Chapter 3: Compact spaces and complete spaces

BoE  BHTEEATHEER

Exercise 3.1 : Let (M, d) be a compact metric space and f : M — R be a function. We recall that M
satisfies the Borel-Lebesgue property.

(1) Suppose that f is locally bounded, that is for all z € M, there exists 7, > 0 and A, > 0 such that
Yy € B(z,r2), |f(y)] < As.
Show that f is bounded on M.

(2) Suppose that f is locally Lipschitz continuous, that is for all x € M, there exists r, > 0 and
K, > 0 such that

Vy,ZGB(l’,Tx), |f(y)_f(z)| <K$'d(y7z)'

Show that f is Lipschitz continuous on M.

Exercise 3.2 : Let (M, d) be a metric space, A C M be a compact subset, and B C M be a closed subset
with AN B =@.

(1) Apply the Borel-Lebesgue property to A to show that there exists an open subset U C M such
that A C U and U N B = @. Hint: B¢ is open.

(2) Suppose that B is also compact. Deduce from the previous question that there exists open sets U
and V such that
ACU, BCV, and UNV =02.

Exercise 3.3 : Let (M, d) be a metric space and (z,),>1 be a convergent sequence in M with limit £.
Show that the set
F={z,:n>1}U{l}

is compact using the Borel-Lebesgue property.

Exercise 3.4 : Let (K1,d;) and (K3, ds) be two compact metric spaces. Show that the product space
K1 x K5 equipped with the product distance d(x,y) = max{d;(x1,y1), d2(z2,y2)} satisfies the Borel-
Lebesgue property, and deduce that it is compact. Show that any finite product of compact metric spaces
is compact.
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Exercise 3.5 : Let (M, d) be a metric space and (K, ),>1 be a sequence of nonempty compact sets of M.
Suppose that K, 11 C K, foralln > 1. Set K = Ny>1 K.

(1) Show that K # &.
(2) Let U be an open set containing /. Show that there exists n > 1 such that K,, C U.

We note that when (M, d) is taken to be the Euclidean space R", then (1) is the Cantor’s intersection
theorem.

Exercise 3.6 : Let VV and I¥ be two normed vector spaces, K C V be a compact subset. Let f : K — W
be an injective continuous function. Show that f is a homeomorphism between K and L = f(K).

Exercise 3.7 : Let [ and J be intervals in R, and f : I — J be a continuous and bijective function. Show
that £~ is continuous.

Exercise 3.8 : Show Exercise 3.1 using the Bolzano-Weierstraf3 property.

Exercise 3.9 : Let K, K5 be two compact sets in a normed vector space. Show that the following set is
compact,
Ki+ Ky :={x1 +x2: 21 € K1,29 € Ks}.

Exercise 3.10 : Let K be a compact set in a metric space (M, d). Given a sequence x = (&, )n>1 With
values in K. Suppose that z only has one subsequential limit ¢, that is, its set of subsequential limits,
defined in Section 2.4.3, is the singleton set {¢}. Show that x,, — L.

n—oo

Exercise 3.11 : Let {2 be an open set in the Euclidean space R". Show that there exists an exhaustion of
Q) by compact sets, that is, a sequence (K},),>1 satisfying

(1) K, CQforalln > 1.
(i) K, € Kpqq foralln > 1.
(iil) 2 =Upz1K,.

Hint: see below’.

Exercise 3.12: Let V be a normed vector space, and A, B C V be two subsets. Assume that A is closed.
Let f : A — B be a function, and define its graph as

I'y={(z, f(z)) : x € A}

(1) If f is continuous, show that its graph I'y is closed. Note that we have seen a similar statement in
Exercise 2.42.

(2) Suppose that B is compact and 'y is closed. Show that f is continuous. Hint: you may use
Exercise 3.10.

"Forn > 1, consider L, := {x € R" : d(2,Q°) > 1/n} and K,, = B(0,n) N L.
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Exercise 3.13: Let f : (E,dg) — (F,dr) be a continuous function between two metric spaces.

(1) Suppose that for every compact set K C F, the preimage f~!(K) is also compact. Show that f
is a closed map, that is, for any closed subset A C F, the image f(A) is also closed. Hint: use
Exercise 3.3.

(2) Are there continuous maps which are not closed?

(3) Letn > 1Dbe an integer. Consider the real vector space of polynomials of degree at most n, denoted

by
R,[X] = {P € R[X] : deg(P) < n}.

We equip R,,[ X ] with one of the norms from Example 2.1.9. (For example, || P|| ., = maxo<k<n |ak|
forany P =3 gck<n apX* € R,[X].) Let T',, be the set of monic polynomials of degree exactly n
whose roots are all real. Show that T, is closed in R,,[X]. Hint: see below?.

Exercise 3.14 : Let (M, d) be a metric space. For any subsets A, B in M, we define

d(A, B) = inf d(z,y).
yeB

(1) Let K1 and K3 be two compact subsets of M. Show that there exists x; € K; and 22 € K3 such
that d((]?l, 1‘2) = d(Kl, KQ). Deduce that if K1 N K9 = &, then d(Kl, KQ) > 0.

(2) Let K C M be compact, and A C M be closed. Show that if K N A = &, then d(K, A) # 0.
(3) In the previous question, is it enough to assume that both K and A are closed?
From now on, let us assume that (M, d) is the Euclidean space R™ with n > 1.

(4) Let A C M = R"™ be an unbounded closed subset and f : A — R be a continuous map such that

lim f(z) = +oc. (E3.1)
[|z]|—o0
z€A

Show that there exists € A such that f(z) = infyca f(y). Hint: see below”.

(5) Let K C M = R"™ be a compact subset and A C M = R" be a closed subset. Show that there
exists z € K and y € A such that d(z,y) = d(K, A).

(6) If M is an infinite dimensional normed vector space, show that (5) does not hold. In other words,
find an infinite dimensional normed vector space M, a compact subset K C M, a closed subset
A C M such that for any € K and y € A, we have d(z,y) # d(K, A).

®A possible proof starts by showing that if r is a root of P € P, [X], then |r| < max{L, | P||_}, before applying this result to
check the conditions in (1).
’Eq. (E3.1) means that for any large enough M > 0, there exists R > 0 such that ||z|| > R implies that f(z) > M.
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Exercise 3.15 : Let (V,||-||) be a normed vector space and KX C V be a compact subset. Consider a
function f : K — K satisfying

Vo,y € K, |[f(x) = FW)ll = [l =yl

Fix ag, by € K, and define two iterative sequences as follow

VYn >0, apt1 = f(an) and by = f(bn).

(1) Show that for all ¢ > 0 and integer p > 1, there exists k& > p such that |jax — ag|| < ¢ and
ku — bo” < €.

(2) Deduce from the previous question that f(A) is dense in A.
(3) Consider u,, = ||a, — by|| for n > 0. Show that (u,)n>0 is eventually constant.
(4) Deduce that f is an isometry, so injective.

(5) Show that f is surjective.

Exercise 3.16 : Let (M, d) be a compact metric space and f : M — M be a function satisfying

Vae,y € Moz #y, d(f(x), f(y) <d(x,y).

(1) Show that f has a unique fixed point, that we denote by « in what follows. Hint: see below”.

(2) Let xy € M. Define iteratively the sequence z,,+1 = f(x,) for n > 0. Show that =, —
n o

(3) If (M, d) is only a complete metric space, are these results still valid?

Exercise 3.17 : Let V = C([0, 27], C) be equipped with the 2-norm ||-||,. For n € N, set f,,(z) = €'"®.
(1) Find the value of || f;, — fm ||, for n,m € N.

(2) Deduce that the bounded closed ball B(0, 1) is not compact.

Exercise 3.18 : Let V' be a finite dimensional normed vector space and K C V be a compact subset. Let
r > 0and K, := Uzex B(x,r). Show that K, is a compact subset of V. What happens if V' is an infinite
dimensional normed vector space?

*Look at the map = — d(z, f(x)).
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Exercise 3.19 : Let f : R™ — R be a continuous function. Show that the following conditions are
equivalent.

(i) Forall M > 0, there exists R > 0 such that ||z|| > R implies that | f(z)| > M.
(ii) For any bounded subset B C R, the preimage f~!(B) is bounded in R™.
(iii) For any compact subset K C R, the preimage f~!(K) is compact in R™.
Exercise 3.20 (Characterization of complete metric spaces) : Let (X, d) be a metric space. Show that the
following statements are equivalent.
(i) The metric space (X, d) is complete.
(i) Each sequence (x,)n>1 in X having the property > o2 ; d(zp+1,%,) < 00 is convergent.

(iii) Each Cauchy sequence (x,),>1 in X has a convergent subsequence.
Exercise 3.21 : Show that a metric space (M, d) is compact if and only if it is precompact and complete.

Exercise 3.22 : Given a sequence of metric spaces (M1, dy), . .., (M,,d,) and consider the product met-
ric space (M, d) given by M = Mj X --- x M, and the product distance defined in Definition 2.6.1.
Show that the following properties are equivalent.

(i) (M,d) is complete.

(i) (M;,d;) is complete forall 1 < i < n.

Exercise 3.23 : Let (M, d) and (M’, d’) be two metric spaces, and A C M be a dense subset.

(1) Consider a continuous function f : (A,d) — (M’,d’) and suppose that

Vo € M\A, ?}1_1% f(y) there exists.
yeA

Show that there exists a unique continuous function g : M — M’ such that gja = f. The function
g is called the continuation of f on M.

(2) Suppose that (M’ d’) is complete and consider a uniformly continuous function f : (A4,d) —
(M',d"). Show that there exists a unique uniformly continuous function g : M — M’ such that
g4 = [. The function g is called the uniform continuation of f on M.

Exercise 3.24 : Let (M, d) be a complete metric space and p > 1 be an integer. Consider amap f : M —
M such that fP is a contraction.

(1) Show that f has a unique fixed point, denoted by x.

(2) For any ¢ € M, define x,,+1 = f(x,) for n > 0, and show that x,, —— .

n—oo
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Exercise 3.25: Let ¢ : [0, 1] — [0, 1] be a continuous function which is not identically 1 and o € R. We
denote by C*(]0, 1], R) the space of continuous and differentiable functions from [0, 1] to R such that the
derivative is also continuous. We want to show that there exists a unique solution f € C*([0,1],R) to
the differential equation,

fO0)=a, f(z)=f(e(), VYzelo,1].

Let M = C([0.1], R) be equipped with ||-|| ., which is a Banach space as we will see later in Exercise 3.30.
Define T : M — M as below,

vre 0,1, Tf(z)= a—l—/oxf(ga(t))dt.

Show that T2 = T o T is a contraction, and conclude using Exercise 3.23.

Exercise 3.26 : Let V' be a normed vector space over a field K = R or C. Consider a linear form
f € L(V,K) which is not identically zero, then its kernel

Ker(f) :=={z eV : f(x) =0} (E3.2)
is called an hyperplane (85-MH) of V.
(1) Show that ker f is either closed or dense in V.

(2) Show that f is continuous if and only if ker f is closed in V.

Exercise 3.27 : Let /°°(R) be the normed space of bounded sequences of real numbers, equipped with
the infinite norm ||-|| . Consider the subspace V' C £°°(R) consisting of the convergent sequences. Let

us define the map
p: |4 — R

(an)n>1 +— lim a,.
n—oo
(1) Check that V' is a subvector space, and that ¢ is a linear form, that is ¢ € L(V,R).
(2) Show that ¢ is continuous, and that ||¢|| < 1.

(3) Find a sequence a = (ay,)n>1 such that [¢(a)| = ||a||, and deduce that |¢[| = 1.
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Exercise 3.28: Let C([0, 1], R) be the space of real continuous functions on [0, 1]. Consider the subspace

vV ={f€eC(0,1,R) : f(0) =0}
Let g € C([0, 1], R) be the function g :  — 1 — x. Consider the endomorphism

F:V — V
[ = fg

(1) Show that F' is linear and continuous.

(2) Show that || F||| = 1.

Exercise 3.29 : Consider the linear form

¢: C(0,1,R) — R
f = ()7

where we equip C([0, 1], R) with ||-||;.
(1) For every integer n > 1, consider the function f,, : t — t". Compute (f,) and || f,||;.

(2) Show that ¢ is not continuous.

Exercise 3.30 : Show that the space of sequences ¢*(R) and ¢?(R) , defined in Example 2.1.6, are Banach
spaces. Is /°°(R) a Banach space?

Exercise 3.31 : Let (M, N) be a complete normed vector space. Show that C([0, 1], M), the space of
continuous functions from [0, 1] to M, equipped with the norm

vfeC([0,1], M), |[fll= sup N(f(z)) < oo
z€[0,1]

is a Banach space. In particular, the space C([0, 1], R) equipped with ||-|| , is Banach. Hint: see below".

3You may follow the steps suggested in Remark 3.2.19.
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Exercise 3.32 : Let E be an Euclidean space and u € L(FE). Suppose that u is symmetric, that is

Ve,y € B, (u(),y) = (2, u(y)).
Let S be the centered unit sphere of F and ¢ : S — R be a map defined by ¢(z) = (x, u(x)).
(1) Justify @ attains its maximum on S. We will write xg € S where this maximum is attained.

(2) Let y be a unit vector that is orthogonal to z. We define the following two functions on R. For
t € R, let

x(t) = (cost)xg + (sint)y and f(t) = (u(x(t)),z(t)).

Show that f attains its maximum at 0, and deduce that y is orthogonal to u(zg).

(3) Show that x is an eigenvalue of .

Exercise 3.33 : Let (V, ||-||) be a normed space over K = R or C. Let V be the completion of V as in
Proposition 3.3.6. Define the addition and the scalar product on V' by

(xn)n21 + (yn)n>1 = (.an + yn)n>17 and a- (mn)n21 = (axn)n21

for all (xp)n>1, (Yn)n>1 € V and a € K. Show that these two operations makes V' into a vector space,
and thus a Banach space.

Exercise 3.34 : In this exercise, we give another construction of the completion of a metric space. Let
(X, d) be a nonempty metric space, and fix a point zy € X.

(1) Let B(X,R) be the set of all the bounded real-valued functions on X, equipped with the norm
||| - Show that (B(X,R), |||,) is complete.

Hint: It is very similar to Exercise 3.30. If (f,)n>1 is a Cauchy sequence in B(X,R), then
(fn(x))n>1 is a Cauchy sequence in R for all x € X. The limit of (f,)n>1 will be g(x) =

lim,, 00 fr(2).
(2) For every x € X, define the function f; : X — R by
fa(y) = d(y, x) — d(y, zo).
Show that f, is bounded and thus f, € B(X,R).
(3) Show that the map F': X — B(X,R), x — f,, is an isometry.

(4) Deduce that (F(X), ||||..) is a completion of (X, d).
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Exercise 3.35 : The extended complex plane C = C U {0} is defined to be the union of C with an extra

point oo.

(1) Show that the function d defined on C x C by

d(Zl 22) — 2|Zl - 22’
’ VA2 ) (1 4 [22[?)
2
d(zlaoo) = m

is a metric on C.

(2) Show that (@, d) is a complete and compact metric space.
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for all z1, z5 € C,

forall z; € C,
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