Chapter 2: Topology on metric spaces and normed spaces

Exercise 2.1 : Let (M, d) be a metric space. Define

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \quad \forall x, y \in M.$$

Show that (M, d') is also a metric space. Note that the metric space (M, d') is bounded, since $0 \le d'(x, y) < 1$ for all $x, y \in M$.

Exercise 2.2 : Let $n \ge 0$ be an integer and fix $a_0, \ldots, a_n \in \mathbb{R}$ be pairwise distinct real numbers. Let $\mathbb{R}_n[X]$ be the vector space consisting of real polynomials of degree at most n, that is

$$\mathbb{R}_n[X] = \Big\{ \sum_{k=0}^n c_k X^k : c_k \in \mathbb{R}, 0 \leqslant k \leqslant n \Big\}.$$

Define

$$||P|| := \max_{0 \le i \le n} |P(a_i)|, \quad \forall P \in \mathbb{R}_n[X].$$

Show that $\|\cdot\|$ is a norm on $\mathbb{R}_n[X]$.

Exercise 2.3: Check that the maps $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ defined in Example 2.1.9 (a) and (b) are indeed norms on $\mathbb{K}[X]$.

Exercise 2.4: On a Euclidean space $(V, \langle \cdot, \cdot \rangle)$, let us define

$$||x|| = \sqrt{\langle x, x \rangle}, \quad \forall x \in \mathbb{R}^n.$$

Fix $x, y \in V$.

- (1) Explain why the function $\lambda \mapsto ||x + \lambda y||^2$ is a non-negative function.
- (2) Deduce the Cauchy-Schwarz inequality $|\langle x, y \rangle| \leq ||x|| ||y||$.
- (3) Show the triangular inequality $||x + y|| \le ||x|| + ||y||$.

第二章:賦距空間與賦範空間的拓撲

習題 2.1 : 令 (M, d) 為賦距空間。定義

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \quad \forall x, y \in M.$$

證明 (M,d') 也是個賦距空間。我們注意到,賦距空間 (M,d') 是有界的,因為對於所有 $x,y\in M$,我們有 $0\leqslant d'(x,y)<1$ 。

習題 2.2 : 令 $n \ge 0$ 為整數並且固定兩兩相異的實數 $a_0, \ldots, a_n \in \mathbb{R}$ 。令 $\mathbb{R}_n[X]$ 為度數至多為 n的實係數多項式所構成的向量空間,也就是說

$$\mathbb{R}_n[X] = \Big\{ \sum_{k=0}^n a_k X^k : a_k \in \mathbb{R}, 0 \leqslant k \leqslant n \Big\}.$$

定義

$$||P|| := \max_{0 \le i \le n} |P(a_i)|, \quad \forall P \in \mathbb{R}_n[X].$$

證明 $\|\cdot\|$ 是個在 $\mathbb{R}_n[X]$ 上的範數。

習題 2.3 : 檢查定義在範例 2.1.9 (a) 及 (b) 中的函數 $\|\cdot\|_1 \setminus \|\cdot\|_2$ 以及 $\|\cdot\|_\infty$ 的確是 $\mathbb{K}[X]$ 上的範數。

習題 2.4 : 在歐氏空間 $(V, \langle \cdot, \cdot \rangle)$ 上,我們定義

$$||x|| = \sqrt{\langle x, x \rangle}, \quad \forall x \in \mathbb{R}^n.$$

固定 $x, y \in V$ 。

- (1) 解釋為什麼 $\lambda \mapsto ||x + \lambda y||^2$ 是個非負函數。
- (2) 推得柯西不等式: $|\langle x, y \rangle| \leq ||x|| \, ||y||$ 。
- (3) 證明三角不等式: $||x + y|| \le ||x|| + ||y||$ 。

Exercise 2.5: Let $(V, \|\cdot\|)$ be a normed space.

(1) Suppose that the norm $\|\cdot\|$ is induced by an inner product in the sense of Proposition 2.1.12. Show that the norm satisfies the parallelogram law,

$$||x+y||^2 + ||x-y||^2 = 2 ||x||^2 + 2 ||y||^2, \quad \forall x, y \in V.$$
 (2.1)

(2) Suppose that the norm $\|\cdot\|$ satisfies the parallelogram law (2.1). Show that V is Euclidean, that is, there exists an inner product $\langle\cdot,\cdot\rangle$ that induces the norm $\|\cdot\|$ in the sense of Proposition 2.1.12. We may want to consider

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2), \quad x, y \in V.$$

(3) Is the vector space $\mathcal{C}([0,1],\mathbb{R})$ equipped with the norm $\|\cdot\|_{\infty}$ a Euclidean space?

Exercise 2.6: In \mathbb{R}^2 , draw the centered unit closed balls $\overline{B}_{N_1}(0,1)$, $\overline{B}_{N_2}(0,1)$, and $\overline{B}_{N_\infty}(0,1)$, for the norms defined as below,

$$N_1(x_1,x_2) = |x_1| + |x_2|, \qquad N_2(x_1,x_2) = \sqrt{x_1^2 + x_2^2}, \qquad \text{and} \qquad N_\infty(x_1,x_2) = \max|x_1|, |x_2|.$$

Give the inclusion relations between these closed unit balls.

Exercise 2.7: Show that in a normed space, closure of open ball is the closed ball. In other words, given a normed space V, show that $\overline{B(a,r)} = \overline{B}(a,r)$ for all $a \in V$ and r > 0.

Exercise 2.8 (Question 2.1.26): Is any union of closed sets still a closed set? If yes, please prove it; otherwise, please give a counterexample.

Exercise 2.9: Show that in \mathbb{R} , apart from the emptyset \emptyset and the full space \mathbb{R} , any other subset cannot be open and close at the same time. Is there a similar statement for \mathbb{R}^2 ?

Exercise 2.10 : Let (M,d) be a metric space and $A \subseteq M$ be a closed subset. Show that A can be written as a countably infinite intersection of open sets.

Exercise 2.11: Let $A \subseteq M$ and $x \in M$. Then, the following properties are equivalent.

- (1) $x \in \mathring{A}$.
- (2) There exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq A$.

Exercise 2.12: Let (M,d) be a metric space and $A \subseteq M$ be a subset. Use double inclusion to prove that

$$\operatorname{int} A = M \setminus \operatorname{cl}(M \setminus A)$$
 and $\operatorname{int}(M \setminus A) = M \setminus \operatorname{cl}(A)$.

習題 2.5 : 令 (V, ||·||) 為賦範空間。

(1) 假設範數 ||.|| 是可以由內積定義的,見命題 2.1.12 。證明此範數會滿足平行四邊形恆等式:

$$||x+y||^2 + ||x-y||^2 = 2 ||x||^2 + 2 ||y||^2, \quad \forall x, y \in V.$$
 (2.1)

(2) 假設範數 $\|\cdot\|$ 滿足 (2.1) 中的平行四邊形恆等式,證明 V 是個歐氏空間,也就是說,存在內 積 $\langle \cdot, \cdot \rangle$ 使得範數 $\|\cdot\|$ 是藉由內積透過命題 2.1.12 中的方式所得到。我們可以考慮

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2), \quad x, y \in V.$$

(3) 在向量空間 $\mathcal{C}([0,1],\mathbb{R})$ 上賦予範數 $\|\cdot\|_{\infty}$ 會是個歐氏空間嗎?

習題 2.6 : 在 \mathbb{R}^2 ,畫出不同範數定義出來的置中單位閉球:

$$N_1(x_1,x_2)=|x_1|+|x_2|,$$
 $N_2(x_1,x_2)=\sqrt{x_1^2+x_2^2},$ 以及 $N_\infty(x_1,x_2)=\max|x_1|,|x_2|,$ 並描述這些不同單位閉球之間的包含關係。

習題 2.7 : 證明在賦範空間中,開球的閉包會是閉球。換句話說,我們想要證明在給定的賦範空間 V 中,對於任意 $a \in V$ 及 r > 0,我們有 $\overline{B(a,r)} = \overline{B}(a,r)$ 。

習題 2.8 【問題 2.1.26 】 : 敘述「任意多個閉集的聯集仍是閉集」是否為真?如果是,請證明此 敘述;如果不是,請給出一個反例。

習題 2.9: 證明在 \mathbb{R} 中,除了空集合 \varnothing 以及全空間 \mathbb{R} ,任意其他子集合無法同時是開集與閉集。 在 \mathbb{R}^2 中有類似的敘述嗎?

習題 2.10 : 令 (M,d) 為賦距空間且 $A\subseteq M$ 為閉子集合。證明 A 可以寫作可數無窮多個開集的 交集。

- (1) $x \in \mathring{A} \circ$
- (2) 存在 $\varepsilon > 0$ 使得 $B(x, \varepsilon) \subseteq A$ 。

int
$$A = M \setminus \operatorname{cl}(M \setminus A)$$
 \coprod int $(M \setminus A) = M \setminus \operatorname{cl}(A)$.

Exercise 2.13: Let (M, d) be a metric space. Consider two subsets A and B of M such that int $A = \inf B = \emptyset$.

- (1) Show that $int(A \cup B) = \emptyset$ if A is closed in M.
- (2) Given an example for which we have $int(A \cup B) = M$.

Exercise 2.14: Let (M, d) be a metric space and $A \subseteq M$ be a subset.

- (1) Show that if A is open, then $int(\partial A) = \emptyset$.
- (2) When do we have $int(\partial A) = M$?

Exercise 2.15: Let (M,d) be a metric space and $A\subseteq M$ be a subset. Show that $\partial A=\overline{A}\cap\overline{M\backslash A}$ and deduce that $\partial A=\partial(M\backslash A)$.

Exercise 2.16: Let A and B be subsets in a metric space (M,d). Suppose that $\overline{A} \cap \overline{B} = \emptyset$. Show that $\partial (A \cup B) = \partial A \cup \partial B$.

Exercise 2.17 : Let (M, d) be a metric space. Consider a set I, and a family $(A_i)_{i \in I}$ of subsets of M that are indexed by the elements of I.

(1) Suppose that I is finite, for example $I = \{1, \dots, n\}$ for some integer $n \ge 1$. Show that

$$\operatorname{int}\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}(\operatorname{int}A_i).$$

(2) Suppose that I is infinite. Show that

$$\operatorname{int}\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}(\operatorname{int}A_i).$$

- (3) Find an example where the equality does not hold in (2).
- (4) Without any additional assumption on I, show that

$$\bigcup_{i\in I}(\operatorname{int} A_i)\subseteq\operatorname{int}\Big(\bigcup_{i\in I}A_i\Big).$$

(5) Find an example with finite *I* such that the equality does not hold in (4).

Exercise 2.18 : Let (M,d) be a metric space and $S \subseteq T \subseteq U$ be subsets of M. Suppose that S is dense in T and T is dense in U, show that S is also dense in U.

Exercise 2.19: A metric space (M, d) is said to be separable $(\overrightarrow{\square} \mathcal{D})$ if there exists a countable subset $A \subseteq M$ that is dense in M. Show that every Euclidean space \mathbb{R}^n is separable.

習題 2.13 : 令 (M,d) 為賦距空間。考量兩個 M 的子集合 A 及 B 使得 int $A = \operatorname{int} B = \varnothing$ 。

- (1) 證明如果 $A \in M$ 中是個閉集,則 $int(A \cup B) = \emptyset$ 。
- (2) 請給一個滿足 $int(A \cup B) = M$ 的例子。

- (1) 證明如果 A 是個開集,則 $int(\partial A) = \emptyset$ 。
- (2) 我們什麼時候會有 $int(\partial A) = M$?

習題 2.15 : 令 (M,d) 為賦距空間且 $A\subseteq M$ 為子集合。證明 $\partial A=\overline{A}\cap\overline{M\backslash A}$ 並由此推得 $\partial A=\partial(M\backslash A)$ 。

習題 2.16 : 令 A 及 B 為賦距空間 (M,d) 的子集合。假設 $\overline{A} \cap \overline{B} = \emptyset$ 。證明 $\partial (A \cup B) = \partial A \cup \partial B$ 。

(1) 假設 I 是有限的,例如 $I = \{1, ..., n\}$ 對於某個整數 $n \ge 1$ 。證明

$$\operatorname{int}\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}(\operatorname{int}A_i).$$

(2) 假設 I 是無窮的。證明

$$\operatorname{int}\left(\bigcap_{i\in I}A_i\right)\subseteq\bigcap_{i\in I}(\operatorname{int}A_i).$$

- (3) 請找出一個例子使得(2)中的等式不成立。
- (4) 在不對 I 加上任何額外假設的情況下,證明

$$\bigcup_{i\in I} (\operatorname{int} A_i) \subseteq \operatorname{int} \Big(\bigcup_{i\in I} A_i\Big).$$

(5) 請找出一個 I 為有限的例子,使得 (4) 中的等式不成立。

習題 2.18 : 令 (M,d) 為賦距空間且 $S \subseteq T \subseteq U$ 為 M 的子集合。假設 S 在 T 中是稠密的,且 T 在 U 中是稠密的,證明 S 在 U 中也會是稠密的。

習題 2.19 : 給定賦距空間 (M,d) 。如果存在可數子集合 $A\subseteq M$ 使得他在 M 中是稠密的,則我們說 M 是可分 (separable) 的。證明任意歐氏空間 \mathbb{R}^n 是可分的。

Exercise 2.20: The Bolzano–Weierstraß theorem (Theorem 2.2.5) is proven for \mathbb{R}^n , equiped with the metric induced by its Euclidean norm. If we equip \mathbb{R}^n with other distances which are also induced by norms, such as $\|\cdot\|_1$ or $\|\cdot\|_\infty$, does the theorem still hold? And how about with the discrete distance given by $d(x,y)=\mathbb{1}_{x\neq y}$?

Exercise 2.21 (Cantor set): We define a sequence of subsets of \mathbb{R} by induction,

$$C_0 = [0, 1], \quad C_{n+1} = \frac{1}{3}C_n \cup (\frac{1}{3}C_n + \frac{2}{3}), \quad \forall n \geqslant 0.$$

Let $\mathcal{C} := \cap_{n \geqslant 0} C_n$.

- (1) Show that the subset C_n is closed, and $C_{n+1} \subseteq C_n$ for every $n \ge 0$.
- (2) Show that the countable intersection C is nonempty.

Given $x \in [0, 1]$, we may define its ternary expansion,

$$x = 0.x_1 x_2 x_3 \dots = \sum_{k \geqslant 1} x_k 3^{-k}, \tag{2.2}$$

where we have $x_k \in \{0, 1, 2\}$ for all $k \ge 1$. Note that this expansion may not be unique.

- (3) In this question, we want to show the uncountability of C.
 - (a) Show that if $x \in \mathcal{C}$, then there exists a ternary expansion Eq. (2.2) of x for which we have $x_k = 0$ or 2 for all $k \ge 1$.
 - (b) Given $x \in [0, 1]$ and suppose that the ternary expansion Eq. (2.2) of x is such that $x_k = 0$ or 2 for all $k \ge 1$. Show that $x \in \mathcal{C}$.
 - (c) For which $x \in \mathcal{C}$, the ternary expansion is not unique?
 - (d) Conclude.
- (4) Given $0 \le a < b \le 1$, is the subset $\mathcal{C} \cap [a, b]$ dense in [a, b]?

Given a segment I = [a,b] in [0,1], let us define its length to be $\ell(I) := b-a$. Given $n \geqslant 1$ pairwise disjoint segments $(I_i = [a_i,b_i])_{1\leqslant i\leqslant n}$ in [0,1], we define the length of $I := \bigcup_{i=1}^n I_i$ as $\ell(I) := \sum_{i=1}^n \ell(I_i)$. Given a subset A in [0,1], we say that it is of length zero if

$$\inf\{\ell(I): A \subseteq I = \bigsqcup_{i=1}^n I_i, n \geqslant 1, I_i$$
's are segments $\} = 0$,

where \sqcup means that the segments form a pairwise disjoint union.

(5) Find $\ell(C_n)$ for all $n \ge 0$ and show that \mathcal{C} is of length zero.

The set C we constructed above is called *Cantor set*, which is a nonempty uncountable closed set in [0,1], of length 0, thus not containing any interval.

習題 2.20 : 課程中,我們證明了 Bolzano–Weierstraß 定理(定理 2.2.5),在證明中,我們把 \mathbb{R}^n 看作是個歐氏空間,也就是說他的距離是被歐氏範數所給定的。如果我們在 \mathbb{R}^n 上考慮由其他範數所給出的距離,例如 $\|\cdot\|_1$ 或 $\|\cdot\|_\infty$,此定理是否仍然成立?那如果我們考慮的距離是離散距離 $d(x,y)=\mathbb{1}_{x\neq y}$ 呢?

習題 2.21 : 我們以遞迴方式,定義在 ℝ 中的子集合序列:

$$C_0 = [0, 1], \quad C_{n+1} = \frac{1}{3}C_n \cup (\frac{1}{3}C_n + \frac{2}{3}), \quad \forall n \geqslant 0.$$

- (1) 證明對於所有 $n \ge 0$,子集合 C_n 是個閉集,且 $C_{n+1} \subseteq C_n$ 。
- (2) 證明可數交集 € 非空。

給定 $x \in [0,1]$,我們可以定義他的三進位展開:

$$x = 0.x_1 x_2 x_3 \dots = \sum_{k \ge 1} x_k 3^{-k}, \tag{2.2}$$

其中對於所有 $k \ge 1$,我們有 $x_k \in \{0,1,2\}$ 。我們注意到,這個展開式未必有唯一性。

- (3) 在此問題中,我們想要證明 C 是不可數的。
 - (a) 證明若 $x \in \mathcal{C}$,則存在 x 的三進位展開式 (2.2),使得對於所有 $k \geqslant 1$,我們會有 $x_k = 0$ 或 2。
 - (b) 給定 $x \in [0,1]$,並假設在 x 的三進位展開式 (2.2) 中,對於所有 $k \ge 1$,我們會有 $x_k = 0$ 或 2。證明 $x \in \mathcal{C}$ 。
 - (c) 對於哪些 $x \in \mathcal{C}$,他的三進位展開會是不唯一的?
 - (d) 總結。
- (4) 給定 $0 \le a < b \le 1$,試問 $\mathcal{C} \cap [a,b]$ 在 [a,b] 中是稠密的嗎?

給定 [0,1] 中的線段 I=[a,b],我們定義他的長度為 $\ell(I):=b-a$ 。給定 $n\geqslant 1$ 個 [0,1] 中兩兩互 斥的線段 $(I_i=[a_i,b_i])_{1\leqslant i\leqslant n}$,我們定義 $I:=\cup_{i=1}^n I_i$ 的長度為 $\ell(I):=\sum_{i=1}^n \ell(I_i)$ 。給定 [0,1] 中的子集合 A,如果

$$\inf\{\ell(I): A \subseteq I = \bigsqcup_{i=1}^{n} I_i, n \ge 1, I_i$$
為線段 $\} = 0,$

則我們說他的長度為 0,其中 □ 代表著我們考慮的是互斥線段構成的聯集。

(5) 對於所有 $n \ge 0$,求 $\ell(C_n)$,並證明 \mathcal{C} 的長度為 0。

這裡我們構造出來的 $\mathcal C$ 稱作 \underline{Cantor} 集合,是個 [0,1] 中的非空不可數閉集,長度為 0,所以並不包含任何區間。

Exercise 2.22 : Let (M, d) be a metric space and $S \subseteq M$ be an open subset. For any subset $A \subseteq S$, show that A is open in S if and only if it is open in M.

Exercise 2.23: On the space (0, 1], we may consider the topology induced by the metric space $(\mathbb{R}, |\cdot|)$ as mentioned in Example 2.3.2. Alternatively, we may also define a distance d on (0, 1], given by

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|, \quad \forall x, y \in (0,1].$$

(1) Let $x \in (0,1]$ and $\varepsilon > 0$. Let $B = B_{|\cdot|}(x,\varepsilon)$ be the ball centered at x of radius ε for the metric $|\cdot|$. Show that for any $y \in B$, we may find $\varepsilon' > 0$ such that

$$B_d(y, \varepsilon') \subseteq B = B_{|\cdot|}(x, \varepsilon).$$

- (2) Show that an open ball in ((0,1],d) is also an open ball in $((0,1],|\cdot|)$.
- (3) Conclude that the metric spaces $((0,1], |\cdot|)$ and ((0,1], d) are topologically equivalent, that is, a set A is open in one space if and only if it is also open in the other one.
- (4) Is ((0,1],d) a complete metric space? How about $((0,1],|\cdot|)$?

Exercise 2.24: Let M be a set equipped with two distances d and d'. Suppose that the metric spaces (M,d) and (M,d') are topologically equivalent, i.e. the open sets in one space are also open in the other space. Show that if a sequence $(a_n)_{n\geqslant 1}$ converges in (M,d), then it also converges in (M,d').

Exercise 2.25: Let M be a set that we equip with two uniformly equivalent distances d and d'. Show that a sequence is Cauchy in (M, d) if and only if it is also Cauchy in (M, d').

Exercise 2.26: Let (M,d) be a metric space and \mathcal{C} be the set of all the Cauchy sequences in M. Let us define the function $\delta: \mathcal{C} \times \mathcal{C} \to \mathbb{R}_+$ as follows. For $U = (u_n)_{n \geqslant 1}, V = (v_n)_{n \geqslant 1} \in \mathcal{C}$, let

$$\delta(U,V) = \lim_{n \to \infty} d(u_n, v_n).$$

- (1) Show that δ is well defined, symmetric, and satisfies the triangle inequality.
- (2) If $U = (u_n)_{n \geqslant 1}$, $V = (v_n)_{n \geqslant 1}$, and $S = (s_n)_{n \geqslant 1}$ are in \mathcal{C} and such that $\delta(U, V) = 0$ and $\delta(V, S) = 0$, check that $\delta(U, S) = 0$.
- (3) Let $U = (u_n)_{n \ge 1}$, $U' = (u'_n)_{n \ge 1}$, $V = (v_n)_{n \ge 1}$, and $V' = (v'_n)_{n \ge 1}$ be sequences such that $\delta(U, U') = 0$ and $\delta(V, V') = 0$. Show that $\delta(U, V) = \delta(U', V')$.

We will see in Section 3.3 that the above steps are preliminary steps towards the *completion* of the metric space (M, d).

習題 2.22 : 令 (M,d) 為賦距空間且 $S\subseteq M$ 為開子集合。對於任意子集合 $A\subseteq S$,證明若且唯若 A 在 M 中是個開集,則 A 在 S 中也是個開集。

習題 2.23 : 如同在範例 2.3.2 所提到的,在空間 (0,1] 上,我們可以考慮由賦距空間 $(\mathbb{R},|\cdot|)$ 所誘導出來的拓撲。此外,我們也能在 (0,1] 上定義距離 d 為:

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|, \quad \forall x, y \in (0,1].$$

(1) 令 $x \in (0,1]$ 及 $\varepsilon > 0$ 。令 $B = B_{|\cdot|}(x,\varepsilon)$ 為由 $|\cdot|$ 當作距離定義出來,中心在 x 且半徑為 ε 的 球。證明對任意 $y \in B$,我們能找到 $\varepsilon' > 0$ 使得

$$B_d(y,\varepsilon')\subseteq B=B_{|\cdot|}(x,\varepsilon)$$

- (2) 證明在 ((0,1],d) 中的開球也是 $((0,1],|\cdot|)$ 中的開球。
- (3) 請總結為什麼賦距空間 $((0,1],|\cdot|)$ 及 ((0,1],d) 是拓撲等價的;換句話說,證明若且唯若一個集合 A 在其中一個空間中是開集,那麼他在另一個空間中也是開集。
- (4) 賦距空間 ((0,1],d) 是完備的嗎?那 $((0,1],|\cdot|)$ 呢?

習題 2.24 : 令 M 為集合,並賦予他兩個距離 d 及 d'。假設賦距空間 (M,d) 與 (M,d') 拓撲等價,也就是說其中一個空間中的開集,也是另一個空間中的開集。證明如果序列 $(a_n)_{n\geqslant 1}$ 在 (M,d) 中收斂,則他也會在 (M,d') 中收斂。

習題 2.25 : 令 M 為集合,並賦予他兩個均匀等價的距離 d 及 d'。證明若且唯若一個序列在 (M,d) 中是柯西的,則他在 (M,d') 也是柯西的。

習題 2.26 : 令 (M,d) 為賦距空間且 \mathcal{C} 為由 M 中所有柯西序列所構成的集合。函數 $\delta: \mathcal{C} \times \mathcal{C} \to \mathbb{R}_+$ 定義如下:對於 $U = (u_n)_{n \geq 1}$ 以及 $V = (v_n)_{n \geq 1} \in \mathcal{C}$,令

$$\delta(U,V) = \lim_{n \to \infty} d(u_n, v_n).$$

- (1) 證明 δ 定義良好,具有對稱性,且滿足三角不等式。
- (2) 如果 $U=(u_n)_{n\geqslant 1}$ 、 $V=(v_n)_{n\geqslant 1}$ 及 $S=(s_n)_{n\geqslant 1}$ 在 $\mathcal C$ 裡面且滿足 $\delta(U,V)=0$ 及 $\delta(V,S)=0$,請檢查 $\delta(U,S)=0$ 。
- (3) 令 $U=(u_n)_{n\geqslant 1}$ 、 $U'=(u'_n)_{n\geqslant 1}$ 、 $V=(v_n)_{n\geqslant 1}$ 以及 $V'=(v'_n)_{n\geqslant 1}$ 為滿足下列條件的序列: $\delta(U,U')=0$ 及 $\delta(V,V')=0$ 。 證明 $\delta(U,V)=\delta(U',V')$ 。

在第 3.3 節中我們會看到,上述的步驟是把 (M,d) 完備化所需要檢查的幾個基本性質。

Exercise 2.27: Find the upper limit and the lower limit of the following sequences. Do not forget to justify how you obtain your results.

$$a_n = \frac{(-1)^n}{n}$$
, $b_n = \cos(n)$, $c_n = \frac{1}{\sin(n)}$, $d_n = \frac{n^2 + 2n + 1}{n(n + \cos(n))}$.

Exercise 2.28 : Find a sequence $(a_n)_{n\geqslant 1}$ in $\mathbb R$ such that $\liminf_{n\to\infty}a_n=0$, $\limsup_{n\to\infty}a_n=1$, and that any number $x\in[0,1]$ is an accmulation point of $\{a_n:n\geqslant 1\}$.

Exercise 2.29: Given a bounded sequence $(x_n)_{n\geqslant 1}$ with $\lim_{n\to\infty}(x_{n+1}-x_n)=0$. Show that any point between $\ell:=\liminf_{n\to\infty}a_n$ and $L:=\limsup_{n\to\infty}a_n$ are accumulation points of $\{a_n:n\geqslant 1\}$.

Exercise 2.30 : Let $(a_n)_{n\geqslant 1}$ be a sequence of positive real numbers. Let $\varepsilon\in(0,1)$ and suppose that there exists $N_0\geqslant 1$ such that

$$\frac{1+a_{n+1}}{a_n} \leqslant 1 + \frac{1-\varepsilon}{n}, \quad \forall n \geqslant N_0. \tag{2.3}$$

(1) Show that for any positive integer $k \ge 1$, we have

$$a_{N_0+k} \le \prod_{i=0}^{k-1} \left(1 + \frac{1-\varepsilon}{n+i}\right) a_{N_0} - k.$$

- (2) Show that for $x \ge 0$, we have $1 + x \le e^x$.
- (3) Show that $a_n \xrightarrow[n \to \infty]{} -\infty$, and conclude that Eq. (2.3) cannot hold.
- (4) Deduce the following inequality,

$$\limsup_{n \to \infty} \left(\frac{1 + a_{n+1}}{a_n} \right)^n \geqslant e.$$

(5) Does there exist a sequence $(a_n)_{n\geqslant 1}$ of positive real numbers for which the above inequality becomes an equality?

Exercise 2.31: Let $(a_n)_{n\geqslant 1}$ be a sequence of positive real numbers.

(1) Prove the following inequality

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \leqslant \liminf_{n \to \infty} (a_n)^{1/n} \leqslant \limsup_{n \to \infty} (a_n)^{1/n} \leqslant \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

- (2) Find a sequence $(a_n)_{n\geq 1}$ that makes all the three above inequalities strict.
- (3) Show that if the limit of $\frac{a_{n+1}}{a_n}$ exists, then the limit of $(a_n)^{1/n}$ also exists, and we have

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} (a_n)^{1/n}.$$

(4) Does the sequence $a_n = \frac{(n!)^{1/n}}{n}$ have a limit? If yes, find its value.

習題 2.27 : 請找出下列序列的上極限和下極限。不要忘記解釋你如何求出這些結果的。

$$a_n = \frac{(-1)^n}{n}$$
, $b_n = \cos(n)$, $c_n = \frac{1}{\sin(n)}$, $d_n = \frac{n^2 + 2n + 1}{n(n + \cos(n))}$.

習題 2.28 : 請找出 $\mathbb R$ 中的序列 $(a_n)_{n\geqslant 1}$ 使得 $\liminf_{n\to\infty}a_n=0$ 、 $\limsup_{n\to\infty}a_n=1$ 且對於任意數字 $x\in[0,1]$ 來說,他會是 $\{a_n:n\geqslant 1\}$ 的匯聚點。

習題 2.29 : 給定有界序列 $(x_n)_{n\geqslant 1}$ 滿足 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$ 。證明任意介於 $\ell:=\liminf_{n\to\infty}a_n$ 及 $L:=\limsup_{n\to\infty}a_n$ 之間的點都會是 $\{a_n:n\geqslant 1\}$ 的匯聚點。

習題 2.30 : 令 $(a_n)_{n \ge 1}$ 為正實數構成的序列。 $\varepsilon \in (0,1)$ 並假設存在 $N_0 \ge 1$ 使得

$$\frac{1+a_{n+1}}{a_n} \leqslant 1 + \frac{1-\varepsilon}{n}, \quad \forall n \geqslant N_0. \tag{2.3}$$

(1) 證明對於任意正整數 $k \ge 1$,我們有

$$a_{N_0+k} \le \prod_{i=0}^{k-1} \left(1 + \frac{1-\varepsilon}{n+i}\right) a_{N_0} - k.$$

- (2) 證明對於所有 $x \ge 0$,我們有 $1 + x \le e^x$ 。
- (3) 證明 $a_n \xrightarrow[n \to \infty]{} -\infty$ 並總結為什麼式 (2.3) 無法成立。
- (4) 推得下列不等式:

$$\limsup_{n \to \infty} \left(\frac{1 + a_{n+1}}{a_n} \right)^n \geqslant e.$$

(5) 是否存在正實數序列 $(a_n)_{n\geq 1}$ 能讓上面的不等式變成等式呢?

習題 2.31 : 令 $(a_n)_{n \geq 1}$ 為正實數構成的序列。

(1) 證明下列不等式:

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \leqslant \liminf_{n \to \infty} (a_n)^{1/n} \leqslant \limsup_{n \to \infty} (a_n)^{1/n} \leqslant \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

- (2) 找到序列 $(a_n)_{n \ge 1}$ 能夠讓上面的三個不等式都變成嚴格不等式。
- (3) 證明如果 $\frac{a_{n+1}}{a_n}$ 的極限存在,那麼 $(a_n)^{1/n}$ 的極限也會存在,而且我們有

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} (a_n)^{1/n}.$$

(4) 序列 $a_n = \frac{(n!)^{1/n}}{n}$ 是否有極限?如果有的話,請求他的值。

Exercise 2.32 : Let $a=(a_n)_{n\geqslant 1}$ be a sequence with values in \mathbb{R} . Show that the following properties are equivalent.

- (i) a does not have any subsequential limit in \mathbb{R} .
- (ii) Any subsequence of a is unbounded.
- (iii) $|a_n| \xrightarrow[n\to\infty]{} +\infty$ when $n\to\infty$.

Exercise 2.33 : Let $(V, \|\cdot\|)$ be a normed vector space and $f: E \to E$ be the function

$$\forall x \in V, \quad f(x) = \frac{x}{1 + ||x||}.$$

- (1) Show that f is a bijection between V and B(0,1).
- (2) Show that f and f^{-1} are continuous.

Exercise 2.34: Let (X, d_X) and (Y, d_Y) be metric spaces, and $f: X \to Y$ be a function. Show that the following properties are equivalent.

- (i) f is continuous.
- (ii) For any subset $B \subseteq Y$, we have $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$.
- (iii) For any subset $B \subseteq Y$, we have $f^{-1}(\operatorname{int}(B)) \subseteq \operatorname{int}(f^{-1}(B))$.
- (iv) For any subset $A \subseteq X$, we have $f(\overline{A}) \subseteq \overline{f(A)}$.

Exercise 2.35 : Let $(V, \|\cdot\|)$ be a normed vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Show that the following two maps are continuous

Exercise 2.36 : Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that

$$\forall x, y \in \mathbb{R}, \quad f\left(\frac{x+y}{2}\right) = \frac{1}{2}(f(x) + f(y)).$$

- (1) Show that the set $\mathcal{D}\{p \cdot 2^{-n} : p \in \mathbb{Z}, n \in \mathbb{N}_0\}$ is dense in \mathbb{R} .
- (2) Show that f(0) = f(1) = 0 implies that $f \equiv 0$.
- (3) Conclude that there exists $a, b \in \mathbb{R}$ such that f(x) = ax + b.

- (i) $a \in \mathbb{R}$ 中沒有任何收斂子序列。
- (ii) 任何 a 的子序列是沒有界的。
- (iii) 當 $n \to \infty$, 我們有 $|a_n| \xrightarrow[n \to \infty]{} +\infty$ °

習題 2.33 : 令 $(V, \|\cdot\|)$ 為賦範向量空間及 $f : E \rightarrow E$ 為定義如下的函數:

$$\forall x \in V, \quad f(x) = \frac{x}{1 + ||x||}.$$

- (1) 證明 $f \in V$ 與 B(0,1) 之間的雙射函數。
- (2) 證明 f 及 f^{-1} 為連續函數。

- (i) f 是連續函數。
- (ii) 對於任意子集合 $B \subseteq Y$,我們有 $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ 。
- (iii) 對於任意子集合 $B \subseteq Y$, 我們有 $f^{-1}(\operatorname{int}(B)) \subseteq \operatorname{int}(f^{-1}(B))$ 。
- (iv) 對於任意子集合 $A\subseteq X$, 我們有 $f(\overline{A})\subseteq \overline{f(A)}$ 。

$$E \times E \rightarrow E$$
 以及 $\mathbb{K} \times E \rightarrow E$ $(\lambda, y) \mapsto \lambda x$.

$$\forall x, y \in \mathbb{R}, \quad f\left(\frac{x+y}{2}\right) = \frac{1}{2}(f(x) + f(y)).$$

- (1) 證明集合 $\mathcal{D}\{p \cdot 2^{-n} : p \in \mathbb{Z}, n \in \mathbb{N}_0\}$ 在 \mathbb{R} 中是稠密的。
- (2) 證明 f(0) = f(1) = 0 蘊含 $f \equiv 0$ 。
- (3) 由上面結果總結存在 $a,b \in \mathbb{R}$ 使得 f(x) = ax + b。

Exercise 2.37 : Let (M, d) be a metric space and $A, B \subseteq M$ be two disjoint, closed, nonempty subsets. Consider the map

$$\varphi: M \to \mathbb{R}$$

 $x \mapsto d(x,A) - d(x,B).$

- (1) Show that φ is continuous on M.
- (2) Show that $\varphi(x) < 0$ for $x \in A$ and $\varphi(x) > 0$ for $x \in B$.
- (3) Deduce that there exist two disjoint open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

Exercise 2.38: Consider a closed set F and an open set U in a metric space (M,d) such that $F\subseteq U$. Show that there exists an open set V satisfying

$$F \subseteq V \subseteq \overline{V} \subseteq U$$
.

Exercise 2.39: Show that there is no continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$ and $f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}$. Hint: see below¹.

Exercise 2.40 : Consider the vector space $V = \mathcal{C}([0,1],\mathbb{R})$ equipped with the norm $\|\cdot\|_{\infty}$. Show that the function $f \mapsto \inf_{x \in [0,1]} f(x)$ is continuous.

Exercise 2.41: Find an example of metric spaces (M_1, d_1) , (M_2, d_2) , and (M_2, d'_2) such that

- (M_2, d_2) and (M_2, d_2') are topologically equivalent,
- there exists a function $f:(M_1,d_1)\to M_2$ such that f is uniformly continuous when M_2 is equipped with d_2 , but not uniformly continuous when M_2 is equipped with d_2' .

You may get inspiration from Exercise 2.23.

Exercise 2.42: Let X and Y be metric spaces and $f: X \to Y$. The graph (\blacksquare) of f is the set

$$\Gamma_f := \{(x, y) \in X \times Y : y = f(x)\}.$$

- (1) Show that if f is continuous, then Γ_f is closed in $X \times Y$.
- (2) Find an example for which Γ_f is closed in $X \times Y$ without f being continuous.
- (3) Show that f is continuous if and only if the following map is an homeomorphism,

$$\begin{array}{ccc} X & \to & \Gamma_f \\ x & \mapsto & (x, f(x)) \end{array}$$

習題 2.37 : \ominus (M,d) 為賦距空間且 $A,B\subseteq M$ 為兩個互斥非空閉子集合。考慮函數

$$\varphi: M \to \mathbb{R}$$

$$x \mapsto d(x,A) - d(x,B).$$

- (1) 證明 φ 在 M 上是連續的。
- (2) 證明對於 $x \in A$,我們有 $\varphi(x) < 0$,以及對於 $x \in B$,我們有 $\varphi(x) > 0$ 。
- (3) 推得存在兩個互斥開集 U, V 滿足 $A \subset U$ 及 $B \subset V$ 。

習題 2.38 : 在賦距空間 (M,d) 中,考慮閉集 F 及開集 U 使得 $F \subset U$ 。證明存在開集 V 滿足

$$F \subseteq V \subseteq \overline{V} \subseteq U$$
.

習題 2.39 : 證明不存在連續函數 $f: \mathbb{R} \to \mathbb{R}$ 滿足 $f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$ 和 $f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}$ 。提示:見下方¹。

習題 2.40 : 考慮向量空間 $V=\mathcal{C}([0,1],\mathbb{R})$ 並賦予範數 $\|\cdot\|_{\infty}$ 。證明函數 $f\mapsto\inf_{x\in[0,1]}f(x)$ 是連續的。

習題 2.41 : 請找出賦距空間 $(M_1,d_1) \cdot (M_2,d_2)$ 以及 (M_2,d_2) 的例子,使得他們滿足:

- (M_2, d_2) 和 (M_2, d'_2) 是拓撲等價的;
- 存在函數 $f:(M_1,d_1)\to M_2$ 使得當我們在 M_2 上賦予距離 d_2 時,f 是均匀連續的;但當我們在 M_2 上賦予距離 d_2 時,他不是均匀連續的。

你可以從習題 2.23 中得到靈感。

習題 2.42 : 令 X 與 Y 為賦距空間以及 $f: X \to Y \circ$ 我們把下列集合稱作 f 的圖 (graph):

$$\Gamma_f := \{(x, y) \in X \times Y : y = f(x)\}.$$

- (1) 證明如果 f 是連續的,那麼 Γ_f 在 $X \times Y$ 中是個閉集。
- (2) 找出範例使得 Γ_f 在 $X \times Y$ 中是閉集,但 f 不是連續的。
- (3) 證明若且唯若 f 是連續函數,則下列映射會是同胚的:

$$\begin{array}{ccc} X & \to & \Gamma_f \\ x & \mapsto & (x, f(x)) \end{array}$$

 $^{^1}$ Use the intermediate-value theorem in $\mathbb R$, and the fact that any nonempty interval of $\mathbb R$ contains uncountably infinite elements.

¹使用 ℝ 裡面的中間值定理,以及任何 ℝ 的非空區間皆包含不可數無窮多個點。

Exercise 2.43:

- (1) Show that the open interval $(-1,1) \subseteq \mathbb{R}$ and \mathbb{R} are homeomorphic, and write $f:(-1,1) \to \mathbb{R}$ be a homeomorphism.
- (2) Let $(a_n)_{n\geqslant 1}$ be a converging sequence in (-1,1). Does the sequence $(f(a_n))_{n\geqslant 1}$ converge?
- (3) Let $(a_n)_{n\geq 1}$ be a Cauchy sequence in (-1,1). Is the sequence $(f(a_n))_{n\geq 1}$ Cauchy?

Exercise 2.44: Let $n \ge 1$ and $(V_1, \varphi_1), \dots, (V_n, \varphi_n)$ be normed spaces. We consider the product space $V = V_1 \times \dots \times V_n$, and define the following maps on V,

$$N_1(x) = \sum_{i=1}^n \varphi_i(x_i), \quad \text{and} \quad N_2(x) = \sqrt{\sum_{i=1}^n \varphi_i(x_i)^2}, \quad \forall x = (x_1, \dots, x_n) \in V.$$

Show that N_1 and N_2 are norms on V.

Exercise 2.45: Check that the maps D_1 and D_2 defined in Remark 2.6.3 are indeed distances on the product space.

Exercise 2.46: Given countably infinitely many metric spaces $((M_n, d_n))_{n \ge 1}$ which are assumed to be uniformly bounded, i.e.,

$$\exists A > 0, \forall n \geqslant 1, \quad \delta(M_n) < A.$$

Define the product space $M = \prod_{n \ge 1} M_n$ and the following function on $M \times M$,

$$d(x,y) = \sum_{n \ge 1} 2^{-n} d_n(x_n, y_n), \quad \forall x, y \in M.$$

Show that d is a distance on M.

Exercise 2.47 : Let $\mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$.

- (1) Show that for any $z_0 \in \mathbb{U}$, the subset $\mathbb{U} \setminus \{z_0\}$ is connected. (Hint: show that it is arcwise connected.)
- (2) Construct a continuous bijective map from [0, 1) to \mathbb{U} .
- (3) Show that that there is no continuous bijective map from \mathbb{U} to [0,1].
- (4) Deduce that \mathbb{U} and [0,1] are not homeomorphic.

Exercise 2.48 : Let (M,d) be a metric space, A and B be subsets of M. Suppose that B is connected and A satisfies

$$B \cap \operatorname{int}(A) \neq \emptyset$$
 and $B \cap \operatorname{int}(M \setminus A) \neq \emptyset$.

Show that $B \cap \partial A \neq \emptyset$.

習題 2.43 :

- (1) 證明開集 $(-1,1)\subseteq\mathbb{R}$ 與 \mathbb{R} 是同胚的,並且將 $f:(-1,1)\to\mathbb{R}$ 記為他們之間的一個同胚函數。
- (3) $\Diamond (a_n)_{n\geqslant 1}$ 為 (-1,1) 中的柯西序列。序列 $(f(a_n))_{n\geqslant 1}$ 是否也是柯西序列?

習題 2.44 : 令 $n\geqslant 1$ 以及賦範空間 $(V_1,\varphi_1),\ldots,(V_n,\varphi_n)$ 。考慮積空間 $V=V_1\times\cdots\times V_n$ 並在 V上定義下列函數:

$$N_1(x) = \sum_{i=1}^n \varphi_i(x_i), \quad \text{LVB} \quad N_2(x) = \sqrt{\sum_{i=1}^n \varphi_i(x_i)^2}, \quad \forall x = (x_1, \dots, x_n) \in V.$$

證明 N_1 及 N_2 是 V 上的範數。

習題 2.45 : 檢查在註解 2.6.3 中定義出來的 D_1 及 D_2 的確是在積空間上的距離。

習題 2.46 : 給定可數無窮多個賦距空間 $((M_n,d_n))_{n\geqslant 1}$,並假設他們是均匀有界的,也就是說

$$\exists A > 0, \forall n \geqslant 1, \quad \delta(M_n) < A.$$

我們定義積空間 $M = \prod_{n \geqslant 1} M_n$ 。在 $M \times M$ 上我們定義下列函數:

$$d(x,y) = \sum_{n \ge 1} 2^{-n} d_n(x_n, y_n), \quad \forall x, y \in M.$$

證明 d 會是 M 上的距離。

習題 2.47 : 令 $\mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$ 。

- (1) 證明對於任意 $z_0 \in \mathbb{U}$,子集合 $\mathbb{U}\setminus\{z_0\}$ 是連通的。(提示:證明他是弧連通的。)
- (2) 構造從 [0,1) 到 ♥ 的連續雙射函數。
- (3) 證明不存在從 IJ 到 [0, 1] 的連續雙射函數。
- (4) 由上推得 및 和 [0, 1] 不是同胚的。

$$B \cap \text{int}(A) \neq \emptyset$$
 以及 $B \cap \text{int}(M \setminus A) \neq \emptyset$.

證明 $B \cap \partial A \neq \emptyset$ 。

Exercise 2.49 (Question 2.7.10): Let $(C_i)_{i\in I}$ be a countable family of connected subsets, i.e., $I=\{1,\ldots,p\}$ for some $p\geqslant 1$ or $I=\mathbb{N}$. Suppose that for every $i\in I,$ $i\neq 1$, we have $C_{i-1}\cap C_i\neq\varnothing$. Show that $C=\cup_{i\in I}C_i$ is connected by rewriting the proof of Proposition 2.7.8.

Exercise 2.50 : Let (M, d) be a metric space. Show that the following statements are equivalent.

- (i) (M, d) is connected.
- (ii) Every proper nonempty subset of M has nonempty boundary in M.
- (iii) Any real-valued continuous function defined on M has intermediate value property. That is, for any continuous function $f:(M,d)\to(\mathbb{R},|\cdot|)$, if $x\in\mathbb{R}$ is such that f(a)< x< f(b) for some $a,b\in M$, then $x\in f(M)$.

Exercise 2.51: Let A and B be connected metric spaces. Let $X \subsetneq A$ and $Y \subsetneq B$ be proper subsets. Show that $C := (A \times B) \setminus (X \times Y)$ is connected in $A \times B$. Why do we need to take X and Y to be proper subsets?

Exercise 2.52: Let $A \subseteq \mathbb{R}^2$ be defined as follows,

$$A := \{(0,0)\} \cup \{(x,\sin(1/x)) : x \in (0,1]\}.$$

We also define

$$A' := \{(x, \sin(1/x)) : x \in (0, 1]\}.$$

- (1) Show that A' is arcwise connected and deduce that it is connected.
- (2) Show that A is not arcwise connected.
- (3) Find \overline{A}' and deduce that A is connected.

Exercise 2.53: In this exercise, we will distinguish the notion between two "equinumerous sets" and "homeomorphic sets".

- (1) Given two disjoint sets A and B, show that $\mathcal{P}(A) \times \mathcal{P}(B) \sim \mathcal{P}(A \cup B)$.
- (2) Use the fact that $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$ to deduce that $\mathbb{R}^2 \sim \mathbb{R}$.
- (3) Show that that there is no continuous bijective map from \mathbb{R}^2 to \mathbb{R} .

習題 2.49 【問題 2.7.10 】: 令 $(C_i)_{i\in I}$ 由可數多個連通子集合所構成,也就是說存在 $p\geqslant 1$ 使得 $I=\{1,\ldots,p\}$,或是說 $I=\mathbb{N}$ 。假設對於所有 $i\in I, i\neq 1$,我們有 $C_{i-1}\cap C_i\neq\varnothing$ 。請修改命題 2.7.8 中的步驟,證明 $C=\cup_{i\in I}C_i$ 是連通的。

- (i) (M, d) 是連通的。
- (ii) 任何 M 的非空嚴格子集合,其邊界皆是非空。
- (iii) 任何定義在 M 上的實連續函數皆滿足中間值定理;換句話說,對於任意連續函數 f : $(M,d) \to (\mathbb{R},|\cdot|)$,如果 $x \in \mathbb{R}$ 滿足 f(a) < x < f(b),其中 $a,b \in M$,那麼 $x \in f(M)$ 。

習題 2.51 : 令 A 及 B 為兩個連通得賦距空間。令 $X \subsetneq A$ 及 $Y \subsetneq B$ 為嚴格子集合。證明 $C := (A \times B) \setminus (X \times Y)$ 在 $A \times B$ 中是連通的。為什麼我們需要假設 X 及 Y 為嚴格子集合呢?

習題 2.52 : 令 $A \subseteq \mathbb{R}^2$ 定義如下:

$$A := \{(0,0)\} \cup \{(x,\sin(1/x)) : x \in (0,1]\}.$$

我們也定義

$$A' := \{(x, \sin(1/x)) : x \in (0, 1]\}.$$

- (1) 證明 A' 是弧連通的,並推得他是連通的。
- (2) 證明 *A* 不是弧連通的。
- (3) 求 $\overline{A'}$ 並推得 A 是連通的。

習題 2.53 : 在此習題中,我們會區分兩個「等勢集合」以及「同胚集合」的概念。

- (1) 給定兩個互斥集合 A 及 B,證明 $\mathcal{P}(A) \times \mathcal{P}(B) \sim \mathcal{P}(A \cup B)$ 。
- (2) 我們已知 $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$,由此推得 $\mathbb{R}^2 \sim \mathbb{R}$ 。
- (3) 證明不存在從 \mathbb{R}^2 到 \mathbb{R} 的連續雙射函數。

Exercise 2.54: Let (M,d) be a connected metric space and $A\subseteq M$ be a closed subset of M. Suppose that the boundary ∂A is connected. Let $f:A\to D=\{0,1\}$ be a continuous function.

(1) Show that $f_{|\partial A}$ is constant.

Without loss of generality, we may assume that $f_{|\partial A} \equiv 0$. Define the function $g: M \to D$ as below,

$$g(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{if } x \in A^c. \end{cases}$$

- (1) Show that $g^{-1}(\varnothing)$, $g^{-1}(D)$, $g^{-1}(\{0\})$, and $g^{-1}(\{1\})$ are closed subsets of M, and deduce that g is continuous.
- (2) Deduce that A is connected.
- (3) If we remove the assumption that $A \subseteq M$ is a closed subset, is it still true that A is connected?

Exercise 2.55: Let $\mathbb{U}=\{z\in\mathbb{C}:|z|=1\}$ and $f:\mathbb{U}\to\mathbb{R}$ be a continuous function. Show that there exists $z\in\mathbb{U}$ such that f(z)=f(-z).

習題 2.54 : 令 (M,d) 為連通的賦距空間以及 $A\subseteq M$ 為 M 的閉子集合。假設邊界 ∂A 是連通的。令 $f:A\to D=\{0,1\}$ 為連續函數。

(1) 證明 $f_{|\partial A}$ 是個常數。

不失一般性,我們可以假設 $f_{|\partial A}\equiv 0$ 。我們定義函數 $g:M\to D$ 如下:

$$g(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{if } x \in A^c. \end{cases}$$

- (1) 證明 $g^{-1}(\emptyset) \cdot g^{-1}(D) \cdot g^{-1}(\{0\})$ 以及 $g^{-1}(\{1\})$ 為 M 的閉子集合,由此推得 g 是連續的。
- (2) 推得 A 是連通的。
- (3) 如果我們移除「 $A\subseteq M$ 是個閉子集合」的假設,性質「A 為連通的」是否仍然為真?

習題 2.55 : 令 $\mathbb{U}=\{z\in\mathbb{C}:|z|=1\}$ 且 $f:\mathbb{U}\to\mathbb{R}$ 為連續函數。證明存在 $z\in\mathbb{U}$ 使得 f(z)=f(-z)。