
Chapter 2: Topology on metric spaces and normed spaces

Exercise 2.1 : Let (M, d) be a metric space. Define

d′(x, y) = d(x, y)
1 + d(x, y)

, ∀x, y ∈ M.

Show that (M, d′) is also a metric space. Note that the metric space (M, d′) is bounded, since 0 ⩽
d′(x, y) < 1 for all x, y ∈ M .

Exercise 2.2 : Let n ⩾ 0 be an integer and fix a0, . . . , an ∈ R be pairwise distinct real numbers. Let
Rn[X] be the vector space consisting of real polynomials of degree at most n, that is

Rn[X] =
{ n∑

k=0
ckXk : ck ∈ R, 0 ⩽ k ⩽ n

}
.

Define
‖P‖ := max

0⩽i⩽n
|P (ai)|, ∀P ∈ Rn[X].

Show that ‖·‖ is a norm on Rn[X].

Exercise 2.3 : Check that the maps ‖·‖1, ‖·‖2 and ‖·‖∞ defined in Example 2.1.9 (a) and (b) are indeed
norms on K[X].

Exercise 2.4 : On a Euclidean space (V, 〈·, ·〉), let us define

‖x‖ =
√

〈x, x〉, ∀x ∈ Rn.

Fix x, y ∈ V .

(1) Explain why the function λ 7→ ‖x + λy‖2 is a non-negative function.

(2) Deduce the Cauchy-Schwarz inequality |〈x, y〉| ⩽ ‖x‖ ‖y‖.

(3) Show the triangular inequality ‖x + y‖ ⩽ ‖x‖ + ‖y‖.

Exercise 2.5 : Let (V, ‖·‖) be a normed space.

(1) Suppose that the norm ‖·‖ is induced by an inner product in the sense of Proposition 2.1.12. Show
that the norm satisfies the parallelogram law,

‖x + y‖2 + ‖x − y‖2 = 2 ‖x‖2 + 2 ‖y‖2 , ∀x, y ∈ V. (2.1)

(2) Suppose that the norm ‖·‖ satisfies the parallelogram law (2.1). Show that V is Euclidean, that is,
there exists an inner product 〈·, ·〉 that induces the norm ‖·‖ in the sense of Proposition 2.1.12. We
may want to consider

〈x, y〉 := 1
4(‖x + y‖2 − ‖x − y‖2) = 1

2(‖x + y‖2 − ‖x‖2 − ‖y‖2), x, y ∈ V.

(3) Is the vector space C([0, 1],R) equipped with the norm ‖·‖∞ a Euclidean space?
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Exercise 2.6 : In R2, draw the centered unit closed balls BN1(0, 1), BN2(0, 1), and BN∞(0, 1), for the
norms defined as below,

N1(x1, x2) = |x1| + |x2|, N2(x1, x2) =
√

x2
1 + x2

2, and N∞(x1, x2) = max |x1|, |x2|.

Give the inclusion relations between these closed unit balls.

Exercise 2.7 : Show that in a normed space, closure of open ball is the closed ball. In other words, given
a normed space V , show that B(a, r) = B(a, r) for all a ∈ V and r > 0.

Exercise 2.8 (Question 2.1.26) : Is any union of closed sets still a closed set? If yes, please prove it;
otherwise, please give a counterexample.

Exercise 2.9 : Show that in R, apart from the emptyset ∅ and the full space R, any other subset cannot
be open and close at the same time. Is there a similar statement for R2?

Exercise 2.10 : Let (M, d) be a metric space and A ⊆ M be a closed subset. Show that A can be written
as a countably infinite intersection of open sets.

Exercise 2.11 : Let A ⊆ M and x ∈ M . Then, the following properties are equivalent.

(1) x ∈ Å.

(2) There exists ε > 0 such that B(x, ε) ⊆ A.

Exercise 2.12 : Let (M, d) be a metric space and A ⊆ M be a subset. Use double inclusion to prove that

int A = M\ cl(M\A) and int(M\A) = M\ cl(A).

Exercise 2.13 : Let (M, d) be a metric space. Consider two subsets A and B of M such that int A =
int B = ∅.

(1) Show that int(A ∪ B) = ∅ if A is closed in M .

(2) Given an example for which we have int(A ∪ B) = M .

Exercise 2.14 : Let (M, d) be a metric space and A ⊆ M be a subset.

(1) Show that if A is open, then int(∂A) = ∅.

(2) When do we have int(∂A) = M?

Exercise 2.15 : Let (M, d) be a metric space and A ⊆ M be a subset. Show that ∂A = A ∩ M\A and
deduce that ∂A = ∂(M\A).

Exercise 2.16 : Let A and B be subsets in a metric space (M, d). Suppose that A ∩ B = ∅. Show that
∂(A ∪ B) = ∂A ∪ ∂B.
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Exercise 2.17 : Let (M, d) be a metric space. Consider a set I , and a family (Ai)i∈I of subsets of M that
are indexed by the elements of I .

(1) Suppose that I is finite, for example I = {1, . . . , n} for some integer n ⩾ 1. Show that

int
( ⋂

i∈I

Ai

)
=

⋂
i∈I

(int Ai).

(2) Suppose that I is infinite. Show that

int
( ⋂

i∈I

Ai

)
⊆

⋂
i∈I

(int Ai).

(3) Find an example where the equality does not hold in (2).

(4) Without any additional assumption on I , show that⋃
i∈I

(int Ai) ⊆ int
( ⋃

i∈I

Ai

)
.

(5) Find an example with finite I such that the equality does not hold in (4).

Exercise 2.18 : Let (M, d) be a metric space and S ⊆ T ⊆ U be subsets of M . Suppose that S is dense
in T and T is dense in U , show that S is also dense in U .

Exercise 2.19 : A metric space (M, d) is said to be separable (可分) if there exists a countable subset
A ⊆ M that is dense in M . Show that every Euclidean space Rn is separable.

Exercise 2.20 : The Bolzano–Weierstraß theorem (Theorem 2.2.5) is proven for Rn, equiped with the
metric induced by its Euclidean norm. If we equip Rn with other distances which are also induced by
norms, such as ‖·‖1 or ‖·‖∞, does the theorem still hold? And how about with the discrete distance given
by d(x, y) = 1x 6=y?

Exercise 2.21 (Cantor set) : We define a sequence of subsets of R by induction,

C0 = [0, 1], Cn+1 = 1
3Cn ∪ (1

3Cn + 2
3), ∀n ⩾ 0.

Let C := ∩n⩾0Cn.

(1) Show that the subset Cn is closed, and Cn+1 ⊆ Cn for every n ⩾ 0.

(2) Show that the countable intersection C is nonempty.

Given x ∈ [0, 1], we may define its ternary expansion,

x = 0.x1x2x3 · · · =
∑
k⩾1

xk3−k, (2.2)

where we have xk ∈ {0, 1, 2} for all k ⩾ 1. Note that this expansion may not be unique.

(3) In this question, we want to show the uncountability of C.
(a) Show that if x ∈ C, then there exists a ternary expansion Eq. (2.2) of x for which we have

xk = 0 or 2 for all k ⩾ 1.
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(b) Given x ∈ [0, 1] and suppose that the ternary expansion Eq. (2.2) of x is such that xk = 0 or
2 for all k ⩾ 1. Show that x ∈ C.

(c) For which x ∈ C, the ternary expansion is not unique?
(d) Conclude.

(4) Given 0 ⩽ a < b ⩽ 1, is the subset C ∩ [a, b] dense in [a, b]?

Given a segment I = [a, b] in [0, 1], let us define its length to be ℓ(I) := b − a. Given n ⩾ 1 pairwise
disjoint segments (Ii = [ai, bi])1⩽i⩽n in [0, 1], we define the length of I := ∪n

i=1Ii as ℓ(I) :=
∑n

i=1 ℓ(Ii).
Given a subset A in [0, 1], we say that it is of length zero if

inf{ℓ(I) : A ⊆ I = tn
i=1Ii, n ⩾ 1, Ii’s are segments} = 0,

where t means that the segments form a pairwise disjoint union.

(5) Find ℓ(Cn) for all n ⩾ 0 and show that C is of length zero.

The set C we constructed above is called Cantor set, which is a nonempty uncountable closed set in [0, 1],
of length 0, thus not containing any interval.

Exercise 2.22 : Let (M, d) be a metric space and S ⊆ M be an open subset. For any subset A ⊆ S, show
that A is open in S if and only if it is open in M .

Exercise 2.23 : On the space (0, 1], we may consider the topology induced by the metric space (R, | · |)
as mentioned in Example 2.3.2. Alternatively, we may also define a distance d on (0, 1], given by

d(x, y) =
∣∣∣ 1
x

− 1
y

∣∣∣, ∀x, y ∈ (0, 1].

(1) Let x ∈ (0, 1] and ε > 0. Let B = B|·|(x, ε) be the ball centered at x of radius ε for the metric | · |.
Show that for any y ∈ B, we may find ε′ > 0 such that

Bd(y, ε′) ⊆ B = B|·|(x, ε).

(2) Show that an open ball in ((0, 1], d) is also an open ball in ((0, 1], | · |).

(3) Conclude that the metric spaces ((0, 1], | · |) and ((0, 1], d) are topologically equivalent, that is, a
set A is open in one space if and only if it is also open in the other one.

(4) Is ((0, 1], d) a complete metric space? How about ((0, 1], | · |)?

Exercise 2.24 : Let M be a set equipped with two distances d and d′. Suppose that the metric spaces
(M, d) and (M, d′) are topologically equivalent, i.e. the open sets in one space are also open in the other
space. Show that if a sequence (an)n⩾1 converges in (M, d), then it also converges in (M, d′).

Exercise 2.25 : Let M be a set that we equip with two uniformly equivalent distances d and d′. Show
that a sequence is Cauchy in (M, d) if and only if it is also Cauchy in (M, d′).
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Exercise 2.26 : Let (M, d) be a metric space and C be the set of all the Cauchy sequences in M . Let us
define the function δ : C × C → R+ as follows. For U = (un)n⩾1, V = (vn)n⩾1 ∈ C, let

δ(U, V ) = lim
n→∞

d(un, vn).

(1) Show that δ is well defined, symmetric, and satisfies the triangle inequality.

(2) If U = (un)n⩾1, V = (vn)n⩾1, and S = (sn)n⩾1 are in C and such that δ(U, V ) = 0 and δ(V, S) =
0, check that δ(U, S) = 0.

(3) Let U = (un)n⩾1, U ′ = (u′
n)n⩾1, V = (vn)n⩾1, and V ′ = (v′

n)n⩾1 be sequences such that
δ(U, U ′) = 0 and δ(V, V ′) = 0. Show that δ(U, V ) = δ(U ′, V ′).

We will see in Section 3.3 that the above steps are preliminary steps towards the completion of the metric
space (M, d).

Exercise 2.27 : Find the upper limit and the lower limit of the following sequences. Do not forget to
justify how you obtain your results.

an = (−1)n

n
, bn = cos(n), cn = 1

sin(n)
, dn = n2 + 2n + 1

n(n + cos(n))
.

Exercise 2.28 : Find a sequence (an)n⩾1 in R such that lim infn→∞ an = 0, lim supn→∞ an = 1, and
that any number x ∈ [0, 1] is an accmulation point of {an : n ⩾ 1}.

Exercise 2.29 : Given a bounded sequence (xn)n⩾1 with limn→∞(xn+1 − xn) = 0. Show that any point
between ℓ := lim infn→∞ an and L := lim supn→∞ an are accumulation points of {an : n ⩾ 1}.

Exercise 2.30 : Let (an)n⩾1 be a sequence of positive real numbers. Let ε ∈ (0, 1) and suppose that there
exists N0 ⩾ 1 such that

1 + an+1
an

⩽ 1 + 1 − ε

n
, ∀n ⩾ N0. (2.3)

(1) Show that for any positive integer k ⩾ 1, we have

aN0+k ⩽
k−1∏
i=0

(
1 + 1 − ε

n + i

)
aN0 − k.

(2) Show that for x ⩾ 0, we have 1 + x ⩽ ex.

(3) Show that an −−−→
n→∞

−∞, and conclude that Eq. (2.3) cannot hold.

(4) Deduce the following inequality,

lim sup
n→∞

(1 + an+1
an

)n
⩾ e.

(5) Does there exist a sequence (an)n⩾1 of positive real numbers for which the above inequality be-
comes an equality?
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Exercise 2.31 : Let (an)n⩾1 be a sequence of positive real numbers.

(1) Prove the following inequality

lim inf
n→∞

an+1
an

⩽ lim inf
n→∞

(an)1/n ⩽ lim sup
n→∞

(an)1/n ⩽ lim sup
n→∞

an+1
an

.

(2) Find a sequence (an)n⩾1 that makes all the three above inequalities strict.

(3) Show that if the limit of an+1
an

exists, then the limit of (an)1/n also exists, and we have

lim
n→∞

an+1
an

= lim
n→∞

(an)1/n.

(4) Does the sequence an = (n!)1/n

n have a limit? If yes, find its value.

Exercise 2.32 : Let a = (an)n⩾1 be a sequence with values in R. Show that the following properties are
equivalent.

(i) a does not have any subsequential limit in R.

(ii) Any subsequence of a is unbounded.

(iii) |an| −−−→
n→∞

+∞ when n → ∞.

Exercise 2.33 : Let (V, ‖·‖) be a normed vector space and f : E → E be the function

∀x ∈ V, f(x) = x

1 + ‖x‖
.

(1) Show that f is a bijection between V and B(0, 1).

(2) Show that f and f−1 are continuous.

Exercise 2.34 : Let (X, dX) and (Y, dY ) be metric spaces, and f : X → Y be a function. Show that the
following properties are equivalent.

(i) f is continuous.

(ii) For any subset B ⊆ Y , we have f−1(B) ⊆ f−1(B).

(iii) For any subset B ⊆ Y , we have f−1(int(B)) ⊆ int(f−1(B)).

(iv) For any subset A ⊆ X , we have f(A) ⊆ f(A).

Exercise 2.35 : Let (V, ‖·‖) be a normed vector space over K = R or C. Show that the following two
maps are continuous

E × E → E
(x, y) 7→ x + y

and K × E → E
(λ, x) 7→ λx

.
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Exercise 2.36 : Let f : R → R be a continuous function such that

∀x, y ∈ R, f
(x + y

2

)
= 1

2
(f(x) + f(y)).

(1) Show that the set D{p · 2−n : p ∈ Z, n ∈ N0} is dense in R.

(2) Show that f(0) = f(1) = 0 implies that f ≡ 0.

(3) Conclude that there exists a, b ∈ R such that f(x) = ax + b.

Exercise 2.37 : Let (M, d) be a metric space and A, B ⊆ M be two disjoint, closed, nonempty subsets.
Consider the map

φ : M → R
x 7→ d(x, A) − d(x, B).

(1) Show that φ is continuous on M .

(2) Show that φ(x) < 0 for x ∈ A and φ(x) > 0 for x ∈ B.

(3) Deduce that there exist two disjoint open sets U, V such that A ⊆ U and B ⊆ V .

Exercise 2.38 : Consider a closed set F and an open set U in a metric space (M, d) such that F ⊆ U .
Show that there exists an open set V satisfying

F ⊆ V ⊆ V ⊆ U.

Exercise 2.39 : Show that there is no continuous function f : R → R such that f(Q) ⊆ R\Q and
f(R\Q) ⊆ Q. Hint: see below1.

Exercise 2.40 : Consider the vector space V = C([0, 1],R) equipped with the norm ‖·‖∞. Show that the
function f 7→ infx∈[0,1] f(x) is continuous.

Exercise 2.41 : Find an example of metric spaces (M1, d1), (M2, d2), and (M2, d′
2) such that

• (M2, d2) and (M2, d′
2) are topologically equivalent,

• there exists a function f : (M1, d1) → M2 such that f is uniformly continuous when M2 is
equipped with d2, but not uniformly continuous when M2 is equipped with d′

2.

You may get inspiration from Exercise 2.23.

1Use the intermediate-value theorem in R, and the fact that any nonempty interval of R contains uncountably infinite elements.
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Exercise 2.42 : Let X and Y be metric spaces and f : X → Y . The graph (圖) of f is the set

Γf := {(x, y) ∈ X × Y : y = f(x)}.

(1) Show that if f is continuous, then Γf is closed in X × Y .

(2) Find an example for which Γf is closed in X × Y without f being continuous.

(3) Show that f is continuous if and only if the following map is an homeomorphism,

X → Γf

x 7→ (x, f(x)) .

Exercise 2.43 :

(1) Show that the open interval (−1, 1) ⊆ R and R are homeomorphic, and write f : (−1, 1) → R be
a homeomorphism.

(2) Let (an)n⩾1 be a converging sequence in (−1, 1). Does the sequence (f(an))n⩾1 converge?

(3) Let (an)n⩾1 be a Cauchy sequence in (−1, 1). Is the sequence (f(an))n⩾1 Cauchy?

Exercise 2.44 : Let n ⩾ 1 and (V1, φ1), . . . , (Vn, φn) be normed spaces. We consider the product space
V = V1 × · · · × Vn, and define the following maps on V ,

N1(x) =
n∑

i=1
φi(xi), and N2(x) =

√√√√ n∑
i=1

φi(xi)2, ∀x = (x1, . . . , xn) ∈ V.

Show that N1 and N2 are norms on V .

Exercise 2.45 : Check that the maps D1 and D2 defined in Remark 2.6.3 are indeed distances on the
product space.

Exercise 2.46 : Given countably infinitely many metric spaces ((Mn, dn))n⩾1 which are assumed to be
uniformly bounded, i.e.,

∃A > 0, ∀n ⩾ 1, δ(Mn) < A.

Define the product space M =
∏

n⩾1 Mn and the following function on M × M ,

d(x, y) =
∑
n⩾1

2−ndn(xn, yn), ∀x, y ∈ M.

Show that d is a distance on M .
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Exercise 2.47 : Let U = {z ∈ C : |z| = 1}.

(1) Show that for any z0 ∈ U, the subset U\{z0} is connected. (Hint: show that it is arcwise con-
nected.)

(2) Construct a continuous bijective map from [0, 1) to U.

(3) Show that that there is no continuous bijective map from U to [0, 1].

(4) Deduce that U and [0, 1] are not homeomorphic.

Exercise 2.48 : Let (M, d) be a metric space, A and B be subsets of M . Suppose that B is connected and
A satisfies

B ∩ int(A) 6= ∅ and B ∩ int(M\A) 6= ∅.

Show that B ∩ ∂A 6= ∅.

Exercise 2.49 (Question 2.7.10) : Let (Ci)i∈I be a countable family of connected subsets, i.e., I =
{1, . . . , p} for some p ⩾ 1 or I = N. Suppose that for every i ∈ I , i 6= 1, we have Ci−1 ∩ Ci 6= ∅. Show
that C = ∪i∈ICi is connected by rewriting the proof of Proposition 2.7.8.

Exercise 2.50 : Let (M, d) be a metric space. Show that the the following statements are equivalent.

(i) (M, d) is connected.

(ii) Every proper nonempty subset of M has nonempty boundary in M .

(iii) Any real-valued continuous function defined on M has intermediate value property. That is, for
any continuous function f : (M, d) → (R, | · |), if x ∈ R is such that f(a) < x < f(b) for some
a, b ∈ M , then x ∈ f(M).

Exercise 2.51 : Let A and B be connected metric spaces. Let X ⊊ A and Y ⊊ B be proper subsets.
Show that C := (A × B)\(X × Y ) is connected in A × B. Why do we need to take X and Y to be
proper subsets?

Exercise 2.52 : Let A ⊆ R2 be defined as follows,

A := {(0, 0)} ∪ {(x, sin(1/x)) : x ∈ (0, 1]}.

We also define
A′ := {(x, sin(1/x)) : x ∈ (0, 1]}.

(1) Show that A′ is arcwise connected and deduce that it is connected.

(2) Show that A is not arcwise connected.

(3) Find A′ and deduce that A is connected.
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Exercise 2.53 : In this exercise, we will distinguish the notion between two “equinumerous sets” and
“homeomorphic sets”.

(1) Given two disjoint sets A and B, show that P(A) × P(B) ∼ P(A ∪ B).

(2) Use the fact that R ∼ P(N) to deduce that R2 ∼ R.

(3) Show that that there is no continuous bijective map from R2 to R.

Exercise 2.54 : Let (M, d) be a connected metric space and A ⊆ M be a closed subset of M . Suppose
that the boundary ∂A is connected. Let f : A → D = {0, 1} be a continuous function.

(1) Show that f|∂A is constant.

Without loss of generality, we may assume that f|∂A ≡ 0. Define the function g : M → D as below,

g(x) =
{

f(x) if x ∈ A,

0 if x ∈ Ac.

(1) Show that g−1(∅), g−1(D), g−1({0}), and g−1({1}) are closed subsets of M , and deduce that g is
continuous.

(2) Deduce that A is connected.

(3) If we remove the assumption that A ⊆ M is a closed subset, is it still true that A is connected?

Exercise 2.55 : Let U = {z ∈ C : |z| = 1} and f : U → R be a continuous function. Show that there
exists z ∈ U such that f(z) = f(−z).
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