Chapter 5: Theory of Riemann-Stieltjes Integrals

Exercise 5.1: Let $f:[a,b]\to\mathbb{R}$ be a function defined on [a,b]. Show that $V_f([a,b])\geqslant |f(b)-f(a)|$.

Exercise 5.2: Define the function $f:[0,1] \to \mathbb{R}$ as follows,

$$\forall x \in [0, 1], \quad f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Is *f* a function of bounded variation?

Exercise 5.3: Let $f \in \mathbb{R}[X]$ be a polynomial function and I = [a, b] be a compact segment. Show that the total variation $V_f([a, b])$ is well defined, that is f is of bounded variation on [a, b].

Exercise 5.4: Let $(f_n)_{n\geqslant 1}$ be a sequence of functions of bounded variation on [a,b]. Let f be a function on [a,b]. We are given the two following conditions,

- (a) there exists M > 0 such that $V_{f_n}([a,b]) \leq M$ for all $n \geq 1$;
- (b) for every $x \in [a, b]$, we have the convergence $f_n(x) \xrightarrow[n \to \infty]{} f(x)$.

Please answer the following questions.

- (1) If both (a) and (b) hold, show that f is of bounded variation and that $V_f([a,b]) \leq M$.
- (2) If only the condition (b) is satisfied, can you find an example for which the limiting function f is not of bounded variation?

Exercise 5.5: Suppose that $f:[a,b]\to\mathbb{R}$ is a function and there exists M>0 such that f is of bounded variation on every interval $[a+\varepsilon,b]$ for any $\varepsilon>0$, with $V_f([a+\varepsilon,b])\leqslant M$.

- (1) Show that f if of bounded variation on [a, b].
- (2) Do we have $V_f([a,b]) \leq M$?

Exercise 5.6: Justify whether each of the following statements is true or false. If it is true, please prove it briefly; otherwise, find a counterexample. (a < b are real numbers.)

- (a) A continuous function on [a, b] is of bounded variation.
- (b) A function that is continuous on [a, b] and differentiable on (a, b) is of bounded variation.
- (c) A function that is continuous and differentiable on [a, b] is of bounded variation.
- (d) A function of class C^1 on [a, b] is of bounded variation.

第五章:Riemann-Stieltjes 積分理論

習題 5.2 : 定義函數 $f:[0,1] \to \mathbb{R}$ 如下:

$$\forall x \in [0,1], \quad f(x) = \begin{cases} 1, & \text{ if } x \in \mathbb{Q}, \\ 0, & \text{ if } x \notin \mathbb{Q}. \end{cases}$$

函數 f 會是個有界變差函數嗎?

習題 5.3 : 令 $f \in \mathbb{R}[X]$ 為多項式函數且 I = [a,b] 為緊緻線段。證明總變差 $V_f([a,b])$ 是定義良好的,也就是說 f 在 [a,b] 上是有界變差的。

習題 5.4 : 令 $(f_n)_{n\geqslant 1}$ 為在 [a,b] 上的有界變差函數序列。令 f 為在 [a,b] 上的函數。我們給定下面兩個條件:

- (a) 存在 M > 0 使得 $V_{f_n}([a, b]) \leq M$ 對於所有 $n \geq 1$;
- (b) 對於每個 $x \in [a,b]$,我們有收斂序列: $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ 。

請回答下面問題。

- (1) 如果 (a) 與 (b) 都成立,證明 f 是有界變差的,且 $V_f([a,b]) \leq M$ 。
- (2) 如果只有 (b) 成立,你可以找到範例使得極限函數 f 不是有界變差的嗎?

習題 5.5 : 假設 $f:[a,b]\to\mathbb{R}$ 是個函數且存在 M>0 使得對於任意 $\varepsilon>0$, f 在區間 $[a+\varepsilon,b]$ 上會是有界變差的,同時滿足 $V_f([a+\varepsilon,b])\leqslant M$ 。

- (1) 證明 f 在 [a,b] 上是有界變差的。
- (2) 我們會有 $V_f([a,b]) \leq M$ 嗎?

習題 5.6 : 說明下列敘述是否為真。如果為真,請簡單證明;反之,請給出反例。(a < b 為實數。)

- (a) 在 [a,b] 上的連續函數是有界變差的。
- (b) 在 [a,b] 上連續,且在 (a,b) 上可微的函數是連續變差的。
- (c) 在 [a,b] 上連續且可微的函數是連續變差的。
- (d) 在 [a,b] 上的 \mathcal{C}^1 函數是連續變差的。

Exercise 5.7: Let $\alpha \in \mathbb{R}$. Define the function $f:[0,1] \to \mathbb{R}$ as follows,

$$\forall x \in [0, 1], \quad f(x) = \begin{cases} x^{\alpha} \sin\left(\frac{1}{x}\right), & \text{if } x \in (0, 1], \\ 0, & \text{otherwise.} \end{cases}$$

- (1) For which values of α is the function f continuous on [0,1]?
- (2) For which values of α is the function f uniformly continuous on [0,1]?
- (3) For which values of α is the derivative f'(0) well defined?
- (4) For which values of α is the derivative f' continuous on [0,1]?
- (5) Show that for $\alpha > 2$, the function f is of bounded variation.
- (6) Show that for $\alpha \leq 1$, the function f is not of bounded variation.
- (7) (Hard) Show that for $1 < \alpha \le 2$, the function f is of bounded variation.

Exercise 5.8 : Let $f:[a,b]\to\mathbb{R}$ be a function defined on [a,b]. For $\alpha>0$, we say that f is α -Hölder continuous, or satisfies the uniform Lipschitz condition of order α , if there exists M>0 such that

$$|f(x) - f(y)| \le M|x - y|^{\alpha}, \quad \forall x, y \in [a, b]. \tag{5.1}$$

Let $\alpha > 0$ such that f is α -Hölder continuous.

- (1) If $\alpha > 1$, show that f is constant on [a, b].
- (2) If $\alpha = 1$, show that f is of bounded variation.
- (3) If α < 1, is f of bounded variation? Hint: see below¹.
- (4) Find a function $g:[a,b]\to\mathbb{R}$ which is of bounded variation, but is not α -Hölder continuous for any $\alpha>0$.

$$\forall x \in [0,1], \quad f(x) = \begin{cases} x^{\alpha} \sin\left(\frac{1}{x}\right), & \text{若 } x \in (0,1], \\ 0, & \text{其他情況.} \end{cases}$$

- (1) 對哪些值 α ,函數 f 會在 [0,1] 上連續?
- (2) 對哪些值 α ,函數 f 會在 [0,1] 上均匀連續?
- (3) 對哪些值 α , 微分 f'(0) 會是定義良好的?
- (4) 對哪些值 α ,微分 f' 會在 [0,1] 上連續?
- (5) 證明對 $\alpha > 2$,函數 f 會是有界變差的。
- (6) 證明對 $\alpha \leq 1$,函數 f 不會是有界變差的。
- (7) (困難)證明對 $1 < \alpha \le 2$,函數 f 會是有界變差的。

習題 5.8 : 令 $f:[a,b] o\mathbb{R}$ 為定義在 [a,b] 上的函數。對於 $\alpha>0$,如果存在 M>0 使得

$$|f(x) - f(y)| \leqslant M|x - y|^{\alpha}, \quad \forall x, y \in [a, b], \tag{5.1}$$

則我們說 f 是 α -Hölder 連續,或是滿足 α 階的均匀 Lipschitz 條件。令 $\alpha>0$ 使得 f 是 α -Hölder 連續的。

- (1) 如果 $\alpha > 1$,證明 f 在 [a,b] 上是個常數。
- (2) 如果 $\alpha = 1$,證明 f 是有界變差的。
- (3) 如果 $\alpha < 1$, f 會是有界變差的嗎?提示:如下¹。
- (4) 找一個有界變差的函數 $g:[a,b] \to \mathbb{R}$,但對於任意 $\alpha>0$,他都不會是 α -Hölder 連續的。

2

Last modified: 20:24 on Tuesday 18th February, 2025

最後修改: 2025年2月18日20:24

¹The answer is no, and you need to find a counterexample.

¹答案是否定的,你需要找反例出來。

Exercise 5.9: A function $f:[a,b]\to\mathbb{R}$ is said to be *absolutely continuous* (絕對連續) on [a,b] if for every $\varepsilon>0$, there exists $\delta>0$ such that for any $n\in\mathbb{N}$ and any disjoint open intervals $(a_k,b_k)\subseteq[a,b]$, $1\leqslant k\leqslant n$,

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \quad \Rightarrow \quad \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon.$$

(1) Show that the function $f:[0,1]\to\mathbb{R}, x\mapsto\sqrt{x}$ is absolutely continuous.

We are given two functions $f,g:[a,b]\to\mathbb{R}$ that are both absolutely continuous.

- (2) Show that f is uniformly continuous, continuous, and of bounded variation on [a, b].
- (3) Show that if f is 1-Hölder continuous on [a, b], see Eq. (5.1) for the definition, then f is absolutely continuous on [a, b].
- (4) Show that both |f| and cf are absolutely continuous, for any constant $c \in \mathbb{R}$.
- (5) Show that f + g and $f \cdot g$ are both absolutely continuous.
- (6) Show that if g is bounded away from zero (i.e., $|g| \ge c$ for some c > 0), then $\frac{f}{g}$ is absolutely continuous.

習題 5.9 : 給定函數 $f:[a,b]\to\mathbb{R}$,如果對於任意 $\varepsilon>0$,會存在 $\delta>0$ 使得對於任意 $n\in\mathbb{N}$ 以及任意互斥開區間 $(a_k,b_k)\subseteq[a,b],1\leqslant k\leqslant n$,我們有

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \quad \Rightarrow \quad \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon,$$

則我們說 f 在 [a,b] 上是絕對連續 (absolutely continuous) 的。

(1) 證明函數 $f:[0,1]\to\mathbb{R}, x\mapsto\sqrt{x}$ 是絕對連續的。

給定兩個絕對連續的函數 $f,g:[a,b]\to\mathbb{R}$ 。

- (2) 證明 f 在 [a,b] 上是均匀連續、連續,且是有界變差的。
- (3) 證明如果 f 在 [a,b] 上是 1-Hölder 連續,他的定義請見式 (5.1),那麼他在 [a,b] 上會是絕對連續的。
- (4) 證明 |f| 是絕對連續的;以及對於任意常數 $c \in \mathbb{R}$,函數 cf 是絕對連續的。
- (5) 證明 f + g 以及 $f \cdot g$ 都是絕對連續的。
- (6) 證明如果 g 是個不靠近零的函數(也就是存在 c>0 使得 $|g|\geqslant c$),那麼 $\frac{f}{g}$ 是絕對連續的。