ R, so we have

‖σn(f) − f‖∞ ⩽ ε + M

π

∫
δ⩽|t|⩽π

Fn(t) dt.

By taking lim sup for n → ∞, we find

lim sup
n→∞

‖σn(f) − f‖∞ ⩽ ε.

Since this inequality holds for any arbitrary ε > 0, we deduce that limn→∞ ‖σn(f) − f‖∞ = 0. □

Remark 9.3.9 : We note that in the proof of Féjer’s theorem, we used the properties of the Fejér’s kernel
stated in Proposition 9.3.6, and did not rely on the exact form of (Fn)n⩾0. In particular, a kernel (Fn)n⩾0
satisfying the properties in Proposition 9.3.6 is called an approximate identity, and for such a kernel, we can
apply the same proof to show that Fn ⋆ f converges uniformly to f on R.
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