Chapter 1: Countable sets

Exercise 1.1: Let $f:[0,\infty)\to [0,1)$ be defined by $f(x)=\frac{x}{x+1}$ for $x\geqslant 0$.

- (1) Show that f is bijective, and find its inverse f^{-1} .
- (2) For a positive integer $n \ge 1$, compute the composition $f_n(x) = \underbrace{f \circ \cdots \circ f}_{n \text{ times}}(x)$ and find the image $f_n([0, +\infty))$.

Exercise 1.2: Consider the following hyperbolic functions sinh, cosh, and tanh, defined by

$$\forall x \in \mathbb{R}, \quad \sinh(x) = \frac{e^x - e^{-x}}{2}, \quad \cosh(x) = \frac{e^x + e^{-x}}{2}, \quad \text{and} \quad \tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$$

- (1) Find the image of each of the hyperbolic functions.
- (2) Show that $\sinh : \mathbb{R} \to \mathbb{R}$, $\cosh : \mathbb{R}_{\geq 0} \to [1, \infty)$, and $\tanh : \mathbb{R} \to (-1, 1)$ are bijections.
- (3) Find the inverse functions of the bijections in (2).

Exercise 1.3 : Let $\mathbb{U}=\{z\in\mathbb{C}:|z|=1\}$ be the unit circle. For $a\in\mathbb{C}\backslash\mathbb{U}$, define

$$f_a(z) = \frac{z + \overline{a}}{1 + az}, \quad \forall z \in \mathbb{U}.$$

Let us fix $a \in \mathbb{C} \setminus \mathbb{U}$.

- (1) Show that f_a is well defined.
- (2) Show that f_a is a bijection and find its inverse.

Exercise 1.4: Let $f: S \to T$ be a function. Show that f is bijective if and only if for any $A \in \mathcal{P}(S)$, we have $f(A^c) = f(A)^c$.

Exercise 1.5: Let S be a set, and A, B be subsets of S. Define the map

$$f: \mathcal{P}(S) \to \mathcal{P}(A) \times \mathcal{P}(B)$$

 $X \mapsto (X \cap A, X \cap B).$

- (1) Show that f is injective if and only if $A \cup B = S$.
- (2) Show that f is surjective if and only if $A \cap B = \emptyset$.
- (3) Find a necessary and sufficient condition on A and B so that f is bijective. Find its inverse function.

第一章:可數集合

- (1) 證明 f 是個雙射函數,並找出他的反函數 f^{-1} 。
- (2) 對正整數 $n \geqslant 1$,求合成函數 $f_n(x) = \underbrace{f \circ \cdots \circ f}_{n \text{ II}}(x)$ 以及他的像 $f_n([0, +\infty))$ °

習題 1.2 : 考慮下面的雙曲函數 sinh, cosh 及 tanh, 定義做

$$\forall x \in \mathbb{R}, \quad \sinh(x) = \frac{e^x - e^{-x}}{2}, \quad \cosh(x) = \frac{e^x + e^{-x}}{2}, \quad \text{$\lor$$L} \ \ \, \tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$$

- (1) 求各個雙曲函數的像。
- (2) 證明 $\sinh : \mathbb{R} \to \mathbb{R}$, $\cosh : \mathbb{R}_{\geq 0} \to [1, \infty)$ 以及 $\tanh : \mathbb{R} \to (-1, 1)$ 為雙射函數。
- (3) 求(2)中雙射函數的反函數。

習題 1.3 : 令 $\mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$ 為單位圓。對於任意 $a \in \mathbb{C} \setminus \mathbb{U}$,我們定義

$$f_a(z) = \frac{z + \overline{a}}{1 + az}, \quad \forall z \in \mathbb{U}.$$

我們固定 $a \in \mathbb{C} \setminus \mathbb{U}$ 。

1

- (1) 證明 fa 定義良好。
- (2) 證明 f_a 是個雙射函數並求他的反函數。

習題 1.4 : 令 $f: S \to T$ 為函數。證明若且唯若對於所有 $A \in \mathcal{P}(S)$,我們有 $f(A^c) = f(A)^c$,則 f 是個雙射函數。

習題 1.5 : $\Diamond S$ 為集合 A, B 為 S 的子集合 \Diamond 定義函數

$$f: \mathcal{P}(S) \to \mathcal{P}(A) \times \mathcal{P}(B)$$

 $X \mapsto (X \cap A, X \cap B).$

- (1) 證明若且唯若 $A \cup B = S$,則 f 為單射函數。
- (2) 證明若且唯若 $A \cap B = \emptyset$,則 f 是個滿射函數。
- (3) 請找出關於 A 及 B 的充分且必要條件,使得 f 會是個雙射函數。求他的反函數。

Exercise 1.6: Let S and T be two sets and $f: S \to T$ be a function.

- (1) Show that $A \subseteq f^{-1}(f(A))$ for $A \in \mathcal{P}(S)$.
- (2) Show that $f(f^{-1}(B)) \subseteq B$ for $B \in \mathcal{P}(T)$.
- (3) Do we have equality in the above relations?

Exercise 1.7 (Cantor–Schröder–Bernstein Theorem): Given two sets S and T. Suppose that there exists an injection $f: S \to T$ and an injection $g: T \to S$. Our goal is to construct a bijection between S and T. Let

$$A_0 = S \setminus g(T),$$
 $A_{n+1} = (g \circ f)(A_n), \quad \forall n \ge 0,$
 $B = \bigcup_{n \ge 0} A_n,$ $C = S \setminus B.$

- (1) We are going to define a function $\varphi: S \to T$.
 - (a) Show that for $x \in C$, there exists a unique $z \in T$ such that x = g(z). We write $\varphi(x) = z$.
 - (b) For $x \in B$, write $\varphi(x) = f(x)$. Show that $\varphi: S \to T$ is well defined.
- (2) Let us show that φ is injective.
 - (a) Show that $\varphi_{|B}$ and $\varphi_{|C}$ are injective.
 - (b) Let $x \in C$ and $y \in B$ with $\varphi(x) = \varphi(y)$. Show that $x = (g \circ f)(y)$.
 - (c) Deduce that φ is injective.
- (3) Show that φ is surjective.
- (4) Let $S = \mathbb{N}$ and $T = \mathbb{N} \cup \{0\}$. Consider $f : n \mapsto n$ and $g : n \mapsto n + 10$. Find the sets A_n for $n \geqslant 0$, B, C, and the map φ .

Exercise 1.8: Let X_1, X_2, Y_1, Y_2 be sets such that $X_1 \sim Y_1$ and $X_2 \sim Y_2$. Show that $X_1 \times X_2 \sim Y_1 \times Y_2$.

Exercise 1.9 (Question 1.4.6): Construct an explicit bijection between \mathbb{N} and \mathbb{N}^2 using the enumeration shown in Figure 1.1.

Exercise 1.10: Let $\mathbb{Z}^{(\mathbb{N})}$ denote the set of integer sequences with only finitely many nonzero terms. Mathematically, it writes

$$\mathbb{Z}^{(\mathbb{N})} = \{(a_n)_{n\geqslant 1} \in \mathbb{Z}^{\mathbb{N}} : \text{there exists } N \geqslant 1 \text{ such that } a_n = 0 \text{ for all } n \geqslant N \}.$$

Show that $\mathbb{Z}^{(\mathbb{N})}$ is countable.

習題 1.6 : 令 及 為兩個集合,以及 為函數。

- (1) 證明對於 $A \in \mathcal{P}(S)$, 我們有 $A \subseteq f^{-1}(f(A))$ 。
- (2) 證明對於 $B \in \mathcal{P}(T)$,我們有 $f(f^{-1}(B)) \subseteq B$ 。
- (3) 在上面兩個問題中,我們是否會有等式?

習題 1.7 【Cantor-Schröder-Bernstein 定理】: 給定兩個集合 S 及 T 。假設存在兩個單射函數 $f:S\to T$ 以及 $g:T\to S$ 。我們的目的是構造一個 S 與 T 之間的雙射函數。令

$$A_0 = S \backslash g(T),$$
 $A_{n+1} = (g \circ f)(A_n), \quad \forall n \geqslant 0,$
 $B = \bigcup_{n \geqslant 0} A_n,$ $C = S \backslash B.$

- (1) 我們先來定義函數 $\varphi: S \to T$ 。
 - (a) 證明對於 $x \in C$,存在唯一的 $z \in T$ 使得 x = g(z)。 我們記 $\varphi(x) = z$ 。
 - (b) 對於 $x \in B$,我們記 $\varphi(x) = f(x)$ 。證明 $\varphi: S \to T$ 是定義良好的。
- (2) 我們要來證明 是單射的。
 - (a) 證明 $\varphi_{|B}$ 以及 $\varphi_{|C}$ 是單射函數。
 - (b) 令 $x \in C$ 及 $y \in B$ 滿足 $\varphi(x) = \varphi(y)$ 。證明 $x = (g \circ f)(y)$ 。
 - (c) 由此推得 φ 是單射函數。
- (3) 證明 φ 是滿射函數。
- (4) 令 $S=\mathbb{N}$ 及 $T=\mathbb{N}\cup\{0\}$ 。考慮 $f:n\mapsto n$ 以及 $g:n\mapsto n+10$ 。對於 $n\geqslant 0$,求集合 A_n,B 及 C,還有函數 φ 。

習題 1.8 : 令 X_1,X_2,Y_1,Y_2 為集合且滿足 $X_1\sim Y_1$ 及 $X_2\sim Y_2$ 。證明 $X_1\times X_2\sim Y_1\times Y_2$ 。

習題 1.9 【問題 1.4.6 】:請給出由圖 1.1 所代表的編號方式,所對應到的從 \mathbb{N} 到 \mathbb{N}^2 的雙射函數。

習題 1.10 : $\bigcirc \mathbb{Z}^{(\mathbb{N})}$ 為由只有有限非零項構成的整數序列,數學上會這樣表示:

$$\mathbb{Z}^{(\mathbb{N})} = \{(a_n)_{n \geq 1} \in \mathbb{Z}^{\mathbb{N}} :$$
存在 $N \geq 1$ 使得 $a_n = 0$ 對於所有 $n \geq N\}$.

證明 $\mathbb{Z}^{(\mathbb{N})}$ 是可數的。

Exercise 1.11: Let A and B be two sets.

- (1) Show that A is an infinite set if and only if A contains a countably infinite subset.
- (2) Suppose that A is countable and B be infinite, show that there exists a bijection between $A \cup B$ and B. Why is not there necessarily a bijection between $A \cup B$ and A?

Exercise 1.12 : If $S \subseteq \mathbb{R}$ is countable, show that there exists a real number $a \in \mathbb{R}$ such that $(a+S) \cap S = \emptyset$.

Exercise 1.13: Show that (0,1) and (0,1] are equinumerous and construct a bijection between them. (Hint: you may get inspiration from the steps in Exercise 1.7 for instance.)

Exercise 1.14: Let $(f_n)_{n\geqslant 1}$ be a sequence of functions from $\mathbb N$ to $\mathbb N$. Let $f:\mathbb N\to\mathbb N$ be defined as below,

$$f(n) = f_n(n) + 1, \quad \forall n \geqslant 1.$$

- (1) Show that $f_n \neq f$ for every $n \geqslant 1$.
- (2) Deduce that the set of functions from \mathbb{N} to \mathbb{N} is not countable.

Exercise 1.15: Let $f: \mathbb{R} \to \mathbb{R}$ be a non-decreasing function. We write D for the set of discontinuous points of f.

- (1) Let I = (a, b) with a < b. Show that $D \cap (a, b)$ is countable.
- (2) Deduce that D is countable.

Exercise 1.16: Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, that is, for any $x \in \mathbb{R}$, the function

$$y \mapsto \frac{f(y) - f(x)}{y - x}$$

is non-decreasing on $\mathbb{R}\setminus\{x\}$. Let D be the set of points where f is differentiable. Show that $\mathbb{R}\setminus D$ is countable. (Hint: use Exercise 1.15.)

Exercise 1.17 : Given a function $f: \mathbb{R} \to \mathbb{R}$. We say that f attains a strict local maximum at $x \in \mathbb{R}$ if there exists $\varepsilon > 0$ such that

$$\forall y \in \mathbb{R}, \quad |y - x| < \varepsilon \quad \Rightarrow \quad f(y) > f(x).$$

Show that the following set is countable,

 $\{x \in \mathbb{R} : f \text{ attains a strict local maximum at } x\}.$

- (1) 證明若且唯若 A 包含無窮可數的子集合,則 A 是個無窮集合。
- (2) 假設 A 可數且 B 無限,證明存在 $A \cup B$ 與 B 之間的雙射函數。為什麼不一定存在 $A \cup B$ 與 A 之間的雙射函數呢?

習題 1.12 : 若 $S \subseteq \mathbb{R}$ 是可數的,證明存在實數 $a \in \mathbb{R}$ 使得 $(a+S) \cap S = \emptyset$ 。

習題 1.13 : 證明 (0,1) 及 (0,1] 為等勢集合,並且構造他們之間的任意雙射函數。(提示:或許可以從習題 1.7 的步驟中找到靈感。)

$$f(n) = f_n(n) + 1, \quad \forall n \geqslant 1.$$

- (1) 證明對於所有 $n \ge 1$,我們有 $f_n \ne f$ 。
- (2) 證明所有由 № 到 № 的函數所構成的集合並非可數集合。

- (2) 由此推得 D 也是個可數集合。

$$y \mapsto \frac{f(y) - f(x)}{y - x}$$

在 $\mathbb{R}\setminus\{x\}$ 是非遞減的。令 D 為由 f 的可微分點所構成的集合。證明 $\mathbb{R}\setminus D$ 為可數集合。(提示:使用 習題 1.15 。)

習題 1.17 : 給定函數 $f: \mathbb{R} \to \mathbb{R}$ 。對於 $x \in \mathbb{R}$,如果存在 $\varepsilon > 0$ 使得

$$\forall y \in \mathbb{R}, \quad |y - x| < \varepsilon \quad \Rightarrow \quad f(y) > f(x),$$

則我們說 f 在 x 取嚴格局部最大值。證明下列集合是可數的:

 $\{x \in \mathbb{R} : f \in x$ 取局部最大值 $\}$.

Exercise 1.18: Let V be a vector space over the rationals \mathbb{Q} .

- (1) Suppose that V is finite dimensional. Show that V is countably infinite.
- (2) Let $\mathbb{Q}[X]$ be the set of polynomials with rational coefficients, that is,

$$\mathbb{Q}[X] = \Big\{ \sum_{n=0}^{N} a_n X^n : a_n \in \mathbb{Q}, 0 \leqslant n \leqslant N, N \geqslant 0 \Big\}.$$

Show that $\mathbb{Q}[X]$ is countably infinite.

A real number $x \in \mathbb{R}$ is said to be an algebraic number (代數數) if it is a root of some polynomial $P \in \mathbb{Q}[X]$. Otherwise, we say that it is a transcendental number (超越數).

(3) Show that there exists $x \in \mathbb{R}$ that is transcendental.

Exercise 1.19: Given a sequence $(u_n)_{n\geqslant 1}$ of real numbers. Let $a_1=u_1+1$ and $b_1=u_1+2$, so that we have $u_1\notin [a_1,b_1]$.

(1) Suppose that for an integer $n \ge 1$, we have $a_n < b_n$ with $u_n \notin [a_n, b_n]$. Consider $c_n = \frac{1}{3}(2a_n + b_n)$ and $d_n = \frac{1}{3}(a_n + 2b_n)$. Show that we can choose a_{n+1} and b_{n+1} from the set $\{a_n, c_n, d_n, b_n\}$ such that

$$b_{n+1} - a_{n+1} = \frac{1}{3}(b_n - a_n)$$
 and $u_{n+1} \notin [a_{n+1}, b_{n+1}] \subseteq [a_n, b_n].$

- (2) Consider the sequences $(a_n)_{n\geqslant 1}$ and $(b_n)_{n\geqslant 1}$ that are constructed in the previous question. Show that $(a_n)_{n\geqslant 1}$ is non-decreasing and that $(b_n)_{n\geqslant 1}$ is non-increasing.
- (3) Deduce that the sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ converge to the same limit, denoted ℓ .
- (4) What can we say about the countability of the set of real numbers \mathbb{R} ?

Exercise 1.20: Show that $\{0,1\}^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N})$ and deduce that \mathbb{R} is not countable.

習題 1.18 : 令 *V* 為有理數 ℚ 上的向量空間。

- (1) 假設 V 的維度是有限的。證明 V 是無窮可數的。
- (2) 令 $\mathbb{Q}[X]$ 為有理係數多項式所構成的集合,也就是說

$$\mathbb{Q}[X] = \Big\{ \sum_{n=0}^{N} a_n X^n : a_n \in \mathbb{Q}, 0 \leqslant n \leqslant N, N \geqslant 0 \Big\}.$$

證明 $\mathbb{Q}[X]$ 是無窮可數的。

如果一實數 x 是某多項式 $P \in \mathbb{Q}[X]$ 的其中一個根,則我們稱他為代數數 (algebraic number);否則我們稱他為超越數 (transcendental number)。

(3) 證明存在超越數 $x \in \mathbb{R}$ 。

習題 1.19 : 給定實數序列 $(u_n)_{n\geqslant 1}$ 。令 $a_1=u_1+1$ 以及 $b_1=u_1+2$,滿足 $u_1\notin [a_1,b_1]$ 。

(1) 假設對於整數 $n \ge 1$,我們有 $a_n < b_n$ 且 $u_n \notin [a_n, b_n]$ 。考慮 $c_n = \frac{1}{3}(2a_n + b_n)$ 及 $d_n = \frac{1}{3}(a_n + 2b_n)$ 。證明我們能從集合 $\{a_n, c_n, d_n, b_n\}$ 中選擇 a_{n+1} 及 b_{n+1} ,使得

$$b_{n+1} - a_{n+1} = \frac{1}{3}(b_n - a_n)$$
 \coprod $u_{n+1} \notin [a_{n+1}, b_{n+1}] \subseteq [a_n, b_n].$

- (2) 考慮上面所構造出來的序列 $(a_n)_{n\geqslant 1}$ 及 $(b_n)_{n\geqslant 1}$,證明 $(a_n)_{n\geqslant 1}$ 是個非遞減序列以及 $(b_n)_{n\geqslant 1}$ 是個非遞增序列。
- (3) 推得序列 $(a_n)_{n\geqslant 1}$ 及 $(b_n)_{n\geqslant 1}$ 會收斂到相同的極限,記作 ℓ 。
- (4) 關於實數集合 ℝ 的可數性,我們可以說什麼?

習題 1.20 : 證明 $\{0,1\}^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N})$ 並推得 \mathbb{R} 是不可數的。