Chapter 3: Compact spaces and complete spaces

Exercise 3.1 : Let (M,d) be a compact metric space and $f:M\to\mathbb{R}$ be a function. We recall that M satisfies the Borel-Lebesgue property.

(1) Suppose that f is locally bounded, that is for all $x \in M$, there exists $r_x > 0$ and $A_x > 0$ such that

$$\forall y \in B(x, r_x), \quad |f(y)| \leqslant A_x.$$

Show that f is bounded on M.

(2) Suppose that f is locally Lipschitz continuous, that is for all $x \in M$, there exists $r_x > 0$ and $K_x > 0$ such that

$$\forall y, z \in B(x, r_x), \quad |f(y) - f(z)| \leq K_x \cdot d(y, z).$$

Show that f is Lipschitz continuous on M.

Exercise 3.2 : Let (M,d) be a metric space, $A\subseteq M$ be a compact subset, and $B\subseteq M$ be a closed subset with $A\cap B=\varnothing$.

- (1) Apply the Borel-Lebesgue property to A to show that there exists an open subset $U \subseteq M$ such that $A \subseteq U$ and $\overline{U} \cap B = \emptyset$. Hint: B^c is open.
- (2) Suppose that B is also compact. Deduce from the previous question that there exists open sets U and V such that

$$A \subseteq U$$
, $B \subseteq V$, and $\overline{U} \cap \overline{V} = \emptyset$.

Exercise 3.3: Let (M, d) be a metric space and $(x_n)_{n \ge 1}$ be a convergent sequence in M with limit ℓ . Show that the set

$$\Gamma = \{x_n : n \geqslant 1\} \cup \{\ell\}$$

is compact using the Borel-Lebesgue property.

Exercise 3.4: Let (K_1,d_1) and (K_2,d_2) be two compact metric spaces. Show that the product space $K_1 \times K_2$ equipped with the product distance $d(x,y) = \max\{d_1(x_1,y_1),d_2(x_2,y_2)\}$ satisfies the Borel–Lebesgue property, and deduce that it is compact. Show that any finite product of compact metric spaces is compact.

第三章 :緊緻空間及完備空間

習題 3.1 : 令 (M,d) 為緊緻賦距空間且 $f:M\to\mathbb{R}$ 為函數。我們不要忘記,M 會滿足 Borel–Lebesgue 性質。

(1) 假設 f 是局部有界的,也就是說,對於所有 $x \in M$,存在 $r_x > 0$ 和 $A_x > 0$ 使得

$$\forall y \in B(x, r_x), \quad |f(y)| \leqslant A_x.$$

證明 f 在 M 上是有界的。

(2) 假設 f 是局部 Lipschitz 連續的,也就是說,對於所有 $x \in M$,存在 $r_x > 0$ 和 $K_x > 0$ 使得

$$\forall y, z \in B(x, r_x), \quad |f(y) - f(z)| \leq K_x \cdot d(y, z).$$

證明 f 在 M 上是 Lipschitz 連續的。

習題 3.2 : 令 (M,d) 為賦距空間, $A\subseteq M$ 為緊緻子集合,且 $B\subseteq M$ 為閉子集合,滿足 $A\cap B=\varnothing$ 。

- (1) 對 A 使用 Borel–Lebesgue 性質,來證明存在開子集和 $U\subseteq M$ 使得 $A\subseteq U$ 還有 $\overline{U}\cap B=\varnothing$ 。 提示: B^c 是開集。
- (2) 假設 B 也是緊緻的。從上述問題推得出來,存在開集 U 和 V 使得

$$A \subset U$$
, $B \subset V$, 以及 $\overline{U} \cap \overline{V} = \emptyset$.

習題 3.3 : 令 (M,d) 為賦距空間以及 $(x_n)_{n\geqslant 1}$ 為在 M 中的收斂序列,我們將他的極限記作 ℓ 。使用 Borel–Lebesgue 性質來證明集合

$$\Gamma = \{x_n : n \geqslant 1\} \cup \{\ell\}$$

是緊緻的。

習題 3.4 : 令 (K_1,d_1) 及 (K_2,d_2) 為兩個緊緻賦距空間。證明在積空間 $K_1 \times K_2$ 上賦予積距離 $d(x,y) = \max\{d_1(x_1,y_1),d_2(x_2,y_2)\}$ 會滿足 Borel-Lebesgue 性質,並推得他是緊緻的。證明任意有限個緊緻賦距空間的積空間還是緊緻的。

Exercise 3.5: Let (M, d) be a metric space and $(K_n)_{n \ge 1}$ be a sequence of nonempty compact sets of M. Suppose that $K_{n+1} \subseteq K_n$ for all $n \ge 1$. Set $K = \bigcap_{n \ge 1} K_n$.

- (1) Show that $K \neq \emptyset$.
- (2) Let U be an open set containing K. Show that there exists $n \ge 1$ such that $K_n \subseteq U$.

We note that when (M, d) is taken to be the Euclidean space \mathbb{R}^n , then (1) is the Cantor's intersection theorem.

Exercise 3.6: Let V and W be two normed vector spaces, $K \subseteq V$ be a compact subset. Let $f: K \to W$ be an injective continuous function. Show that f is a homeomorphism between K and L = f(K).

Exercise 3.7: Let I and J be intervals in \mathbb{R} , and $f:I\to J$ be a continuous and bijective function. Show that f^{-1} is continuous.

Exercise 3.8: Show Exercise 3.1 using the Bolzano–Weierstraß property.

Exercise 3.9: Let K_1, K_2 be two compact sets in a normed vector space. Show that the following set is compact,

$$K_1 + K_2 := \{x_1 + x_2 : x_1 \in K_1, x_2 \in K_2\}.$$

Exercise 3.10: Let K be a compact set in a metric space (M,d). Given a sequence $x=(x_n)_{n\geqslant 1}$ with values in K. Suppose that x only has one subsequential limit ℓ , that is, its set of subsequential limits, defined in Section 2.4.3, is the singleton set $\{\ell\}$. Show that $x_n \xrightarrow[n\to\infty]{} \ell$.

Exercise 3.11: Let Ω be an open set in the Euclidean space \mathbb{R}^n . Show that there exists an exhaustion of Ω by compact sets, that is, a sequence $(K_n)_{n\geq 1}$ satisfying

- (i) $K_n \subseteq \Omega$ for all $n \geqslant 1$.
- (ii) $K_n \subseteq K_{n+1}$ for all $n \geqslant 1$.
- (iii) $\Omega = \bigcup_{n \geq 1} K_n$.

Hint: see below¹.

Exercise 3.12 : Let V be a normed vector space, and $A, B \subseteq V$ be two subsets. Assume that A is closed. Let $f: A \to B$ be a function, and define its graph as

$$\Gamma_f = \{(x, f(x)) : x \in A\}.$$

- (1) If f is continuous, show that its graph Γ_f is closed. Note that we have seen a similar statement in Exercise 2.42.
- (2) Suppose that B is compact and Γ_f is closed. Show that f is continuous. Hint: you may use Exercise 3.10.

習題 3.5 : 令 (M,d) 為賦距空間且 $(K_n)_{n\geqslant 1}$ 為 M 中非空緊緻集合所構成的序列。假設對於所有 $n\geqslant 1$,我們有 $K_{n+1}\subseteq K_n$ 。設 $K=\bigcap_{n\geqslant 1}K_n$ 。

- (1) 證明 $K \neq \emptyset$ 。
- (2) 令 U 為包含 K 的開集。證明存在 $n \ge 1$ 使得 $K_n \subseteq U$ 。

我們注意到,當我們把 (M,d) 取做歐氏空間 \mathbb{R}^n ,那麼 (1) 就只是 Cantor 交集定理。

習題 3.6 : 令 V 及 W 為兩個賦範向量空間, $K \subseteq V$ 為緊緻子集合。令 $f: K \to W$ 為單射連續函數。證明 f 是個 K 與 L = f(K) 之間的同胚函數。

習題 3.8 : 使用 Bolzano-Weierstraß 性質來證明習題 3.1 中的性質。

$$K_1 + K_2 := \{x_1 + x_2 : x_1 \in K_1, x_2 \in K_2\}.$$

習題 3.10 : 令 K 為在賦距空間 (M,d) 中的緊緻集合。給定取值在 K 中的序列 $x=(x_n)_{n\geqslant 1}$ 。假設 x 只有一個子序列極限 ℓ ,也就是說,在第 2.4.3 小節中定義出來的子序列極限集合,會是個單元素集合 $\{\ell\}$ 。證明 $x_n \xrightarrow[n \to \infty]{} \ell$ 。

習題 3.11 : 令 Ω 為歐氏空間 \mathbb{R}^n 中的開集。證明我們能把 Ω 用緊緻集合逼近,也就是說,我們能找到序列 $(K_n)_{n\geqslant 1}$ 滿足:

- (i) K_n ⊂ Ω 對於所有 $n \ge 1$.
- (ii) $K_n \subseteq K_{n+1}$ 對於所有 $n \geqslant 1$.
- (iii) $\Omega = \bigcup_{n\geqslant 1} K_n$.

提示:如下1。

習題 3.12 : 令 V 為賦範向量空間,且 $A,B\subseteq V$ 為兩個子集合。假設 A 是閉集。令 $f:A\to B$ 為函數,定義他的圖為

$$\Gamma_f = \{(x, f(x)) : x \in A\}.$$

- (1) 如果 f 是連續的,證明他的圖 Γ_f 是閉的。不要忘記,在習題 2.42 中,我們有看過類似的敘述。
- (2) 假設 B 是緊緻且 Γ_f 是閉的。證明 f 是連續的。提示:你可以使用習題 3.10。

¹For $n \ge 1$, consider $L_n := \{x \in \mathbb{R}^n : d(x, \Omega^c) \ge 1/n\}$ and $K_n = \overline{B}(0, n) \cap L_n$.

 $^{{}^1}$ 對於 $n\geqslant 1$,考慮 $L_n:=\{x\in\mathbb{R}^n:d(x,\Omega^c)\geqslant 1/n\}$ 還有 $K_n=\overline{B}(0,n)\cap L_n$ 。

Exercise 3.13: Let $f:(E,d_E)\to (F,d_F)$ be a continuous function between two metric spaces.

- (1) Suppose that for every compact set $K \subseteq F$, the preimage $f^{-1}(K)$ is also compact. Show that f is a closed map, that is, for any closed subset $A \subseteq E$, the image f(A) is also closed. Hint: use Exercise 3.3.
- (2) Are there continuous maps which are not closed?
- (3) Let $n \ge 1$ be an integer. Consider the real vector space of polynomials of degree at most n, denoted by

$$\mathbb{R}_n[X] = \{ P \in \mathbb{R}[X] : \deg(P) \leqslant n \}.$$

We equip $\mathbb{R}_n[X]$ with one of the norms from Example 2.1.9. (For example, $||P||_{\infty} = \max_{0 \le k \le n} |a_k|$ for any $P = \sum_{0 \le k \le n} a_k X^k \in \mathbb{R}_n[X]$.) Let Γ_n be the set of monic polynomials of degree exactly n whose roots are all real. Show that Γ_n is closed in $\mathbb{R}_n[X]$. Hint: see below².

Exercise 3.14: Let (M, d) be a metric space. For any subsets A, B in M, we define

$$d(A,B) = \inf_{\substack{x \in A \\ y \in B}} d(x,y).$$

- (1) Let K_1 and K_2 be two compact subsets of M. Show that there exists $x_1 \in K_1$ and $x_2 \in K_2$ such that $d(x_1, x_2) = d(K_1, K_2)$. Deduce that if $K_1 \cap K_2 = \emptyset$, then $d(K_1, K_2) > 0$.
- (2) Let $K \subseteq M$ be compact, and $A \subseteq M$ be closed. Show that if $K \cap A = \emptyset$, then $d(K, A) \neq 0$.
- (3) In the previous question, is it enough to assume that both K and A are closed?

From now on, let us assume that (M, d) is the Euclidean space \mathbb{R}^n with $n \ge 1$.

(4) Let $A \subseteq M = \mathbb{R}^n$ be an unbounded closed subset and $f: A \to \mathbb{R}$ be a continuous map such that

$$\lim_{\substack{\|x\|\to\infty\\x\in A}} f(x) = +\infty. \tag{E3.1}$$

Show that there exists $x \in A$ such that $f(x) = \inf_{y \in A} f(y)$. Hint: see below³.

- (5) Let $K \subseteq M = \mathbb{R}^n$ be a compact subset and $A \subseteq M = \mathbb{R}^n$ be a closed subset. Show that there exists $x \in K$ and $y \in A$ such that d(x, y) = d(K, A).
- (6) If M is an infinite dimensional normed vector space, show that (5) does not hold. In other words, find an infinite dimensional normed vector space M, a compact subset $K \subseteq M$, a closed subset $A \subseteq M$ such that for any $x \in K$ and $y \in A$, we have $d(x, y) \neq d(K, A)$.

習題 3.13 : 令 $f:(E,d_E) \to (F,d_F)$ 為在兩個賦距空間之間的連續函數。

- (1) 假設對於每個緊緻集合 $K \subseteq F$,像原 $f^{-1}(K)$ 也是緊緻的。證明 f 是個閉函數,也就是說,對於任意閉子集合 $A \subset E$,像 f(A) 也是閉的。提示:使用習題 3.3 。
- (2) 是否存在不是閉函數的連續函數?
- (3) 令 為整數。考慮由次數最多為 的多項式所構成的實向量空間,記作

$$\mathbb{R}_n[X] = \{ P \in \mathbb{R}[X] : \deg(P) \leqslant n \}.$$

我們在 $\mathbb{R}_n[X]$ 上,賦予範例 2.1.9 中其中一個範數。(例如 $\|P\|_{\infty} = \max_{0 \le k \le n} |a_k|$ 對於任意 $P = \sum_{0 \le k \le n} a_k X^k \in \mathbb{R}_n[X]$ 。)令 Γ_n 為由次數剛好為 n,根皆是實數的首一多項式所構成的集合。證明 Γ_n 在 $\mathbb{R}_n[X]$ 裡面是閉的。提示:如下²。

習題 3.14 : \ominus (M,d) 為賦距空間。對於任意 M 的子集合 A,B,我們定義

$$d(A,B) = \inf_{\substack{x \in A \\ y \in B}} d(x,y).$$

- (1) 令 K_1 及 K_2 為兩個 M 的緊緻子集合。證明存在 $x_1 \in K_1$ 和 $x_2 \in K_2$ 使得 $d(x_1, x_2) = d(K_1, K_2)$ 。由此推得,如果 $K_1 \cap K_2 = \emptyset$,那麼 $d(K_1, K_2) > 0$ 。
- (2) 令 $K \subseteq M$ 為緊緻的,還有 $A \subseteq M$ 為閉的。證明如果 $K \cap A = \emptyset$,那麼 $d(K,A) \neq 0$ 。
- (3) 在上述問題中,如果只假設 K 和 A 是閉的,這是足夠的嗎?

從現在起,我們假設 (M,d) 是個歐氏空間 \mathbb{R}^n ,其中 $n \ge 1$ 。

$$\lim_{\substack{\|x\| \to \infty \\ x \in A}} f(x) = +\infty. \tag{E3.1}$$

證明存在 $x \in A$ 使得 $f(x) = \inf_{y \in A} f(y)$ 。提示:如下³。

- (5) 令 $K\subseteq M=\mathbb{R}^n$ 為緊緻子集合且 $A\subseteq M=\mathbb{R}^n$ 為閉子集合。證明存在 $x\in K$ 還有 $y\in A$ 使得 d(x,y)=d(K,A)。
- (6) 如果 M 是個無窮維度賦範向量空間,證明 (5) 不成立。換句話說,找出一個無窮維度賦範向量空間 M , $K\subseteq M$ 為緊緻子集合、 $A\subseteq M$ 為閉子集合,使得對於任意 $x\in K$ 還有 $y\in A$,我們有 $d(x,y)\neq d(K,A)$ 。

²A possible proof starts by showing that if r is a root of $P \in \mathbb{P}_n[X]$, then $|r| \leq \max\{1, \|P\|_{\infty}\}$, before applying this result to check the conditions in (1).

³Eq. (E3.1) means that for any large enough M>0, there exists R>0 such that $||x||\geqslant R$ implies that $f(x)\geqslant M$.

 $^{^2}$ 一個可能的證明方式是先證明如果 r 是 $P\in\mathbb{P}_n[X]$ 的根,那麼他會滿足 $|r|\leqslant\max\{1,\|P\|_\infty\}$,接著再使用這個結果來檢查 (1) 中的條件。

 $^{^3}$ 式 (E3.1) 代表著對於任何夠大的 M>0,存在 R>0 使得 $\|x\|\geqslant R$ 蘊含 $f(x)\geqslant M$ 。

Exercise 3.15: Let $(V, \|\cdot\|)$ be a normed vector space and $K \subseteq V$ be a compact subset. Consider a function $f: K \to K$ satisfying

$$\forall x, y \in K, \quad ||f(x) - f(y)|| \geqslant ||x - y||$$

Fix $a_0, b_0 \in K$, and define two iterative sequences as follow

$$\forall n \geqslant 0$$
, $a_{n+1} = f(a_n)$ and $b_{n+1} = f(b_n)$.

- (1) Show that for all $\varepsilon > 0$ and integer $p \geqslant 1$, there exists $k \geqslant p$ such that $||a_k a_0|| < \varepsilon$ and $||b_k b_0|| < \varepsilon$.
- (2) Deduce from the previous question that f(A) is dense in A.
- (3) Consider $u_n = ||a_n b_n||$ for $n \ge 0$. Show that $(u_n)_{n \ge 0}$ is eventually constant.
- (4) Deduce that f is an isometry, so injective.
- (5) Show that f is surjective.

Exercise 3.16: Let (M,d) be a compact metric space and $f:M\to M$ be a function satisfying

$$\forall x, y \in M, x \neq y, \quad d(f(x), f(y)) < d(x, y).$$

- (1) Show that f has a unique fixed point, that we denote by α in what follows. Hint: see below⁴.
- (2) Let $x_0 \in M$. Define iteratively the sequence $x_{n+1} = f(x_n)$ for $n \ge 0$. Show that $x_n \xrightarrow[n \to \infty]{} \alpha$.
- (3) If (M, d) is only a complete metric space, are these results still valid?

Exercise 3.17: Let $V = \mathcal{C}([0, 2\pi], \mathbb{C})$ be equipped with the 2-norm $\|\cdot\|_2$. For $n \in \mathbb{N}$, set $f_n(x) = e^{\mathrm{i} nx}$.

- (1) Find the value of $||f_n f_m||_2$ for $n, m \in \mathbb{N}$.
- (2) Deduce that the bounded closed ball $\overline{B}(0,1)$ is not compact.

Exercise 3.18: Let V be a finite dimensional normed vector space and $K \subseteq V$ be a compact subset. Let r > 0 and $K_r := \bigcup_{x \in K} \overline{B}(x,r)$. Show that K_r is a compact subset of V. What happens if V is an infinite dimensional normed vector space?

習題 3.15 : 令 $(V, \|\cdot\|)$ 為賦範向量空間且 $K \subseteq V$ 為緊緻子集合。考慮滿足下列條件的函數 $f: K \to K$:

$$\forall x, y \in K, \quad ||f(x) - f(y)|| \geqslant ||x - y||$$

固定 $a_0, b_0 \in K$, 並定義下面兩個迭代序列:

$$\forall n \geq 0, \quad a_{n+1} = f(a_n) \quad \text{UR} \quad b_{n+1} = f(b_n).$$

- (1) 證明對於所有 $\varepsilon > 0$ 還有整數 $p \geqslant 1$,會存在 $k \geqslant p$ 使得 $||a_k a_0|| < \varepsilon$ 還有 $||b_k b_0|| < \varepsilon$ 。
- (2) 從上述問題推得 f(A) 在 A 中是稠密的。
- (3) 考慮 $u_n = ||a_n b_n||$ 對於 $n \ge 0$ 。證明 $(u_n)_{n \ge 0}$ 會固定在常數上。
- (4) 推得 ƒ 是個等距變換,所以也是單射函數。
- (5) 證明 f 是個滿射函數。

$$\forall x, y \in M, x \neq y, \quad d(f(x), f(y)) < d(x, y).$$

- (1) 證明 f 有唯一的不動點,我們把他記作 α 。提示:如下⁴。
- (2) 令 $x_0 \in M$ 。以迭代方式定義序列 $x_{n+1} = f(x_n)$ 對於 $n \ge 0$ 。證明 $x_n \xrightarrow[n \to \infty]{} \alpha$ 。
- (3) 如果 (M,d) 只是個完備賦距空間,上面的結果還會是對的嗎?

習題 3.17 : 令 $V = \mathcal{C}([0, 2\pi], \mathbb{C})$ 並賦予範數 $\|\cdot\|_2$ 。對於 $n \in \mathbb{N}$,設 $f_n(x) = e^{i nx}$ 。

- (1) 對於所有 $n, m \in \mathbb{N}$,求 $||f_n f_m||_2$ 的值。
- (2) 推得有界的閉球 $\overline{B}(0,1)$ 不是緊緻的。

習題 3.18 : 令 V 為有限維度賦範向量空間以及 $K\subseteq V$ 為緊緻子集合。令 r>0 還有 $K_r:=\bigcup_{x\in K}\overline{B}(x,r)$ 。證明 K_r 是 V 的緊緻子集合。如果 V 是個無窮維度的賦範向量空間,會發生什麼事呢?

 $^{^4}$ Look at the map $x \mapsto d(x, f(x))$.

 $^{^4}$ 可以考慮函數 $x \mapsto d(x, f(x))$ 。

Exercise 3.19 : Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Show that the following conditions are equivalent.

- (i) For all M > 0, there exists R > 0 such that ||x|| > R implies that |f(x)| > M.
- (ii) For any bounded subset $B \subseteq \mathbb{R}$, the preimage $f^{-1}(B)$ is bounded in \mathbb{R}^n .
- (iii) For any compact subset $K \subseteq \mathbb{R}$, the preimage $f^{-1}(K)$ is compact in \mathbb{R}^n .

Exercise 3.20 (Characterization of complete metric spaces): Let (X, d) be a metric space. Show that the following statements are equivalent.

- (i) The metric space (X, d) is complete.
- (ii) Each sequence $(x_n)_{n\geqslant 1}$ in X having the property $\sum_{n=1}^{\infty} d(x_{n+1},x_n) < \infty$ is convergent.
- (iii) Each Cauchy sequence $(x_n)_{n\geqslant 1}$ in X has a convergent subsequence.

Exercise 3.21: Show that a metric space (M, d) is compact if and only if it is precompact and complete.

Exercise 3.22: Given a sequence of metric spaces $(M_1, d_1), \ldots, (M_n, d_n)$ and consider the product metric space (M, d) given by $M = M_1 \times \cdots \times M_n$ and the product distance defined in Definition 2.6.1. Show that the following properties are equivalent.

- (i) (M, d) is complete.
- (ii) (M_i, d_i) is complete for all $1 \le i \le n$.

Exercise 3.23: Let (M, d) and (M', d') be two metric spaces, and $A \subseteq M$ be a dense subset.

(1) Consider a continuous function $f:(A,d)\to (M',d')$ and suppose that

$$\forall x \in M \backslash A, \quad \lim_{\substack{y \to x \\ y \in A}} f(y) \text{ there exists.}$$

Show that there exists a unique continuous function $g: M \to M'$ such that $g_{|A} \equiv f$. The function g is called the *continuation* of f on M.

(2) Suppose that (M',d') is complete and consider a uniformly continuous function $f:(A,d)\to (M',d')$. Show that there exists a unique uniformly continuous function $g:M\to M'$ such that $g_{|A}\equiv f$. The function g is called the *uniform continuation* of f on M.

Exercise 3.24 : Let (M,d) be a complete metric space and $p \ge 1$ be an integer. Consider a map $f: M \to M$ such that f^p is a contraction.

- (1) Show that f has a unique fixed point, denoted by x.
- (2) For any $x_0 \in M$, define $x_{n+1} = f(x_n)$ for $n \ge 0$, and show that $x_n \xrightarrow[n \to \infty]{} x$.

- (i) 對於所有 M > 0,存在 R > 0 使得 ||x|| > R 蘊含 |f(x)| > M。
- (ii) 對於任意有界子集合 $B \subset \mathbb{R}$,像原 $f^{-1}(B)$ 在 \mathbb{R}^n 中有界。
- (iii) 對於任意緊緻子集合 $K\subseteq\mathbb{R}$,像原 $f^{-1}(K)$ 在 \mathbb{R}^n 中是緊緻的。

習題 3.20 【完備空間的描述】: \ominus (X,d) 為賦距空間。證明下列敘述是等價的。

- (i) 賦距空間 (*X*, *d*) 是完備的。
- (ii) 每個 X 中的序列 $(x_n)_{n\geq 1}$,若滿足 $\sum_{n=1}^{\infty} d(x_{n+1},x_n) < \infty$ 的性質,那麼他會收斂。
- (iii) 所有 X 中的柯西序列 $(x_n)_{n\geq 1}$ 有會收斂的子序列。

習題 3.21 : 給定賦距空間 (M,d)。證明若且唯若他是緊緻的,則他是預緊緻且完備。

習題 3.22 : 給定賦距空間序列 $(M_1,d_1),\ldots,(M_n,d_n)$ 並考慮積賦距空間 (M,d) 其中積空間寫作 $M=M_1\times\cdots\times M_n$ 以及取定義 2.6.1 中的積距離。證明下列性質是等價的。

- (i) (M, d) 是完備的。
- (ii) 對於所有 $1 \leq i \leq n$,賦距空間 (M_i, d_i) 是完備的。

(1) 考慮連續函數 $f: (A, d) \to (M', d')$ 並假設

$$\forall x \in M \backslash A$$
, $\lim_{\substack{y \to x \\ y \in A}} f(y)$ 存在.

證明存在唯一的連續函數 $g:M\to M'$ 使得 $g_{|A}\equiv f$ 。我們會說函數 g 是函數 f 在 M 上的 連續延伸。

(2) 假設 (M',d') 是完備的,並考慮均匀連續函數 $f:(A,d)\to (M',d')$ 。證明存在唯一的均匀連續函數 $g:M\to M'$ 使得 $g_{|A}\equiv f$ 。我們會說函數 g 是函數 f 在 M 上的均匀連續延伸。

習題 3.24 : 令 (M,d) 為完備賦距空間且 $p\geqslant 1$ 為整數。考慮 $f:M\to M$ 使得 f^p 是個收縮映射。

- (1) 證明 f 有唯一的固定點,記作 x。
- (2) 對於任意 $x_0 \in M$,對於所有 $n \ge 0$,我們定義 $x_{n+1} = f(x_n)$ 。證明 $x_n \xrightarrow[n \to \infty]{} x$ 。

Exercise 3.25: Let $\varphi:[0,1] \to [0,1]$ be a continuous function which is not identically 1 and $\alpha \in \mathbb{R}$. We denote by $\mathcal{C}^1([0,1],\mathbb{R})$ the space of continuous and differentiable functions from [0,1] to \mathbb{R} such that the derivative is also continuous. We want to show that there exists a unique solution $f \in \mathcal{C}^1([0,1],\mathbb{R})$ to the differential equation,

$$f(0) = \alpha$$
, $f'(x) = f(\varphi(x))$, $\forall x \in [0, 1]$.

Let $M = \mathcal{C}([0.1], \mathbb{R})$ be equipped with $\|\cdot\|_{\infty}$, which is a Banach space as we will see later in Exercise 3.30. Define $T: M \to M$ as below,

$$\forall x \in [0, 1], \quad Tf(x) = \alpha + \int_0^x f(\varphi(t)) dt.$$

Show that $T^2 = T \circ T$ is a contraction, and conclude using Exercise 3.23.

Exercise 3.26: Let V be a normed vector space over a field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Consider a linear form $f \in \mathcal{L}(V, \mathbb{K})$ which is not identically zero, then its kernel

$$Ker(f) := \{x \in V : f(x) = 0\}$$
 (E3.2)

is called an hyperplane (超平面) of V.

- (1) Show that ker f is either closed or dense in V.
- (2) Show that f is continuous if and only if ker f is closed in V.

Exercise 3.27: Let $\ell^{\infty}(\mathbb{R})$ be the normed space of bounded sequences of real numbers, equipped with the infinite norm $\|\cdot\|_{\infty}$. Consider the subspace $V\subseteq \ell^{\infty}(\mathbb{R})$ consisting of the convergent sequences. Let us define the map

$$\varphi: V \to \mathbb{R}$$
$$(a_n)_{n\geqslant 1} \mapsto \lim_{n\to\infty} a_n.$$

- (1) Check that V is a subvector space, and that φ is a linear form, that is $\varphi \in \mathcal{L}(V, \mathbb{R})$.
- (2) Show that φ is continuous, and that $\|\varphi\| \leq 1$.
- (3) Find a sequence $a = (a_n)_{n \ge 1}$ such that $|\varphi(a)| = ||a||_{\infty}$ and deduce that $||\varphi|| = 1$.

習題 3.25 : 令 $\varphi:[0,1]\to[0,1]$ 為連續函數,假設他不是常數函數 1 ,並給定 $\alpha\in\mathbb{R}$ 。我們把所有從 [0,1] 到 \mathbb{R} 連續可微、且微分也連續的函數構成的集合記作 $\mathcal{C}^1([0,1],\mathbb{R})$ 。我想要證明下列微分方程式存在唯一的解 $f\in\mathcal{C}^1([0,1],\mathbb{R})$:

$$f(0) = \alpha$$
, $f'(x) = f(\varphi(x))$, $\forall x \in [0, 1]$.

令 $M=\mathcal{C}([0.1],\mathbb{R})$,並賦予範數 $\|\cdot\|_\infty$,稍後我們會在習題 3.30 中看到他會是個 Banach 空間。我們定義 $T:M\to M$ 如下:

$$\forall x \in [0,1], \quad Tf(x) = \alpha + \int_0^x f(\varphi(t)) dt.$$

證明 $T^2 = T \circ T$ 是個收縮映射,並且使用習題 3.23 來總結。

習題 3.26 : 令 V 為在域 $\mathbb{K}=\mathbb{R}$ 或 \mathbb{C} 上的賦範向量空間。考慮線性泛函 $f\in\mathcal{L}(V,\mathbb{K})$ 並假設他不是處處為零,那麼他的核

$$Ker(f) := \{x \in V : f(x) = 0\}$$
(E3.2)

稱作 V 中的超平面 (hyperplane)。

- (1) 證明 $\ker f$ 在 V 中是閉集,或是稠密的。
- (2) 證明若且唯若 $\ker f$ 在 V 中是閉集,那麼 f 是連續的。

習題 3.27 : 令 $\ell^\infty(\mathbb{R})$ 為由有界實數序列構成的賦範空間,其中我們考慮的範數是 $\|\cdot\|_\infty$ 。考慮由收斂序列構成的子空間 $V\subseteq\ell^\infty(\mathbb{R})$ 。我們定義函數

$$\varphi: V \to \mathbb{R}$$
$$(a_n)_{n\geqslant 1} \mapsto \lim_{n\to\infty} a_n.$$

- (1) 檢查 V 是個子向量空間,還有 φ 是個線性泛函,也就是說 $\varphi \in \mathcal{L}(V,\mathbb{R})$ 。
- (2) 證明 φ 是連續的,還有 $\|\varphi\| \leq 1$ 。
- (3) 找到序列 $a=(a_n)_{n\geqslant 1}$ 使得 $|\varphi(a)|=\|a\|_{\infty}$ 並推得 $\|\|\varphi\|\|=1$ 。

Exercise 3.28 : Let $\mathcal{C}([0,1],\mathbb{R})$ be the space of real continuous functions on [0,1]. Consider the subspace

$$V = \{ f \in \mathcal{C}([0,1], \mathbb{R}) : f(0) = 0 \}.$$

Let $g \in \mathcal{C}([0,1],\mathbb{R})$ be the function $g: x \mapsto 1-x$. Consider the endomorphism

$$\begin{array}{cccc} F: & V & \to & V \\ & f & \mapsto & fg. \end{array}$$

- (1) Show that F is linear and continuous.
- (2) Show that ||F|| = 1.

Exercise 3.29: Consider the linear form

$$\varphi: \ \mathcal{C}([0,1],\mathbb{R}) \to \mathbb{R}$$
 $f \mapsto f(1)$,

where we equip $C([0,1],\mathbb{R})$ with $\|\cdot\|_1$.

- (1) For every integer $n \ge 1$, consider the function $f_n : t \mapsto t^n$. Compute $\varphi(f_n)$ and $||f_n||_1$.
- (2) Show that φ is not continuous.

Exercise 3.30 : Show that the space of sequences $\ell^1(\mathbb{R})$ and $\ell^2(\mathbb{R})$, defined in Example 2.1.6, are Banach spaces. Is $\ell^{\infty}(\mathbb{R})$ a Banach space?

Exercise 3.31: Let (M, N) be a complete normed vector space. Show that $\mathcal{C}([0, 1], M)$, the space of continuous functions from [0, 1] to M, equipped with the norm

$$\forall f \in \mathcal{C}([0,1], M), \quad \|f\|_{\infty} = \sup_{x \in [0,1]} N(f(x)) < \infty$$

is a Banach space. In particular, the space $\mathcal{C}([0,1],\mathbb{R})$ equipped with $\|\cdot\|_{\infty}$ is Banach. Hint: see below⁵.

$$V = \{ f \in \mathcal{C}([0,1], \mathbb{R}) : f(0) = 0 \}.$$

令 $g \in \mathcal{C}([0,1],\mathbb{R})$ 定義做 $g: x \mapsto 1-x$ 。考慮自同態

$$F: V \to V$$
$$f \mapsto fg.$$

- (1) 證明 *F* 是線性且連續。
- (2) 證明 |||F||| = 1∘

習題 3.29 : 考慮線性泛函

$$\varphi: \ \mathcal{C}([0,1],\mathbb{R}) \to \mathbb{R}$$

$$f \mapsto f(1)$$

其中我們賦予 $\mathcal{C}([0,1],\mathbb{R})$ 範數 $\|\cdot\|_1$ 。

- (1) 對於每個整數 $n \ge 1$,考慮函數 $f_n: t \mapsto t^n$ 。計算 $\varphi(f_n)$ 及 $||f_n||_1$ 。
- (2) 證明 φ 不是連續的。

習題 3.30 : 證明在範例 2.1.6 中,我們所定義的序列集合構成的空間 $\ell^1(\mathbb{R})$ 和 $\ell^2(\mathbb{R})$ 皆是 Banach 空間。賦範空間 $\ell^\infty(\mathbb{R})$ 會是個 Banach 空間嗎?

習題 3.31 : 令 (M,N) 為完備賦範向量空間。證明由 [0,1] 到 M 連續函數構成的空間 $\mathcal{C}([0,1],M)$,賦予範數

$$\forall f \in \mathcal{C}([0,1], M), \quad \|f\|_{\infty} = \sup_{x \in [0,1]} N(f(x)) < \infty$$

時,會是個 Banach 空間。我們可以由此推得,空間 $\mathcal{C}([0,1],\mathbb{R})$ 配上範數 $\|\cdot\|_{\infty}$ 是個 Banach 空間。提示:如下 5 。

⁵You may follow the steps suggested in Remark 3.2.19.

⁵你可以參考註解 3.2.19 並使用類似的步驟來證明。

Exercise 3.32: Let E be an Euclidean space and $u \in \mathcal{L}(E)$. Suppose that u is symmetric, that is

$$\forall x, y \in E, \quad \langle u(x), y \rangle = \langle x, u(y) \rangle.$$

Let S be the centered unit sphere of E and $\varphi: S \to \mathbb{R}$ be a map defined by $\varphi(x) = \langle x, u(x) \rangle$.

- (1) Justify φ attains its maximum on S. We will write $x_0 \in S$ where this maximum is attained.
- (2) Let y be a unit vector that is orthogonal to x. We define the following two functions on \mathbb{R} . For $t \in \mathbb{R}$, let

$$x(t) = (\cos t)x_0 + (\sin t)y$$
 and $f(t) = \langle u(x(t)), x(t) \rangle$.

Show that f attains its maximum at 0, and deduce that y is orthogonal to $u(x_0)$.

(3) Show that x_0 is an eigenvalue of u.

Exercise 3.33 : Let $(V, \|\cdot\|)$ be a normed space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let \hat{V} be the completion of V as in Proposition 3.3.6. Define the addition and the scalar product on \hat{V} by

$$(x_n)_{n\geqslant 1} + (y_n)_{n\geqslant 1} := (x_n + y_n)_{n\geqslant 1}, \text{ and } a \cdot (x_n)_{n\geqslant 1} := (ax_n)_{n\geqslant 1}$$

for all $(x_n)_{n\geqslant 1}, (y_n)_{n\geqslant 1}\in \hat{V}$ and $a\in\mathbb{K}$. Show that these two operations makes \hat{V} into a vector space, and thus a Banach space.

Exercise 3.34: In this exercise, we give another construction of the completion of a metric space. Let (X, d) be a nonempty metric space, and fix a point $x_0 \in X$.

- (1) Let $\mathcal{B}(X,\mathbb{R})$ be the set of all the bounded real-valued functions on X, equipped with the norm $\|\cdot\|_{\infty}$. Show that $(\mathcal{B}(X,\mathbb{R}),\|\cdot\|_{\infty})$ is complete.
 - Hint: It is very similar to Exercise 3.30. If $(f_n)_{n\geqslant 1}$ is a Cauchy sequence in $\mathcal{B}(X,\mathbb{R})$, then $(f_n(x))_{n\geqslant 1}$ is a Cauchy sequence in \mathbb{R} for all $x\in X$. The limit of $(f_n)_{n\geqslant 1}$ will be $g(x):=\lim_{n\to\infty}f_n(x)$.
- (2) For every $x \in X$, define the function $f_x : X \to \mathbb{R}$ by

$$f_x(y) = d(y, x) - d(y, x_0).$$

Show that f_x is bounded and thus $f_x \in \mathcal{B}(X, \mathbb{R})$.

- (3) Show that the map $F: X \to \mathcal{B}(X,\mathbb{R}), x \mapsto f_x$, is an isometry.
- (4) Deduce that $(\overline{F(X)}, \|\cdot\|_{\infty})$ is a completion of (X, d).

習題 3.32 : 令 E 為歐氏空間且 $u \in \mathcal{L}(E)$ 。假設 u 是對稱的,也就是說

$$\forall x, y \in E, \quad \langle u(x), y \rangle = \langle x, u(y) \rangle.$$

令 $S \triangleq E$ 的置中單位求殼以及 $\varphi: S \to \mathbb{R}$ 為定義做 $\varphi(x) = \langle x, u(x) \rangle$ 的函數。

- (1) 解釋 φ 為什麼會在 S 上會碰到他的最大值。我們記 $x_0 \in S$ 為函數碰到此最大值的一個點。
- (2) 令 y 為和 x 正交的單位向量。我們定義下列兩個在 \mathbb{R} 上的函數。對於 $t \in \mathbb{R}$,令

$$x(t) = (\cos t)x_0 + (\sin t)y$$
 以及 $f(t) = \langle u(x(t)), x(t) \rangle$.

證明 $f \in 0$ 會取最大值,並推得 y 與 $u(x_0)$ 正交。

(3) 證明 x_0 是 u 的特徵值。

習題 3.33 : 令 $(V, \|\cdot\|)$ 為在 $\mathbb{K} = \mathbb{R}$ 或 \mathbb{C} 上的賦範向量空間。我們使用命題 3.3.6 中的記號,令 \hat{V} 為 V 的完備化空間。在 \hat{V} 上我們定義加法還有純量積:

$$(x_n)_{n\geqslant 1} + (y_n)_{n\geqslant 1} := (x_n + y_n)_{n\geqslant 1}, \quad \text{VB} \quad a \cdot (x_n)_{n\geqslant 1} := (ax_n)_{n\geqslant 1}$$

對於所有 $(x_n)_{n\geqslant 1}, (y_n)_{n\geqslant 1}\in \hat{V}$ 還有 $a\in\mathbb{K}$ 。證明這兩個運算讓 \hat{V} 變成向量空間,也就是說他會是個 Banach 空間。

習題 3.34 : 在此習題中,我們用另外的方式來把賦距空間完備化。令 (X,d) 為非空賦距空間,並固定 $x_0 \in X$ 。

(1) 令 $\mathcal{B}(X,\mathbb{R})$ 為所有 X 上有界實數函數構成的集合,並且賦予範數 $\|\cdot\|_{\infty}$ 。證明 $(\mathcal{B}(X,\mathbb{R}),\|\cdot\|_{\infty})$ 是完備的。

提示:與習題 3.30 非常類似。如果 $(f_n)_{n\geqslant 1}$ 是個 $\mathcal{B}(X,\mathbb{R})$ 中的柯西序列,那麼對於所有 $x\in X$, $(f_n(x))_{n\geqslant 1}$ 會是 \mathbb{R} 中的柯西序列。序列 $(f_n)_{n\geqslant 1}$ 的極限會是 $g(x):=\lim_{n\to\infty}f_n(x)$ 。

(2) 對於所有 $x \in X$, 定義函數 $f_x : X \to \mathbb{R}$ 如下:

$$f_x(y) = d(y, x) - d(y, x_0).$$

證明 f_x 有界,因此 $f_x \in \mathcal{B}(X,\mathbb{R})$ 。

- (3) 證明映射 $F: X \to \mathcal{B}(X, \mathbb{R}), x \mapsto f_x$ 是個等距變換。
- (4) 由此推得 $(\overline{F(X)}, \|\cdot\|_{\infty})$ 是 (X, d) 的完備化空間。

Exercise 3.35 : The extended complex plane $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is defined to be the union of \mathbb{C} with an extra point ∞ .

(1) Show that the function d defined on $\widehat{\mathbb{C}} \times \widehat{\mathbb{C}}$ by

$$d(z_1, z_2) = \frac{2|z_1 - z_2|}{\sqrt{(1 + |z_1|^2)(1 + |z_2|^2)}}$$
 for all $z_1, z_2 \in \mathbb{C}$
$$d(z_1, \infty) = \frac{2}{\sqrt{1 + |z_1|^2}}$$
 for all $z_1 \in \mathbb{C}$,

is a metric on $\widehat{\mathbb{C}}$.

(2) Show that $(\widehat{\mathbb{C}}, d)$ is a complete and compact metric space.

習題 3.35 : 擴充複數平面 $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ 是 \mathbb{C} 與額外的點 ∞ 的聯集。

(1) 我們在 $\widehat{\mathbb{C}} \times \widehat{\mathbb{C}}$ 上定義函數 d:

$$\begin{split} d(z_1,z_2) &= \frac{2|z_1-z_2|}{\sqrt{(1+|z_1|^2)(1+|z_2|^2)}} \\ d(z_1,\infty) &= \frac{2}{\sqrt{1+|z_1|^2}} \end{split} \qquad \qquad$$
對於所有 $z_1,z_2 \in \mathbb{C},$

證明他在 $\hat{\mathbb{C}}$ 上是個距離。

(2) 證明 $(\widehat{\mathbb{C}},d)$ 是個完備且緊緻的賦距空間。