Exercise 4.1 : Compute the differentials of the following functions.

- (a) $f_1(x,y) = e^{xy}(x+y)$.
- (b) $f_2(x, y) = xyz + xy + yz + zx$.
- (c) $f_3(r,t) = (r \cos t, r \sin t).$

Exercise 4.2: Let V and W be two normed vector spaces. Show that if $f : V \to W$ is differentiable at $x \in V$, then f is locally Lipschitz continuous at x, that is there exists K > 0 and r > 0 such that for any $y \in B(x, r)$, we have $||f(y) - f(x)||_W \leq K ||y - x||_V$.

Exercise 4.3 : Let $n \ge 1$ be an integer.

(1) Show that $\operatorname{GL}_n(\mathbb{R}) := \{ M \in \mathcal{M}_n(\mathbb{R}) : \det M \neq 0 \}$ is open in $\mathcal{M}_n(\mathbb{R})$.

Consider $\varphi : \operatorname{GL}_n(\mathbb{R}) \to \operatorname{GL}_n(\mathbb{R}), M \mapsto M^{-1}$. Recall from the linear algebra class that for $M \in \operatorname{GL}_n(\mathbb{R})$, its inverse can be obtained by $M^{-1} = (\det M)^{-1}\widetilde{M}$, where \widetilde{M} is the adjugate matrix (伴隨矩 **陣**) of M. Note that the coefficients of the adjugate are given by linear combinations of products of the coefficients from the original matrix. This allows us to see that φ is of class \mathcal{C}^1 (and actually, of class \mathcal{C}^{∞}).

- (2) Show that φ is differentiable at I_n and compute its differential $d\varphi_{I_n}$.
- (3) Given $M \in \operatorname{GL}_n(\mathbb{R})$. Show that φ is differentiable at M and compute its differential $d\varphi_M$.

Exercise 4.4: Let $\varphi : \mathcal{L}(\mathbb{R}^n) \to \mathcal{L}(\mathbb{R}^n)$ defined by $\varphi(u) = u \circ u$. Show that φ is of class \mathcal{C}^1 .

Exercise 4.5: We equip $M = \mathbb{R}_n[X]$ with the norm $||P||_{\infty} = \sup_{t \in [0,1]} |P(t)|$. Consider

$$\varphi: M \to \mathbb{R}$$
$$P \mapsto \int_0^1 (P(t))^3 dt$$

Show that φ is differentiable on M and compute its differential. Is the map $P \mapsto d\varphi_P$ continuous?

Exercise 4.6 (Non-differentiability) :

- (1) Consider the normed space $V = \mathcal{C}([0, 1], \mathbb{R})$ with supremum norm $||f||_{\infty} = \sup_{x \in [0, 1]} |f(x)|$. Let $f \in V$ be such that there are two or more points t in [0, 1] with $|f(t)| = ||f||_{\infty}$. Show that the supremum norm function $|| \cdot ||_{\infty} : V \to \mathbb{R}$ is not differentiable at such an f.
- (2) Let $V \subseteq \ell^{\infty}(\mathbb{R})$ be the subspace of all bounded sequence with limit 0. That is,

$$V = \{(a_n)_{n \ge 1} \in \ell^{\infty}(\mathbb{R}) \mid \lim_{n \to \infty} a_n = 0\}.$$

Show that the norm function $\|\cdot\|_{\infty} : V \to \mathbb{R}$ is differentiable at $a = (a_n)_{\geq 1}$ if and only if there is a unique $n \in \mathbb{N}$ such that $|a_n| = ||a||_{\infty}$.

(3) Let us come back to the linear form considered in Exercise 3.29, that is

$$\varphi: \ \mathcal{C}([0,1],\mathbb{R}) \ \to \ \mathbb{R}$$
$$f \ \mapsto \ f(1)$$

Show that if we equip $\mathcal{C}([0,1],\mathbb{R})$ with the sup norm $\|\cdot\|_{\infty}$, then φ is differentiable at any $f \in \mathcal{C}([0,1],\mathbb{R})$. Compute the differential map $D\varphi$. This shows that how a norm can changes the continuity and the differentiability of a map.

Exercise 4.7: Let f be a map from a normed space V to a normed space W.

- (1) Fix $x \in V$, and explain the difference between the following two statements:
 - (a) df is continuous at x.
 - (b) df_x is continuous.
- (2) Prove that for a fixed $x \in V$, if df_x exists, then f is continuous and differentiable at x.
- (3) Give an example of a mapping f such that df is continuous but not differentiable.

Exercise 4.8 : Let $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^n$ be open subsets. Consider a differentiable function $f : U \to V$ and suppose that

- (i) f is differentiable at a certain $a \in U$;
- (ii) f has an inverse function $g: V \to U$;
- (iii) g is differentiable at $b = f(a) \in V$.

Show that m = n.

Exercise 4.9: Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function. Suppose that for all $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^n$, we have $f(\lambda x) = \lambda f(x)$.

- (1) Show that f(0) = 0.
- (2) Show that f is linear.

Exercise 4.10: Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be two normed vector spaces. Consider an open set $A \subseteq V$ and $f : A \to W$. Recall the definition of the differential in Definition 4.1.1. If there exists a map φ satisfying the weaker condition

$$\lim_{\lambda \to 0} \frac{1}{\lambda} \left\| f(x + \lambda h) - f(x) - \lambda \varphi(h) \right\|_{W} = 0$$

for every $h \in V$, then f is said to be *Gâteaux differentiable* at x, and φ is the Gâteaux derivative of f at x. Prove that if f is differentiable at x, then it is Gâteaux differentiable at x, and the two derivatives are equal.

Exercise 4.11 : Let us consider the two functions below,

$$f(x,y) = \begin{cases} y^2 \ln |x| & \text{if } x \neq 0, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad g(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{otherwise.} \end{cases}$$

- (1) Show that f and g are not continuous at (0, 0).
- (2) Show that f and g have directional derivatives at (0,0) in any direction $u = (a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$.
- (3) Are f and g differentiable?

Exercise 4.12 : Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (1) Is the function f continuous on \mathbb{R}^2 ?
- (2) Is it of class C^1 ?
- (3) Is it of class C^2 ?

Exercise 4.13: Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be two normed vector spaces, and $A \subseteq V$ be a nonempty open subset. Suppose that the function $f : A \to W$ is continuous and differentiable on A, with $df_a \equiv 0$ for all $a \in A$. You are not allowed to apply the result from Theorem 2.7.27, but may use the ideas from its proof.

- (1) We assume that A is arcwise connected. Show that f is a constant function.
- (2) We assume that A is only connected. Fix $x_0 \in A$ and consider $\Gamma = \{x \in A : f(x) = f(x_0)\}$. Show that Γ is open and closed in A, and deduce that f is a constant function.

Exercise 4.14 : Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that

$$\forall x, y \in \mathbb{R}^2, \quad |f(x) - f(y)| \leq ||x - y||^{1 + \varepsilon}$$

for some fixed $\varepsilon>0.$ Show that f is a constant function.

Exercise 4.15: Let V be a Banach space. Let $K = \overline{B}(0, r)$, where r > 0, be a closed ball contained in an open set A contained in a Banach space V. Let $f : A \to V$. Assume that f is differentiable at each point of K and that $f(K) \subset K$. Assume also that $\sup\{\||df_x\|| : x \in K\} < 1$. Show that f has a unique fixed point in K. Hint: mean-value theorem and fixed-point theorem.

Exercise 4.16 : Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function of class \mathcal{C}^1 . Compute the derivatives (univariate function) or partial derivatives (multivariate function) of the following functions.

- (a) g(x,y) = f(y,x).
- (b) g(x) = f(x, x).
- (c) g(x,y) = f(y, f(x,x)).
- (d) g(x) = f(x, f(x, x)).

Exercise 4.17: Let $f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ be defined by

$$f(x,y) = \frac{x^2}{(x^2 + y^2)^{3/4}}, \quad \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

- (1) Justify that f is of class C^{∞} .
- (2) Which value can we define at (0,0) to extend f continuously on \mathbb{R}^2 ? Denote the extended function by \tilde{f} .
- (3) Show that the partial derivative $\frac{\partial \tilde{f}}{\partial x}(0,0)$ does not exist. Deduce that \tilde{f} is not differentiable at (0,0).

Exercise 4.18: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a \mathcal{C}^1 function. We say that f is homogeneous of degree $r \in \mathbb{R}$ if

$$\forall x, y \in \mathbb{R}^2, \quad \forall t > 0, \quad f(tx, ty) = t^r f(x, y).$$

- (1) Show that if f is homogeneous of degree r, then its partial derivatives are homogeneous of degree r 1.
- (2) Show that f is homogeneous of degree r if and only if

$$\forall x,y \in \mathbb{R}^2, \quad x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = rf(x,y).$$

(3) Suppose that f is of class C^2 . Show that

$$x^2 \frac{\partial^2 f}{\partial x^2}(x,y) + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = r(r-1)f(x,y)$$

Exercise 4.19: Let A be an open subset of \mathbb{R}^n , $f : A \to \mathbb{R}$ be a function of class \mathcal{C}^p with $p \ge 1$, and $a \in A$. Show the following Taylor formulas by mimicking the proof of Theorem 4.3.2.

(1) Let $h \in \mathbb{R}^n$ such that $[x, x + h] \subseteq A$. Then,

$$f(x+h) = f(x) + \sum_{m=1}^{p-1} \frac{f_h^{(m)}(x)}{m!} + \int_0^1 \frac{(1-t)^{p-1}}{(p-1)!} f_h^{(p)}(x+th) \,\mathrm{d}t.$$

(2) Show that when $h \to 0$, we have

$$f(x+h) = f(x) + \sum_{m=1}^{p} \frac{f_h^{(m)}(x)}{m!} + o(|h|^p).$$

Exercise 4.20: Let $A \subseteq \mathbb{R}^m$ be an open subset. Suppose that the function $f : A \to \mathbb{R}^n$ is differentiable and the differential map $x \mapsto df_x$ is continuous at $a \in A$. Show that for every $\varepsilon > 0$, there exists $\eta > 0$ such that

$$||x-a|| < \eta, ||y-a|| < \eta \quad \Rightarrow \quad ||f(y) - f(x) - df_a(y-x)|| \le \varepsilon ||y-x||.$$

Exercise 4.21 (Fundamental theorem of algebra) : Let $P \in \mathbb{K}[X]$ where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Suppose that P is not a constant polynomial, that is its degree is greater or equal to 1.

- (1) Show that $\lim_{|z|\to\infty} |P(z)| = \infty$.
- (2) Deduce that |P(z)| attains a minimum in \mathbb{C} . Let us denote by z_0 the point where the minimum of |P(z)| is attained.
- (3) Show that $P(z_0) = 0$ by contradiction. More precisely, suppose that $P(z_0) \neq 0$, and show that there exists z, sufficiently close to z_0 , such that the absolute value |P(z)| is strictly less than $|P(z_0)|$. Hint: Taylor expansion around z_0 .

Exercise 4.22: Find the critical points of the following functions, and explain whether they are local minima, local maxima, saddle points.

- (a) $f(x,y) = y^2 x^2 + \frac{x^4}{2}$.
- (b) $f(x,y) = x^3 + y^3 3xy$.
- (c) $f(x,y) = x^4 + y^4 4(x-y)^2$.

Exercise 4.23 : Prove that the function $f(x, y) = xy + \sqrt{9 - x^2 - y^2}$ attains maximum and minimum on the set

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leqslant 9\}.$$

At which points (x, y) does f achieve its maximum and minimum?

Exercise 4.24 (Rolle's theorem) : Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. We assume that f is constant on the unit sphere S(0, 1). Show that there exists $x_0 \in B(0, 1)$ such that $df_{x_0} = 0$.

Exercise 4.25: Let V and W be two normed vector spaces, and $f: V \to W$ be a map of class C^1 . Let $y_0 \in W$ be such that df is invertible at each point of $f^{-1}(y_0)$. Prove that $f^{-1}(y_0)$ is a discrete set. That is, for any $x \in f^{-1}(y_0)$, the singleton $\{x\}$ is an open subset of $f^{-1}(y_0)$.

Exercise 4.26 : Assume that the polynomial

$$P(x) = x^3 + a_2 x^2 + a_1 x + a_0$$

has three different real roots for $(a_2, a_1, a_0) = (p_0, q_0, r_0)$. Show that there exists $\varepsilon > 0$ such that P(x) has three different real roots $\lambda_1 < \lambda_2 < \lambda_3$ whenever $(a_2, a_1, a_0) \in B((p_0, q_0, r_0), \varepsilon)$, where λ_j , $1 \leq j \leq 3$, are C^1 functions of a_2, a_1, a_0 .

Exercise 4.27: Let $\varphi : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto M^2$. Show that there exists $\varepsilon > 0$ such that for $A \in \mathcal{M}_n(\mathbb{R})$ with $|||A - I||| < \varepsilon$, then we may define a square root \sqrt{A} of A. Show that $A \mapsto \sqrt{A}$ is of class \mathcal{C}^{∞} on $B(I, \varepsilon)$.

Exercise 4.28: It is the second part of Exercise 4.4. Recall that $\varphi : \mathcal{L}(\mathbb{R}^n) \to \mathcal{L}(\mathbb{R}^n), u \mapsto u \circ u$.

- (1) Show that φ is of class C^1 .
- (2) Show that $d\varphi$ at $\mathrm{Id}_{\mathbb{R}^n}$ is a map in $\mathcal{L}_c(\mathcal{L}_c(\mathbb{R}^n))$ and writes, $u \mapsto 2u$. Deduce that $d\varphi_{\mathrm{Id}_{\mathbb{R}^n}}$ is invertible.
- (3) Show that there exists an open set $U \subseteq \mathcal{L}(\mathbb{R}^n)$ containing $\mathrm{Id}_{\mathbb{R}^n}$ such that for any $u \in U$, there exists $v \in \mathcal{L}(\mathbb{R}^n)$ such that $u = v \circ v$. In other words, all linear operators near $\mathrm{Id}_{\mathbb{R}^n}$ have a "square root". Hint: Inversion theorem.

Exercise 4.29: Let $(V, \|\cdot\|)$ be a Banach space. Show that there exists $\varepsilon > 0$ such that whenever $f \in \mathcal{L}_c(V)$ satisfying $\|\|f - \mathrm{Id}\|\| < \varepsilon$, we may find $g \in \mathcal{L}_c(V)$ such that $f = \exp(g)$, that we may also write as $g = \ln(f)$. Hint: use Remark 3.2.21 and the local inversion theorem.

Exercise 4.30: Let $f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\}$ be defined by $f(x,y) = (x^2 - y^2, 2xy)$. Show that f is a local \mathcal{C}^1 -diffeomorphism, but not a global \mathcal{C}^1 -diffeomorphism.

Exercise 4.31: Let V be a Banach space and $\varphi : V \to V$ be a function of class C^1 . Assume that $d\varphi_u \in \mathcal{L}_c(V, V)$ is a bicontinuous isomorphism for all $u \in V$, and there exists $c \in (0, 1)$ such that

$$\|\varphi(u) - \varphi(v) - (u - v)\|_V \leq c \|u - v\|_V \quad \forall u, v \in V.$$

Follow the following steps to show that φ is a \mathcal{C}^1 -diffeomorphism.

- (1) Show that φ is injective.
- (2) Fix $w \in V$. Set $u_0 = w$ and $u_{n+1} = u_n + (w \varphi(u_n))$ for all $n \ge 0$. Show that $(u_n)_{n\ge 0}$ is a Cauchy sequence in V.
- (3) Deduce that φ is surjective and conclude that φ is a C^1 -diffeomorphism.

Exercise 4.32 : Consider the function

$$\begin{array}{rcccc} f: & \mathbb{R}^3 & \to & \mathbb{R}^3, \\ & (x,y,z) & \mapsto & (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y). \end{array}$$

Show that the image of f is a proper open subset of \mathbb{R}^3 .

Exercise 4.33: Consider the solutions to the equation $x + y + z + \sin(xyz) = 0$.

- (1) Show that around the point (0, 0, 0), we may write z as a function of x and y. That is, there exist an open set $X \subseteq \mathbb{R}^2$ containing 0, an open set $Z \subseteq \mathbb{R}$ containing 0, and a function $\varphi : X \to Z$ such that f(x, y, z) = 0 has a unique solution $z = \varphi(x, y) \in Z$.
- (2) Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- (3) Deduce that $\varphi(x, y) = -(x + y) + o(||(x, y)||)$ when $(x, y) \to 0$.
- (4) Show that we have a higher-order expansion $\varphi(x, y) = -(x+y) + xy(x+y) + o(||(x, y)||^3)$ when $(x, y) \to 0$.

Exercise 4.34: Let f(x) be a non-negative continuous function satisfying $\int_{-\infty}^{\infty} f(x) dx = 1$.

- (1) Prove that among all closed intervals [a, b] such that $\int_a^b f(x) dx = \frac{1}{2}$, there is one with the shortest length.
- (2) If [a, b] is one of the shortest closed intervals in (a), show that f(a) = f(b).

Exercise 4.35: Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = x^2 - xy^3 - y^2z + z^3$, and the surface S be defined as the set of the solutions to f(x, y, z) = 0.

- (1) Show that around the point (1, 1, 1), the surface S can be defined by an equation $z = \varphi(x, y)$ where φ is of class C^{∞} around (1, 1).
- (2) Find the equation of the tangent plane \mathcal{P} at (1, 1, 1) to the surface \mathcal{S} .
- (3) Find the partial derivatives of φ up to order 2 around (1, 1) and at (1, 1).
- (4) What is the position of the surface S with respect to the tangent plane \mathcal{P} ?

Exercise 4.36 (AM–GM inequality) : Let $n \ge 2$ and $f : \mathbb{R}^n \to \mathbb{R}$, $(x_1, \ldots, x_n) \mapsto x_1 \ldots x_n$. Consider $\Gamma = \{(x_1, \ldots, x_n) \in \mathbb{R}^n_{\ge 0} : x_1 + \cdots + x_n = 1\}.$

- (1) Show that *f* has a global maximum on Γ and find its value.
- (2) Deduce the AM-GM inequality, that is, prove the following,

$$\left(\prod_{i=1}^n x_i\right)^{1/n} \leqslant \frac{1}{n} \sum_{i=1}^n x_i, \quad \forall (x_1, \dots, x_n) \in \mathbb{R}^n_{\geq 0}.$$