
Chapter 4

Exercise 4.1 : Compute the differentials of the following functions.

(a) f1(x, y) = exy(x + y).

(b) f2(x, y) = xyz + xy + yz + zx.

(c) f3(r, t) = (r cos t, r sin t).

Exercise 4.2 : Let V and W be two normed vector spaces. Show that if f : V → W is differentiable at
x ∈ V , then f is locally Lipschitz continuous at x, that is there exists K > 0 and r > 0 such that for any
y ∈ B(x, r), we have ‖f(y) − f(x)‖W ⩽ K ‖y − x‖V .

Exercise 4.3 : Let n ⩾ 1 be an integer.

(1) Show that GLn(R) := {M ∈ Mn(R) : det M 6= 0} is open in Mn(R).

Consider φ : GLn(R) → GLn(R), M 7→ M−1. Recall from the linear algebra class that for M ∈
GLn(R), its inverse can be obtained by M−1 = (det M)−1M̃ , where M̃ is the adjugate matrix (伴隨矩
陣) of M . Note that the coefficients of the adjugate are given by linear combinations of products of the
coefficients from the original matrix. This allows us to see that φ is of class C1 (and actually, of class C∞).

(2) Show that φ is differentiable at In and compute its differential dφIn .

(3) Given M ∈ GLn(R). Show that φ is differentiable at M and compute its differential dφM .

Exercise 4.4 : Let φ : L(Rn) → L(Rn) defined by φ(u) = u ◦ u. Show that φ is of class C1.

Exercise 4.5 : We equip M = Rn[X] with the norm ‖P‖∞ = supt∈[0,1] |P (t)|. Consider

φ : M → R

P 7→
∫ 1

0

(
P (t)

)3 dt
.

Show that φ is differentiable on M and compute its differential. Is the map P 7→ dφP continuous?
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Exercise 4.6 (Non-differentiability) :

(1) Consider the normed space V = C([0, 1],R) with supremum norm ‖f‖∞ = supx∈[0,1] |f(x)|. Let
f ∈ V be such that there are two or more points t in [0, 1] with |f(t)| = ‖f‖∞. Show that the
supremum norm function ‖·‖∞ : V → R is not differentiable at such an f .

(2) Let V ⊆ ℓ∞(R) be the subspace of all bounded sequence with limit 0. That is,

V = {(an)n⩾1 ∈ ℓ∞(R) | lim
n→∞

an = 0}.

Show that the norm function ‖·‖∞ : V → R is differentiable at a = (an)⩾1 if and only if there is
a unique n ∈ N such that |an| = ‖a‖∞.

(3) Let us come back to the linear form considered in Exercise 3.29, that is

φ : C([0, 1],R) → R
f 7→ f(1) .

Show that if we equip C([0, 1],R) with the sup norm ‖·‖∞, then φ is differentiable at any f ∈
C([0, 1],R). Compute the differential map Dφ. This shows that how a norm can changes the
continuity and the differentiability of a map.

Exercise 4.7 : Let f be a map from a normed space V to a normed space W .

(1) Fix x ∈ V , and explain the difference between the following two statements:
(a) df is continuous at x.
(b) dfx is continuous.

(2) Prove that for a fixed x ∈ V , if dfx exists, then f is continuous and differentiable at x.

(3) Give an example of a mapping f such that df is continuous but not differentiable.

Exercise 4.8 : Let U ⊆ Rm and V ⊆ Rn be open subsets. Consider a differentiable function f : U → V
and suppose that

(i) f is differentiable at a certain a ∈ U ;

(ii) f has an inverse function g : V → U ;

(iii) g is differentiable at b = f(a) ∈ V .

Show that m = n.

Exercise 4.9 : Let f : Rn → Rm be a differentiable function. Suppose that for all λ ∈ R and x ∈ Rn, we
have f(λx) = λf(x).

(1) Show that f(0) = 0.

(2) Show that f is linear.
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Exercise 4.10 : Let (V, ‖·‖V ) and (W, ‖·‖W ) be two normed vector spaces. Consider an open set A ⊆ V
and f : A → W . Recall the definition of the differential in Definition 4.1.1. If there exists a map φ
satisfying the weaker condition

lim
λ→0

1
λ

‖f(x + λh) − f(x) − λφ(h)‖W = 0

for every h ∈ V , then f is said to be Gâteaux differentiable at x, and φ is the Gâteaux derivative of f at
x. Prove that if f is differentiable at x, then it is Gâteaux differentiable at x, and the two derivatives are
equal.

Exercise 4.11 : Let us consider the two functions below,

f(x, y) =
{

y2 ln |x| if x 6= 0,

0 otherwise,
and g(x, y) =


x2y

x4+y2 if (x, y) 6= (0, 0),
0 otherwise.

(1) Show that f and g are not continuous at (0, 0).

(2) Show that f and g have directional derivatives at (0, 0) in any direction u = (a, b) ∈ R2\{(0, 0)}.

(3) Are f and g differentiable?

Exercise 4.12 : Consider the function f : R2 → R defined by

f(x, y) =

xy x2−y2

x2+y2 if (x, y) 6= (0, 0),
0 if (x, y) = (0, 0).

(1) Is the function f continuous on R2?

(2) Is it of class C1?

(3) Is it of class C2?

Exercise 4.13 : Let (V, ‖·‖V ) and (W, ‖·‖W ) be two normed vector spaces, and A ⊆ V be a nonempty
open subset. Suppose that the function f : A → W is continuous and differentiable on A, with dfa ≡ 0
for all a ∈ A. You are not allowed to apply the result from Theorem 2.7.27, but may use the ideas from
its proof.

(1) We assume that A is arcwise connected. Show that f is a constant function.

(2) We assume that A is only connected. Fix x0 ∈ A and consider Γ = {x ∈ A : f(x) = f(x0)}.
Show that Γ is open and closed in A, and deduce that f is a constant function.

Exercise 4.14 : Let f : R2 → R be a function such that

∀x, y ∈ R2, |f(x) − f(y)| ⩽ ‖x − y‖1+ε

for some fixed ε > 0. Show that f is a constant function.
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Exercise 4.15 : Let V be a Banach space. Let K = B(0, r), where r > 0, be a closed ball contained in
an open set A contained in a Banach space V . Let f : A → V . Assume that f is differentiable at each
point of K and that f(K) ⊂ K . Assume also that sup{|||dfx||| : x ∈ K} < 1. Show that f has a unique
fixed point in K . Hint: mean-value theorem and fixed-point theorem.

Exercise 4.16 : Let f : R2 → R be a function of class C1. Compute the derivatives (univariate function)
or partial derivatives (multivariate function) of the following functions.

(a) g(x, y) = f(y, x).

(b) g(x) = f(x, x).

(c) g(x, y) = f(y, f(x, x)).

(d) g(x) = f(x, f(x, x)).

Exercise 4.17 : Let f : R2\{(0, 0)} → R be defined by

f(x, y) = x2

(x2 + y2)3/4 , ∀(x, y) ∈ R2\{(0, 0)}.

(1) Justify that f is of class C∞.

(2) Which value can we define at (0, 0) to extend f continuously onR2? Denote the extended function
by f̃ .

(3) Show that the partial derivative ∂f̃
∂x (0, 0) does not exist. Deduce that f̃ is not differentiable at (0, 0).

Exercise 4.18 : Let f : R2 → R be a C1 function. We say that f is homogeneous of degree r ∈ R if

∀x, y ∈ R2, ∀t > 0, f(tx, ty) = trf(x, y).

(1) Show that if f is homogeneous of degree r, then its partial derivatives are homogeneous of degree
r − 1.

(2) Show that f is homogeneous of degree r if and only if

∀x, y ∈ R2, x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y) = rf(x, y).

(3) Suppose that f is of class C2. Show that

x2 ∂2f

∂x2 (x, y) + 2xy
∂2f

∂x∂y
+ y2 ∂2f

∂y2 = r(r − 1)f(x, y).
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Exercise 4.19 : Let A be an open subset of Rn, f : A → R be a function of class Cp with p ⩾ 1, and
a ∈ A. Show the following Taylor formulas by mimicking the proof of Theorem 4.3.2.

(1) Let h ∈ Rn such that [x, x + h] ⊆ A. Then,

f(x + h) = f(x) +
p−1∑
m=1

f
(m)
h (x)

m!
+

∫ 1

0

(1 − t)p−1

(p − 1)!
f

(p)
h (x + th) dt.

(2) Show that when h → 0, we have

f(x + h) = f(x) +
p∑

m=1

f
(m)
h (x)

m!
+ o(|h|p).

Exercise 4.20 : Let A ⊆ Rm be an open subset. Suppose that the function f : A → Rn is differentiable
and the differential map x 7→ dfx is continuous at a ∈ A. Show that for every ε > 0, there exists η > 0
such that

‖x − a‖ < η, ‖y − a‖ < η ⇒ ‖f(y) − f(x) − dfa(y − x)‖ ⩽ ε ‖y − x‖ .

Exercise 4.21 (Fundamental theorem of algebra) : Let P ∈ K[X] where K = R or C. Suppose that P is
not a constant polynomial, that is its degree is greater or equal to 1.

(1) Show that lim|z|→∞ |P (z)| = ∞.

(2) Deduce that |P (z)| attains a minimum in C. Let us denote by z0 the point where the minimum of
|P (z)| is attained.

(3) Show that P (z0) = 0 by contradiction. More precisely, suppose that P (z0) 6= 0, and show that
there exists z, sufficiently close to z0, such that the absolute value |P (z)| is strictly less than |P (z0)|.
Hint: Taylor expansion around z0.

Exercise 4.22 : Find the critical points of the following functions, and explain whether they are local
minima, local maxima, saddle points.

(a) f(x, y) = y2 − x2 + x4

2 .

(b) f(x, y) = x3 + y3 − 3xy.

(c) f(x, y) = x4 + y4 − 4(x − y)2.

Exercise 4.23 : Prove that the function f(x, y) = xy +
√

9 − x2 − y2 attains maximum and minimum
on the set

S =
{
(x, y) ∈ R2 : x2 + y2 ⩽ 9

}
.

At which points (x, y) does f achieve its maximum and minimum?
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Exercise 4.24 (Rolle’s theorem) : Let f : Rn → R be differentiable. We assume that f is constant on the
unit sphere S(0, 1). Show that there exists x0 ∈ B(0, 1) such that dfx0 = 0.

Exercise 4.25 : Let V and W be two normed vector spaces, and f : V → W be a map of class C1. Let
y0 ∈ W be such that df is invertible at each point of f−1(y0). Prove that f−1(y0) is a discrete set. That
is, for any x ∈ f−1(y0), the singleton {x} is an open subset of f−1(y0).

Exercise 4.26 : Assume that the polynomial

P (x) = x3 + a2x2 + a1x + a0

has three different real roots for (a2, a1, a0) = (p0, q0, r0). Show that there exists ε > 0 such that
P (x) has three different real roots λ1 < λ2 < λ3 whenever (a2, a1, a0) ∈ B

(
(p0, q0, r0), ε

)
, where λj ,

1 ⩽ j ⩽ 3, are C1 functions of a2, a1, a0.

Exercise 4.27 : Let φ : Mn(R) → Mn(R), M 7→ M2. Show that there exists ε > 0 such that for
A ∈ Mn(R) with |||A − I||| < ε, then we may define a square root

√
A of A. Show that A 7→

√
A is of

class C∞ on B(I, ε).

Exercise 4.28 : It is the second part of Exercise 4.4. Recall that φ : L(Rn) → L(Rn), u 7→ u ◦ u.

(1) Show that φ is of class C1.

(2) Show that dφ at IdRn is a map in Lc(Lc(Rn)) and writes, u 7→ 2u. Deduce that dφIdRn is invertible.

(3) Show that there exists an open set U ⊆ L(Rn) containing IdRn such that for any u ∈ U , there
exists v ∈ L(Rn) such that u = v ◦ v. In other words, all linear operators near IdRn have a “square
root”. Hint: Inversion theorem.

Exercise 4.29 : Let (V, ‖·‖) be a Banach space. Show that there exists ε > 0 such that whenever f ∈
Lc(V ) satisfying |||f − Id||| < ε, we may find g ∈ Lc(V ) such that f = exp(g), that we may also write
as g = ln(f). Hint: use Remark 3.2.21 and the local inversion theorem.

Exercise 4.30 : Let f : R2\{(0, 0)} → R2\{(0, 0)} be defined by f(x, y) = (x2 − y2, 2xy). Show that
f is a local C1-diffeomorphism, but not a global C1-diffeomorphism.

Exercise 4.31 : Let V be a Banach space and φ : V → V be a function of class C1. Assume that
dφu ∈ Lc(V, V ) is a bicontinuous isomorphism for all u ∈ V , and there exists c ∈ (0, 1) such that

‖φ(u) − φ(v) − (u − v)‖V ⩽ c ‖u − v‖V ∀u, v ∈ V.

Follow the following steps to show that φ is a C1-diffeomorphism.

(1) Show that φ is injective.

(2) Fix w ∈ V . Set u0 = w and un+1 = un + (w − φ(un)) for all n ⩾ 0. Show that (un)n⩾0 is a
Cauchy sequence in V .

(3) Deduce that φ is surjective and conclude that φ is a C1-diffeomorphism.
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Exercise 4.32 : Consider the function

f : R3 → R3,
(x, y, z) 7→ (e2y + e2z, e2x − e2z, x − y).

Show that the image of f is a proper open subset of R3.

Exercise 4.33 : Consider the solutions to the equation x + y + z + sin(xyz) = 0.

(1) Show that around the point (0, 0, 0), we may write z as a function of x and y. That is, there exist
an open set X ⊆ R2 containing 0, an open set Z ⊆ R containing 0, and a function φ : X → Z
such that f(x, y, z) = 0 has a unique solution z = φ(x, y) ∈ Z .

(2) Compute ∂z
∂x and ∂z

∂y .

(3) Deduce that φ(x, y) = −(x + y) + o(‖(x, y)‖) when (x, y) → 0.

(4) Show that we have a higher-order expansion φ(x, y) = −(x+y)+xy(x+y)+o(‖(x, y)‖3) when
(x, y) → 0.

Exercise 4.34 : Let f(x) be a non-negative continuous function satisfying
∫ ∞

−∞ f(x) dx = 1.

(1) Prove that among all closed intervals [a, b] such that
∫ b

a f(x) dx = 1
2 , there is one with the shortest

length.

(2) If [a, b] is one of the shortest closed intervals in (a), show that f(a) = f(b).

Exercise 4.35 : Let f : R3 → R be defined by f(x, y, z) = x2 − xy3 − y2z + z3, and the surface S be
defined as the set of the solutions to f(x, y, z) = 0.

(1) Show that around the point (1, 1, 1), the surface S can be defined by an equation z = φ(x, y)
where φ is of class C∞ around (1, 1).

(2) Find the equation of the tangent plane P at (1, 1, 1) to the surface S .

(3) Find the partial derivatives of φ up to order 2 around (1, 1) and at (1, 1).

(4) What is the position of the surface S with respect to the tangent plane P?

Exercise 4.36 (AM–GM inequality) : Let n ⩾ 2 and f : Rn → R, (x1, . . . , xn) 7→ x1 . . . xn. Consider
Γ = {(x1, . . . , xn) ∈ Rn

⩾0 : x1 + · · · + xn = 1}.

(1) Show that f has a global maximum on Γ and find its value.

(2) Deduce the AM–GM inequality, that is, prove the following,

( n∏
i=1

xi

)1/n
⩽ 1

n

n∑
i=1

xi, ∀(x1, . . . , xn) ∈ Rn
⩾0.
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