Exercise 5.1: Let $f : [a, b] \to \mathbb{R}$ be a function defined on [a, b]. Show that $V_f([a, b]) \ge |f(b) - f(a)|$. **Exercise 5.2**: Define the function $f : [0, 1] \to \mathbb{R}$ as follows,

$$\forall x \in [0,1], \quad f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Is f a function of bounded variation?

Exercise 5.3: Let $f \in \mathbb{R}[X]$ be a polynomial function and I = [a, b] be a compact segment. Show that the total variation $V_f([a, b])$ is well defined, that is f is of bounded variation on [a, b].

Exercise 5.4: Let $(f_n)_{n \ge 1}$ be a sequence of functions of bounded variation on [a, b]. Let f be a function on [a, b]. We are given the two following conditions,

- (a) there exists M > 0 such that $V_{f_n}([a, b]) \leq M$ for all $n \geq 1$;
- (b) for every $x \in [a, b]$, we have the convergence $f_n(x) \xrightarrow[n \to \infty]{} f(x)$.

Please answer the following questions.

- (1) If both (a) and (b) hold, show that f is of bounded variation and that $V_f([a, b]) \leq M$.
- (2) If only the condition (b) is satisfied, can you find an example for which the limiting function f is not of bounded variation?

Exercise 5.5: Suppose that $f : [a, b] \to \mathbb{R}$ is a function and there exists M > 0 such that f is of bounded variation on every interval $[a + \varepsilon, b]$ for any $\varepsilon > 0$, with $V_f([a + \varepsilon, b]) \leq M$.

- (1) Show that f if of bounded variation on [a, b].
- (2) Do we have $V_f([a, b]) \leq M$?

Exercise 5.6 : Justify whether each of the following statements is true or false. If it is true, please prove it briefly; otherwise, find a counterexample. (a < b are real numbers.)

- (a) A continuous function on [a, b] is of bounded variation.
- (b) A function that is continuous on [a, b] and differentiable on (a, b) is of bounded variation.
- (c) A function that is continuous and differentiable on [a, b] is of bounded variation.
- (d) A function of class C^1 on [a, b] is of bounded variation.

Exercise 5.7: Let $\alpha \in \mathbb{R}$. Define the function $f : [0, 1] \to \mathbb{R}$ as follows,

$$\forall x \in [0,1], \quad f(x) = \begin{cases} x^{\alpha} \sin\left(\frac{1}{x}\right), & \text{if } x \in (0,1], \\ 0, & \text{otherwise.} \end{cases}$$

- (1) For which values of α is the function f continuous on [0, 1]?
- (2) For which values of α is the function f uniformly continuous on [0, 1]?
- (3) For which values of α is the derivative f'(0) well defined?
- (4) For which values of α is the derivative f' continuous on [0, 1]?
- (5) Show that for $\alpha > 2$, the function f is of bounded variation.
- (6) Show that for $\alpha \leq 1$, the function f is not of bounded variation.
- (7) (Hard) Show that for $1 < \alpha \leq 2$, the function f is of bounded variation.

Exercise 5.8: Let $f : [a,b] \to \mathbb{R}$ be a function defined on [a,b]. For $\alpha > 0$, we say that f is α -Hölder continuous, or satisfies the uniform Lipschitz condition of order α , if there exists M > 0 such that

$$|f(x) - f(y)| \leq M|x - y|^{\alpha}, \quad \forall x, y \in [a, b].$$

$$(5.1)$$

Let $\alpha > 0$ such that f is α -Hölder continuous.

- (1) If $\alpha > 1$, show that f is constant on [a, b].
- (2) If $\alpha = 1$, show that f is of bounded variation.
- (3) If $\alpha < 1$, is *f* of bounded variation? Hint: see below¹.
- (4) Find a function $g : [a, b] \to \mathbb{R}$ which is of bounded variation, but is not α -Hölder continuous for any $\alpha > 0$.

¹The answer is no, and you need to find a counterexample.

Exercise 5.9: A function $f : [a, b] \to \mathbb{R}$ is said to be *absolutely continuous* (絕對連續) on [a, b] if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for any $n \in \mathbb{N}$ and any disjoint open intervals $(a_k, b_k) \subseteq [a, b]$, $1 \leq k \leq n$,

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \quad \Rightarrow \quad \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon.$$

(1) Show that the function $f:[0,1] \to \mathbb{R}, x \mapsto \sqrt{x}$ is absolutely continuous.

We are given two functions $f,g:[a,b]\to\mathbb{R}$ that are both absolutely continuous.

- (2) Show that f is uniformly continuous, continuous, and of bounded variation on [a, b].
- (3) Show that if f is 1-Hölder continuous on [a, b], see Eq. (5.1) for the definition, then f is absolutely continuous on [a, b].
- (4) Show that both |f| and cf are absolutely continuous, for any constant $c \in \mathbb{R}$.
- (5) Show that f + g and $f \cdot g$ are both absolutely continuous.
- (6) Show that if g is bounded away from zero (i.e., $|g| \ge c$ for some c > 0), then $\frac{f}{g}$ is absolutely continuous.