
Chapter 3: Compact spaces and complete spaces

Exercise 3.1 : Let (M, d) be a compact metric space and f : M → R be a function. We recall that M
satisfies the Borel–Lebesgue property.

(1) Suppose that f is locally bounded, that is for all x ∈ M , there exists rx > 0 and Ax > 0 such that

∀y ∈ B(x, rx), |f(y)| ⩽ Ax.

Show that f is bounded on M .

(2) Suppose that f is locally Lipschitz continuous, that is for all x ∈ M , there exists rx > 0 and
Kx > 0 such that

∀y, z ∈ B(x, rx), |f(y) − f(z)| ⩽ Kx · d(y, z).

Show that f is Lipschitz continuous on M .

Exercise 3.2 : Let (M, d) be a metric space, A ⊆ M be a compact subset, and B ⊆ M be a closed subset
with A ∩ B = ∅.

(1) Apply the Borel–Lebesgue property to A to show that there exists an open subset U ⊆ M such
that A ⊆ U and U ∩ B = ∅. Hint: Bc is open.

(2) Suppose that B is also compact. Deduce from the previous question that there exists open sets U
and V such that

A ⊆ U, B ⊆ V, and U ∩ V = ∅.

Exercise 3.3 : Let (M, d) be a metric space and (xn)n⩾1 be a convergent sequence in M with limit ℓ.
Show that the set

Γ = {xn : n ⩾ 1} ∪ {ℓ}

is compact using the Borel–Lebesgue property.

Exercise 3.4 : Let (K1, d1) and (K2, d2) be two compact metric spaces. Show that the product space
K1 × K2 equipped with the product distance d(x, y) = max{d1(x1, y1), d2(x2, y2)} satisfies the Borel–
Lebesgue property, and deduce that it is compact. Show that any finite product of compact metric spaces
is compact.

Exercise 3.5 : Let (M, d) be a metric space and (Kn)n⩾1 be a sequence of nonempty compact sets of M .
Suppose that Kn+1 ⊆ Kn for all n ⩾ 1. Set K = ∩n⩾1Kn.

(1) Show that K 6= ∅.

(2) Let U be an open set containing K . Show that there exists n ⩾ 1 such that Kn ⊆ U .

We note that when (M, d) is taken to be the Euclidean space Rn, then (1) is the Cantor’s intersection
theorem.
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Exercise 3.6 : Let V and W be two normed vector spaces, K ⊆ V be a compact subset. Let f : K → W
be an injective continuous function. Show that f is a homeomorphism between K and L = f(K).

Exercise 3.7 : Let I and J be intervals in R, and f : I → J be a continuous and bijective function. Show
that f−1 is continuous.

Exercise 3.8 : Show Exercise 3.1 using the Bolzano–Weierstraß property.

Exercise 3.9 : Let K1, K2 be two compact sets in a normed vector space. Show that the following set is
compact,

K1 + K2 := {x1 + x2 : x1 ∈ K1, x2 ∈ K2}.

Exercise 3.10 : Let K be a compact set in a metric space (M, d). Given a sequence x = (xn)n⩾1 with
values in K . Suppose that x only has one subsequential limit ℓ, that is, its set of subsequential limits,
defined in Section 2.4.3, is the singleton set {ℓ}. Show that xn −−−→

n→∞
ℓ.

Exercise 3.11 : Let Ω be an open set in the Euclidean space Rn. Show that there exists an exhaustion of
Ω by compact sets, that is, a sequence (Kn)n⩾1 satisfying

(i) Kn ⊆ Ω for all n ⩾ 1.

(ii) Kn ⊆ Kn+1 for all n ⩾ 1.

(iii) Ω = ∪n⩾1Kn.

Hint: see below1.

Exercise 3.12 : Let V be a normed vector space, and A, B ⊆ V be two subsets. Assume that A is closed.
Let f : A → B be a function, and define its graph as

Γf = {(x, f(x)) : x ∈ A}.

(1) If f is continuous, show that its graph Γf is closed. Note that we have seen a similar statement in
Exercise 2.42.

(2) Suppose that B is compact and Γf is closed. Show that f is continuous. Hint: you may use
Exercise 3.10.

1For n ⩾ 1, consider Ln := {x ∈ Rn : d(x, Ωc) ⩾ 1/n} and Kn = B(0, n) ∩ Ln.
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Exercise 3.13 : Let f : (E, dE) → (F, dF ) be a continuous function between two metric spaces.

(1) Suppose that for every compact set K ⊆ F , the preimage f−1(K) is also compact. Show that f
is a closed map, that is, for any closed subset A ⊆ E, the image f(A) is also closed. Hint: use
Exercise 3.3.

(2) Are there continuous maps which are not closed?

(3) Let n ⩾ 1 be an integer. Consider the real vector space of polynomials of degree at most n, denoted
by

Rn[X] = {P ∈ R[X] : deg(P ) ⩽ n}.

We equipRn[X]with one of the norms fromExample 2.1.9. (For example, ‖P‖∞ = max0⩽k⩽n |ak|
for any P =

∑
0⩽k⩽n akXk ∈ Rn[X].) Let Γn be the set of monic polynomials of degree exactly n

whose roots are all real. Show that Γn is closed in Rn[X]. Hint: see below2.

Exercise 3.14 : Let (M, d) be a metric space. For any subsets A, B in M , we define

d(A, B) = inf
x∈A
y∈B

d(x, y).

(1) Let K1 and K2 be two compact subsets of M . Show that there exists x1 ∈ K1 and x2 ∈ K2 such
that d(x1, x2) = d(K1, K2). Deduce that if K1 ∩ K2 = ∅, then d(K1, K2) > 0.

(2) Let K ⊆ M be compact, and A ⊆ M be closed. Show that if K ∩ A = ∅, then d(K, A) 6= 0.

(3) In the previous question, is it enough to assume that both K and A are closed?

From now on, let us assume that (M, d) is the Euclidean space Rn with n ⩾ 1.

(4) Let A ⊆ M = Rn be an unbounded closed subset and f : A → R be a continuous map such that

lim
‖x‖→∞

x∈A

f(x) = +∞. (E3.1)

Show that there exists x ∈ A such that f(x) = infy∈A f(y). Hint: see below3.

(5) Let K ⊆ M = Rn be a compact subset and A ⊆ M = Rn be a closed subset. Show that there
exists x ∈ K and y ∈ A such that d(x, y) = d(K, A).

(6) If M is an infinite dimensional normed vector space, show that (5) does not hold. In other words,
find an infinite dimensional normed vector space M , a compact subset K ⊆ M , a closed subset
A ⊆ M such that for any x ∈ K and y ∈ A, we have d(x, y) 6= d(K, A).

2A possible proof starts by showing that if r is a root of P ∈ Pn[X], then |r| ⩽ max{1, ‖P ‖∞}, before applying this result to
check the conditions in (1).

3Eq. (E3.1) means that for any large enough M > 0, there exists R > 0 such that ‖x‖ ⩾ R implies that f(x) ⩾ M .
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Exercise 3.15 : Let (V, ‖·‖) be a normed vector space and K ⊆ V be a compact subset. Consider a
function f : K → K satisfying

∀x, y ∈ K, ‖f(x) − f(y)‖ ⩾ ‖x − y‖.

Fix a0, b0 ∈ K , and define two iterative sequences as follow

∀n ⩾ 0, an+1 = f(an) and bn+1 = f(bn).

(1) Show that for all ε > 0 and integer p ⩾ 1, there exists k ⩾ p such that ‖ak − a0‖ < ε and
‖bk − b0‖ < ε.

(2) Deduce from the previous question that f(A) is dense in A.

(3) Consider un = ‖an − bn‖ for n ⩾ 0. Show that (un)n⩾0 is eventually constant.

(4) Deduce that f is an isometry, so injective.

(5) Show that f is surjective.

Exercise 3.16 : Let (M, d) be a compact metric space and f : M → M be a function satisfying

∀x, y ∈ M, x 6= y, d(f(x), f(y)) < d(x, y).

(1) Show that f has a unique fixed point, that we denote by α in what follows. Hint: see below4.

(2) Let x0 ∈ M . Define iteratively the sequence xn+1 = f(xn) for n ⩾ 0. Show that xn −−−→
n→∞

α.

(3) If (M, d) is only a complete metric space, are these results still valid?

Exercise 3.17 : Let V = C([0, 2π],C) be equipped with the 2-norm ‖·‖2. For n ∈ N, set fn(x) = ei nx.

(1) Find the value of ‖fn − fm‖2 for n, m ∈ N.

(2) Deduce that the bounded closed ball B(0, 1) is not compact.

Exercise 3.18 : Let V be a finite dimensional normed vector space and K ⊆ V be a compact subset. Let
r > 0 and Kr := ∪x∈KB(x, r). Show that Kr is a compact subset of V . What happens if V is an infinite
dimensional normed vector space?

Exercise 3.19 : Let f : Rn → R be a continuous function. Show that the following conditions are
equivalent.

(i) For all M > 0, there exists R > 0 such that ‖x‖ > R implies that |f(x)| > M .

(ii) For any bounded subset B ⊆ R, the preimage f−1(B) is bounded in Rn.

(iii) For any compact subset K ⊆ R, the preimage f−1(K) is compact in Rn.

4Look at the map x 7→ d(x, f(x)).
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Exercise 3.20 (Characterization of complete metric spaces) : Let (X, d) be a metric space. Show that the
following statements are equivalent.

(i) The metric space (X, d) is complete.

(ii) Each sequence (xn)n⩾1 in X having the property
∑∞

n=1 d(xn+1, xn) < ∞ is convergent.

(iii) Each Cauchy sequence (xn)n⩾1 in X has a convergent subsequence.

Exercise 3.21 : Show that a metric space (M, d) is compact if and only if it is precompact and complete.

Exercise 3.22 : Given a sequence of metric spaces (M1, d1), . . . , (Mn, dn) and consider the product met-
ric space (M, d) given by M = M1 × · · · × Mn and the product distance defined in Definition 2.6.1.
Show that the following properties are equivalent.

(i) (M, d) is complete.

(ii) (Mi, di) is complete for all 1 ⩽ i ⩽ n.

Exercise 3.23 : Let (M, d) and (M ′, d′) be two metric spaces, and A ⊆ M be a dense subset.

(1) Consider a continuous function f : (A, d) → (M ′, d′) and suppose that

∀x ∈ M\A, lim
y→x
y∈A

f(y) there exists.

Show that there exists a unique continuous function g : M → M ′ such that g|A ≡ f . The function
g is called the continuation of f on M .

(2) Suppose that (M ′, d′) is complete and consider a uniformly continuous function f : (A, d) →
(M ′, d′). Show that there exists a unique uniformly continuous function g : M → M ′ such that
g|A ≡ f . The function g is called the uniform continuation of f on M .

Exercise 3.24 : Let (M, d) be a complete metric space and p ⩾ 1 be an integer. Consider a map f : M →
M such that fp is a contraction.

(1) Show that f has a unique fixed point, denoted by x.

(2) For any x0 ∈ M , define xn+1 = f(xn) for n ⩾ 0, and show that xn −−−→
n→∞

x.
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Exercise 3.25 : Let φ : [0, 1] → [0, 1] be a continuous function which is not identically 1 and α ∈ R. We
denote by C1([0, 1],R) the space of continuous and differentiable functions from [0, 1] to R such that the
derivative is also continuous. We want to show that there exists a unique solution f ∈ C1([0, 1],R) to
the differential equation,

f(0) = α, f ′(x) = f(φ(x)), ∀x ∈ [0, 1].

Let M = C([0.1],R) be equipped with ‖·‖∞, which is a Banach space as we will see later in Exercise 3.30.
Define T : M → M as below,

∀x ∈ [0, 1], T f(x) = α +
∫ x

0
f(φ(t)) dt.

Show that T 2 = T ◦ T is a contraction, and conclude using Exercise 3.23.

Exercise 3.26 : Let V be a normed vector space over a field K = R or C. Consider a linear form
f ∈ L(V,K) which is not identically zero, then its kernel

Ker(f) := {x ∈ V : f(x) = 0} (E3.2)

is called an hyperplane (超平面) of V .

(1) Show that ker f is either closed or dense in V .

(2) Show that f is continuous if and only if ker f is closed in V .

Exercise 3.27 : Let ℓ∞(R) be the normed space of bounded sequences of real numbers, equipped with
the infinite norm ‖·‖∞. Consider the subspace V ⊆ ℓ∞(R) consisting of the convergent sequences. Let
us define the map

φ : V → R
(an)n⩾1 7→ lim

n→∞
an.

(1) Check that V is a subvector space, and that φ is a linear form, that is φ ∈ L(V,R).

(2) Show that φ is continuous, and that |||φ||| ⩽ 1.

(3) Find a sequence a = (an)n⩾1 such that |φ(a)| = ‖a‖∞ and deduce that |||φ||| = 1.

Exercise 3.28 : Let C([0, 1],R) be the space of real continuous functions on [0, 1]. Consider the subspace

V = {f ∈ C([0, 1],R) : f(0) = 0}.

Let g ∈ C([0, 1],R) be the function g : x 7→ 1 − x. Consider the endomorphism

F : V → V
f 7→ fg.

(1) Show that F is linear and continuous.

(2) Show that |||F ||| = 1.
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Exercise 3.29 : Consider the linear form

φ : C([0, 1],R) → R
f 7→ f(1) ,

where we equip C([0, 1],R) with ‖·‖1.

(1) For every integer n ⩾ 1, consider the function fn : t 7→ tn. Compute φ(fn) and ‖fn‖1.

(2) Show that φ is not continuous.

Exercise 3.30 : Show that the space of sequences ℓ1(R) and ℓ2(R) , defined in Example 2.1.6, are Banach
spaces. Is ℓ∞(R) a Banach space?

Exercise 3.31 : Let (M, N) be a complete normed vector space. Show that C([0, 1], M), the space of
continuous functions from [0, 1] to M , equipped with the norm

∀f ∈ C([0, 1], M), ‖f‖∞ = sup
x∈[0,1]

N(f(x)) < ∞

is a Banach space. In particular, the space C([0, 1],R) equipped with ‖·‖∞ is Banach. Hint: see below5.

Exercise 3.32 : Let E be an Euclidean space and u ∈ L(E). Suppose that u is symmetric, that is

∀x, y ∈ E, 〈u(x), y〉 = 〈x, u(y)〉.

Let S be the centered unit sphere of E and φ : S → R be a map defined by φ(x) = 〈x, u(x)〉.

(1) Justify φ attains its maximum on S. We will write x0 ∈ S where this maximum is attained.

(2) Let y be a unit vector that is orthogonal to x. We define the following two functions on R. For
t ∈ R, let

x(t) = (cos t)x0 + (sin t)y and f(t) = 〈u(x(t)), x(t)〉.

Show that f attains its maximum at 0, and deduce that y is orthogonal to u(x0).

(3) Show that x0 is an eigenvalue of u.

Exercise 3.33 : Let (V, ‖·‖) be a normed space over K = R or C. Let V̂ be the completion of V as in
Proposition 3.3.6. Define the addition and the scalar product on V̂ by

(xn)n⩾1 + (yn)n⩾1 := (xn + yn)n⩾1, and a · (xn)n⩾1 := (axn)n⩾1

for all (xn)n⩾1, (yn)n⩾1 ∈ V̂ and a ∈ K. Show that these two operations makes V̂ into a vector space,
and thus a Banach space.

5You may follow the steps suggested in Remark 3.2.19.
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Exercise 3.34 : In this exercise, we give another construction of the completion of a metric space. Let
(X, d) be a nonempty metric space, and fix a point x0 ∈ X .

(1) Let B(X,R) be the set of all the bounded real-valued functions on X , equipped with the norm
‖·‖∞. Show that (B(X,R), ‖·‖∞) is complete.
Hint: It is very similar to Exercise 3.30. If (fn)n⩾1 is a Cauchy sequence in B(X,R), then
(fn(x))n⩾1 is a Cauchy sequence in R for all x ∈ X . The limit of (fn)n⩾1 will be g(x) :=
limn→∞ fn(x).

(2) For every x ∈ X , define the function fx : X → R by

fx(y) = d(y, x) − d(y, x0).

Show that fx is bounded and thus fx ∈ B(X,R).

(3) Show that the map F : X → B(X,R), x 7→ fx, is an isometry.

(4) Deduce that (F (X), ‖·‖∞) is a completion of (X, d).

Exercise 3.35 : The extended complex plane Ĉ = C∪ {∞} is defined to be the union of C with an extra
point ∞.

(1) Show that the function d defined on Ĉ × Ĉ by

d(z1, z2) = 2|z1 − z2|√
(1 + |z1|2)(1 + |z2|2)

for all z1, z2 ∈ C,

d(z1, ∞) = 2√
1 + |z1|2

for all z1 ∈ C,

is a metric on Ĉ.

(2) Show that (Ĉ, d) is a complete and compact metric space.
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