Exercise 3.1: Let (M, d) be a compact metric space and $f : M \to \mathbb{R}$ be a function. We recall that M satisfies the Borel–Lebesgue property.

(1) Suppose that f is locally bounded, that is for all $x \in M$, there exists $r_x > 0$ and $A_x > 0$ such that

$$\forall y \in B(x, r_x), \quad |f(y)| \leqslant A_x.$$

Show that f is bounded on M.

(2) Suppose that f is locally Lipschitz continuous, that is for all $x \in M$, there exists $r_x > 0$ and $K_x > 0$ such that

 $\forall y, z \in B(x, r_x), \quad |f(y) - f(z)| \leq K_x \cdot d(y, z).$

Show that f is Lipschitz continuous on M.

Exercise 3.2 : Let (M, d) be a metric space, $A \subseteq M$ be a compact subset, and $B \subseteq M$ be a closed subset with $A \cap B = \emptyset$.

- (1) Apply the Borel-Lebesgue property to A to show that there exists an open subset $U \subseteq M$ such that $A \subseteq U$ and $\overline{U} \cap B = \emptyset$. Hint: B^c is open.
- (2) Suppose that B is also compact. Deduce from the previous question that there exists open sets U and V such that

$$A \subseteq U, \quad B \subseteq V, \quad \text{and} \quad \overline{U} \cap \overline{V} = \emptyset.$$

Exercise 3.3: Let (M, d) be a metric space and $(x_n)_{n \ge 1}$ be a convergent sequence in M with limit ℓ . Show that the set

$$\Gamma = \{x_n : n \ge 1\} \cup \{\ell\}$$

is compact using the Borel-Lebesgue property.

Exercise 3.4: Let (K_1, d_1) and (K_2, d_2) be two compact metric spaces. Show that the product space $K_1 \times K_2$ equipped with the product distance $d(x, y) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}$ satisfies the Borel–Lebesgue property, and deduce that it is compact. Show that any finite product of compact metric spaces is compact.

Exercise 3.5: Let (M, d) be a metric space and $(K_n)_{n \ge 1}$ be a sequence of nonempty compact sets of M. Suppose that $K_{n+1} \subseteq K_n$ for all $n \ge 1$. Set $K = \bigcap_{n \ge 1} K_n$.

- (1) Show that $K \neq \emptyset$.
- (2) Let U be an open set containing K. Show that there exists $n \ge 1$ such that $K_n \subseteq U$.

We note that when (M, d) is taken to be the Euclidean space \mathbb{R}^n , then (1) is the Cantor's intersection theorem.

Exercise 3.6: Let V and W be two normed vector spaces, $K \subseteq V$ be a compact subset. Let $f : K \to W$ be an injective continuous function. Show that f is a homeomorphism between K and L = f(K).

Exercise 3.7: Let I and J be intervals in \mathbb{R} , and $f: I \to J$ be a continuous and bijective function. Show that f^{-1} is continuous.

Exercise 3.8 : Show Exercise 3.1 using the Bolzano–Weierstraß property.

Exercise 3.9: Let K_1, K_2 be two compact sets in a normed vector space. Show that the following set is compact,

$$K_1 + K_2 := \{x_1 + x_2 : x_1 \in K_1, x_2 \in K_2\}$$

Exercise 3.10: Let K be a compact set in a metric space (M, d). Given a sequence $x = (x_n)_{n \ge 1}$ with values in K. Suppose that x only has one subsequential limit ℓ , that is, its set of subsequential limits, defined in Section 2.4.3, is the singleton set $\{\ell\}$. Show that $x_n \xrightarrow[n \to \infty]{} \ell$.

Exercise 3.11: Let Ω be an open set in the Euclidean space \mathbb{R}^n . Show that there exists an exhaustion of Ω by compact sets, that is, a sequence $(K_n)_{n \ge 1}$ satisfying

- (i) $K_n \subseteq \Omega$ for all $n \ge 1$.
- (ii) $K_n \subseteq K_{n+1}$ for all $n \ge 1$.
- (iii) $\Omega = \bigcup_{n \ge 1} K_n$.

Hint: see below¹.

Exercise 3.12: Let V be a normed vector space, and $A, B \subseteq V$ be two subsets. Assume that A is closed. Let $f : A \to B$ be a function, and define its graph as

$$\Gamma_f = \{ (x, f(x)) : x \in A \}.$$

- (1) If f is continuous, show that its graph Γ_f is closed. Note that we have seen a similar statement in Exercise 2.42.
- (2) Suppose that B is compact and Γ_f is closed. Show that f is continuous. Hint: you may use Exercise 3.10.

¹For $n \ge 1$, consider $L_n := \{x \in \mathbb{R}^n : d(x, \Omega^c) \ge 1/n\}$ and $K_n = \overline{B}(0, n) \cap L_n$.

Exercise 3.13: Let $f: (E, d_E) \to (F, d_F)$ be a continuous function between two metric spaces.

- (1) Suppose that for every compact set $K \subseteq F$, the preimage $f^{-1}(K)$ is also compact. Show that f is a closed map, that is, for any closed subset $A \subseteq E$, the image f(A) is also closed. Hint: use Exercise 3.3.
- (2) Are there continuous maps which are not closed?
- (3) Let $n \ge 1$ be an integer. Consider the real vector space of polynomials of degree at most n, denoted by

$$\mathbb{R}_n[X] = \{ P \in \mathbb{R}[X] : \deg(P) \leq n \}.$$

We equip $\mathbb{R}_n[X]$ with one of the norms from Example 2.1.9. (For example, $||P||_{\infty} = \max_{0 \le k \le n} |a_k|$ for any $P = \sum_{0 \le k \le n} a_k X^k \in \mathbb{R}_n[X]$.) Let Γ_n be the set of monic polynomials of degree exactly n whose roots are all real. Show that Γ_n is closed in $\mathbb{R}_n[X]$. Hint: see below².

Exercise 3.14: Let (M, d) be a metric space. For any subsets A, B in M, we define

$$d(A,B) = \inf_{\substack{x \in A \\ y \in B}} d(x,y).$$

- (1) Let K_1 and K_2 be two compact subsets of M. Show that there exists $x_1 \in K_1$ and $x_2 \in K_2$ such that $d(x_1, x_2) = d(K_1, K_2)$. Deduce that if $K_1 \cap K_2 = \emptyset$, then $d(K_1, K_2) > 0$.
- (2) Let $K \subseteq M$ be compact, and $A \subseteq M$ be closed. Show that if $K \cap A = \emptyset$, then $d(K, A) \neq 0$.
- (3) In the previous question, is it enough to assume that both K and A are closed?

From now on, let us assume that (M, d) is the Euclidean space \mathbb{R}^n with $n \ge 1$.

(4) Let $A \subseteq M = \mathbb{R}^n$ be an unbounded closed subset and $f: A \to \mathbb{R}$ be a continuous map such that

$$\lim_{\substack{\|x\|\to\infty\\x\in A}} f(x) = +\infty.$$
(E3.1)

Show that there exists $x \in A$ such that $f(x) = \inf_{y \in A} f(y)$. Hint: see below³.

- (5) Let $K \subseteq M = \mathbb{R}^n$ be a compact subset and $A \subseteq M = \mathbb{R}^n$ be a closed subset. Show that there exists $x \in K$ and $y \in A$ such that d(x, y) = d(K, A).
- (6) If M is an infinite dimensional normed vector space, show that (5) does not hold. In other words, find an infinite dimensional normed vector space M, a compact subset K ⊆ M, a closed subset A ⊆ M such that for any x ∈ K and y ∈ A, we have d(x, y) ≠ d(K, A).

²A possible proof starts by showing that if r is a root of $P \in \mathbb{P}_n[X]$, then $|r| \leq \max\{1, \|P\|_{\infty}\}$, before applying this result to check the conditions in (1).

³Eq. (E3.1) means that for any large enough M > 0, there exists R > 0 such that $||x|| \ge R$ implies that $f(x) \ge M$.

Exercise 3.15: Let $(V, \|\cdot\|)$ be a normed vector space and $K \subseteq V$ be a compact subset. Consider a function $f: K \to K$ satisfying

$$\forall x, y \in K, \quad \|f(x) - f(y)\| \ge \|x - y\|.$$

Fix $a_0, b_0 \in K$, and define two iterative sequences as follow

 $\forall n \ge 0, \quad a_{n+1} = f(a_n) \quad \text{and} \quad b_{n+1} = f(b_n).$

- (1) Show that for all $\varepsilon > 0$ and integer $p \ge 1$, there exists $k \ge p$ such that $||a_k a_0|| < \varepsilon$ and $||b_k b_0|| < \varepsilon$.
- (2) Deduce from the previous question that f(A) is dense in A.
- (3) Consider $u_n = ||a_n b_n||$ for $n \ge 0$. Show that $(u_n)_{n\ge 0}$ is eventually constant.
- (4) Deduce that f is an isometry, so injective.
- (5) Show that f is surjective.

Exercise 3.16: Let (M, d) be a compact metric space and $f : M \to M$ be a function satisfying

$$\forall x, y \in M, x \neq y, \quad d(f(x), f(y)) < d(x, y).$$

- (1) Show that f has a unique fixed point, that we denote by α in what follows. Hint: see below⁴.
- (2) Let $x_0 \in M$. Define iteratively the sequence $x_{n+1} = f(x_n)$ for $n \ge 0$. Show that $x_n \xrightarrow[n \to \infty]{n \to \infty} \alpha$.
- (3) If (M, d) is only a complete metric space, are these results still valid?

Exercise 3.17 : Let $V = \mathcal{C}([0, 2\pi], \mathbb{C})$ be equipped with the 2-norm $\|\cdot\|_2$. For $n \in \mathbb{N}$, set $f_n(x) = e^{i nx}$.

- (1) Find the value of $||f_n f_m||_2$ for $n, m \in \mathbb{N}$.
- (2) Deduce that the bounded closed ball $\overline{B}(0,1)$ is not compact.

Exercise 3.18: Let V be a finite dimensional normed vector space and $K \subseteq V$ be a compact subset. Let r > 0 and $K_r := \bigcup_{x \in K} \overline{B}(x, r)$. Show that K_r is a compact subset of V. What happens if V is an infinite dimensional normed vector space?

Exercise 3.19: Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Show that the following conditions are equivalent.

- (i) For all M > 0, there exists R > 0 such that ||x|| > R implies that |f(x)| > M.
- (ii) For any bounded subset $B \subseteq \mathbb{R}$, the preimage $f^{-1}(B)$ is bounded in \mathbb{R}^n .
- (iii) For any compact subset $K \subseteq \mathbb{R}$, the preimage $f^{-1}(K)$ is compact in \mathbb{R}^n .

⁴Look at the map $x \mapsto d(x, f(x))$.

Exercise 3.20 (Characterization of complete metric spaces) : Let (X, d) be a metric space. Show that the following statements are equivalent.

- (i) The metric space (X, d) is complete.
- (ii) Each sequence $(x_n)_{n \ge 1}$ in X having the property $\sum_{n=1}^{\infty} d(x_{n+1}, x_n) < \infty$ is convergent.
- (iii) Each Cauchy sequence $(x_n)_{n \ge 1}$ in X has a convergent subsequence.

Exercise 3.21: Show that a metric space (M, d) is compact if and only if it is precompact and complete.

Exercise 3.22: Given a sequence of metric spaces $(M_1, d_1), \ldots, (M_n, d_n)$ and consider the product metric space (M, d) given by $M = M_1 \times \cdots \times M_n$ and the product distance defined in Definition 2.6.1. Show that the following properties are equivalent.

- (i) (M, d) is complete.
- (ii) (M_i, d_i) is complete for all $1 \leq i \leq n$.

Exercise 3.23: Let (M, d) and (M', d') be two metric spaces, and $A \subseteq M$ be a dense subset.

(1) Consider a continuous function $f: (A, d) \to (M', d')$ and suppose that

$$\forall x \in M \backslash A, \quad \lim_{\substack{y \to x \\ y \in A}} f(y) \text{ there exists.}$$

Show that there exists a unique continuous function $g: M \to M'$ such that $g_{|A|} \equiv f$. The function g is called the *continuation* of f on M.

(2) Suppose that (M', d') is complete and consider a uniformly continuous function f : (A, d) → (M', d'). Show that there exists a unique uniformly continuous function g : M → M' such that g|A ≡ f. The function g is called the *uniform continuation* of f on M.

Exercise 3.24: Let (M, d) be a complete metric space and $p \ge 1$ be an integer. Consider a map $f : M \to M$ such that f^p is a contraction.

- (1) Show that f has a unique fixed point, denoted by x.
- (2) For any $x_0 \in M$, define $x_{n+1} = f(x_n)$ for $n \ge 0$, and show that $x_n \xrightarrow[n \to \infty]{} x$.

Exercise 3.25: Let $\varphi : [0,1] \to [0,1]$ be a continuous function which is not identically 1 and $\alpha \in \mathbb{R}$. We denote by $\mathcal{C}^1([0,1],\mathbb{R})$ the space of continuous and differentiable functions from [0,1] to \mathbb{R} such that the derivative is also continuous. We want to show that there exists a unique solution $f \in \mathcal{C}^1([0,1],\mathbb{R})$ to the differential equation,

$$f(0) = \alpha, \quad f'(x) = f(\varphi(x)), \quad \forall x \in [0, 1].$$

Let $M = \mathcal{C}([0,1], \mathbb{R})$ be equipped with $\|\cdot\|_{\infty}$, which is a Banach space as we will see later in Exercise 3.30. Define $T: M \to M$ as below,

$$\forall x \in [0,1], \quad Tf(x) = \alpha + \int_0^x f(\varphi(t)) \, \mathrm{d}t.$$

Show that $T^2 = T \circ T$ is a contraction, and conclude using Exercise 3.23.

Exercise 3.26 : Let V be a normed vector space over a field $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Consider a linear form $f \in \mathcal{L}(V, \mathbb{K})$ which is not identically zero, then its kernel

$$Ker(f) := \{ x \in V : f(x) = 0 \}$$
(E3.2)

is called an hyperplane (超平面) of V.

- (1) Show that ker f is either closed or dense in V.
- (2) Show that f is continuous if and only if ker f is closed in V.

Exercise 3.27: Let $\ell^{\infty}(\mathbb{R})$ be the normed space of bounded sequences of real numbers, equipped with the infinite norm $\|\cdot\|_{\infty}$. Consider the subspace $V \subseteq \ell^{\infty}(\mathbb{R})$ consisting of the convergent sequences. Let us define the map

$$\varphi: \quad V \quad \to \quad \mathbb{R} \\ (a_n)_{n \ge 1} \quad \mapsto \quad \lim_{n \to \infty} a_n .$$

- (1) Check that V is a subvector space, and that φ is a linear form, that is $\varphi \in \mathcal{L}(V, \mathbb{R})$.
- (2) Show that φ is continuous, and that $\||\varphi|\| \leq 1$.
- (3) Find a sequence $a = (a_n)_{n \ge 1}$ such that $|\varphi(a)| = ||a||_{\infty}$ and deduce that $|||\varphi||| = 1$.

Exercise 3.28: Let $C([0,1],\mathbb{R})$ be the space of real continuous functions on [0,1]. Consider the subspace

$$V = \{ f \in \mathcal{C}([0,1],\mathbb{R}) : f(0) = 0 \}.$$

Let $g \in \mathcal{C}([0,1],\mathbb{R})$ be the function $g: x \mapsto 1 - x$. Consider the endomorphism

$$\begin{array}{rcccc} F: & V & \to & V \\ & f & \mapsto & fg. \end{array}$$

- (1) Show that F is linear and continuous.
- (2) Show that |||F||| = 1.

Exercise 3.29 : Consider the linear form

$$\begin{array}{rccc} \varphi: & \mathcal{C}([0,1],\mathbb{R}) & \to & \mathbb{R} \\ & f & \mapsto & f(1) \end{array}, \end{array}$$

where we equip $\mathcal{C}([0,1],\mathbb{R})$ with $\|\cdot\|_1$.

- (1) For every integer $n \ge 1$, consider the function $f_n : t \mapsto t^n$. Compute $\varphi(f_n)$ and $||f_n||_1$.
- (2) Show that φ is not continuous.

Exercise 3.30 : Show that the space of sequences $\ell^1(\mathbb{R})$ and $\ell^2(\mathbb{R})$, defined in Example 2.1.6, are Banach spaces. Is $\ell^{\infty}(\mathbb{R})$ a Banach space?

Exercise 3.31: Let (M, N) be a complete normed vector space. Show that C([0, 1], M), the space of continuous functions from [0, 1] to M, equipped with the norm

$$\forall f \in \mathcal{C}([0,1], M), \quad \|f\|_{\infty} = \sup_{x \in [0,1]} N(f(x)) < \infty$$

is a Banach space. In particular, the space $\mathcal{C}([0,1],\mathbb{R})$ equipped with $\|\cdot\|_{\infty}$ is Banach. Hint: see below⁵.

Exercise 3.32 : Let E be an Euclidean space and $u \in \mathcal{L}(E)$. Suppose that u is symmetric, that is

$$\forall x, y \in E, \quad \langle u(x), y \rangle = \langle x, u(y) \rangle.$$

Let S be the centered unit sphere of E and $\varphi: S \to \mathbb{R}$ be a map defined by $\varphi(x) = \langle x, u(x) \rangle$.

- (1) Justify φ attains its maximum on S. We will write $x_0 \in S$ where this maximum is attained.
- (2) Let y be a unit vector that is orthogonal to x. We define the following two functions on \mathbb{R} . For $t \in \mathbb{R}$, let

$$x(t) = (\cos t)x_0 + (\sin t)y$$
 and $f(t) = \langle u(x(t)), x(t) \rangle$.

Show that f attains its maximum at 0, and deduce that y is orthogonal to $u(x_0)$.

(3) Show that x_0 is an eigenvalue of u.

Exercise 3.33: Let $(V, \|\cdot\|)$ be a normed space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let \hat{V} be the completion of V as in Proposition 3.3.6. Define the addition and the scalar product on \hat{V} by

$$(x_n)_{n \geqslant 1} + (y_n)_{n \geqslant 1} := (x_n + y_n)_{n \geqslant 1}, \quad \text{and} \quad a \cdot (x_n)_{n \geqslant 1} := (ax_n)_{n \geqslant 1}$$

for all $(x_n)_{n \ge 1}, (y_n)_{n \ge 1} \in \hat{V}$ and $a \in \mathbb{K}$. Show that these two operations makes \hat{V} into a vector space, and thus a Banach space.

⁵You may follow the steps suggested in Remark 3.2.19.

Exercise 3.34 : In this exercise, we give another construction of the completion of a metric space. Let (X, d) be a nonempty metric space, and fix a point $x_0 \in X$.

(1) Let $\mathcal{B}(X,\mathbb{R})$ be the set of all the bounded real-valued functions on X, equipped with the norm $\|\cdot\|_{\infty}$. Show that $(\mathcal{B}(X,\mathbb{R}),\|\cdot\|_{\infty})$ is complete.

Hint: It is very similar to Exercise 3.30. If $(f_n)_{n \ge 1}$ is a Cauchy sequence in $\mathcal{B}(X, \mathbb{R})$, then $(f_n(x))_{n \ge 1}$ is a Cauchy sequence in \mathbb{R} for all $x \in X$. The limit of $(f_n)_{n \ge 1}$ will be $g(x) := \lim_{n \to \infty} f_n(x)$.

(2) For every $x \in X$, define the function $f_x : X \to \mathbb{R}$ by

$$f_x(y) = d(y, x) - d(y, x_0).$$

Show that f_x is bounded and thus $f_x \in \mathcal{B}(X, \mathbb{R})$.

- (3) Show that the map $F: X \to \mathcal{B}(X, \mathbb{R}), x \mapsto f_x$, is an isometry.
- (4) Deduce that $(\overline{F(X)}, \|\cdot\|_{\infty})$ is a completion of (X, d).

Exercise 3.35 : The extended complex plane $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is defined to be the union of \mathbb{C} with an extra point ∞ .

(1) Show that the function d defined on $\widehat{\mathbb{C}} \times \widehat{\mathbb{C}}$ by

$$d(z_1, z_2) = \frac{2|z_1 - z_2|}{\sqrt{(1 + |z_1|^2)(1 + |z_2|^2)}}$$
 for all $z_1, z_2 \in \mathbb{C}$,
$$d(z_1, \infty) = \frac{2}{\sqrt{1 + |z_1|^2}}$$
 for all $z_1 \in \mathbb{C}$,

is a metric on $\widehat{\mathbb{C}}$.

(2) Show that $(\widehat{\mathbb{C}}, d)$ is a complete and compact metric space.