
Chapter 6

Exercise 6.1 : Let (V, ‖·‖) be a Banach space, and (an)n⩾1 be a sequence in V . We define an auxiliary
sequence (mn)n⩾1 as below,

∀n ∈ N, mn = a1 + · · · + an

n
.

We consider the following two properties.

(i) The sequence (an)n⩾1 converges.

(ii) The sequence (mn)n⩾1 converges.

Answer the following questions.

(1) Show that if (i) holds with limit ℓ, then (ii) also holds with the same limit.

(2) Find an example for which (ii) holds, but (i) does not hold.

(3) We are given a sequence (wn)n⩾1 of non-negative real numbers such that
∑

wn diverges. Define

∀n ∈ N, m′
n = w1a1 + · · · + wnan

w1 + · · · + wn
.

If we replace the property (ii) by the following property (ii’): the sequence (m′
n)n⩾1 converges,

does (i) still implies (ii’)?

Exercise 6.2 : Let (V, ‖·‖) be a non-empty finite-dimensional normed vector space. Let (an)n⩾1 be a
sequence in V and (rn)n⩾1 be a sequence in R∗

+ satisfying

∀n ∈ N, B(an+1, rn+1) ⊆ B(an, rn).

(1) Show that
∀n ∈ N, ‖an+1 − an‖ ⩽ rn − rn+1.

(2) Show that the sequence (an)n⩾1 is convergent.

(3) Show that
⋂

n⩾1 B(an, rn) is a closed ball. Find its center and radius.

Exercise 6.3 : Let a ∈ C and

A = 1
2

(
1 a
0 1

)
.

(1) Show that for n ∈ N, we have

An = 1
2

I + a

2
J, where J =

(
0 1
0 0

)
.

(2) Find the behavior of the series with general term An.
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Exercise 6.4 : Let (an)n⩾1 be a decreasing sequence of non-negative real numbers. Show that if
∑

un

converges, then we have un = o( 1
n).

Exercise 6.5 : Let
∑

n un and
∑

n vn be two convergent series with non-negative terms. Determine the
behavior of the series

∑
n

√
unvn and

∑
n max(un, vn).

Exercise 6.6 : Let
∑

n un be a series with non-negative terms.

(1) Suppose that
∑

n un converges. Show that for α > 1, the series
∑

n uα
n converges.

(2) Suppose that
∑

n un diverges. Show that for α ∈ (0, 1), the series
∑

n uα
n diverges.

Exercise 6.7 : Let (un)n⩾1 be a series with non-negative terms. For n ⩾ 1, let vn = un
1+un

.

(1) Show that the function x 7→ x
1+x is increasing on [0, +∞).

(2) Show that the series
∑

n un and
∑

n vn have the same behavior.

Exercise 6.8 : Let (un)n⩾1 be a non-negative decreasing sequence. Show that the series
∑

n un and∑
n 2nu2n have the same behavior.

Exercise 6.9 : Use the comparison theorems (Proposition 6.2.2 and Theorem 6.2.3) to determine the
behavior of the series

∑
un where the general term un is given by different expressions. You may also

need the Stirling’s formula from Exercise 6.12. Let us fix constants a ⩾ 0, b, c ∈ R.

(1) un = 3−
√

n,

(2) un = ann!,

(3) un = ne−
√

n,

(4) un = n−1− 1
n ,

(5) un = (n!)3

(3n)! ,

(6) un = ln n
ln(en−2) .

(7) un = an

n! ,

(8) un = an

(2n
n ) .

(9) un = 1 − cos π
n .

(10) un =
(

n
n+1

)n2

.

(11) un = e1/n − a − b
n .

(12) un = cos( 1
n) − a − b

n .

Exercise 6.10 : Let (un)n⩾0 be a real-valued sequence defined by u0 > 0 and

un+1 = un + u2
n, ∀n ∈ N.

(1) Show that un −−−→
n→∞

+∞.

(2) Show that
ln un+1
2n+1 − ln un

2n
= o

( 1
2n

)
.

(3) Deduce that there exists K > 1 such that un ∼ K2n .
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Exercise 6.11 : Let (un)n⩾0 be a real-valued sequence defined by u0 = c ∈ R and

un+1 = un + e−un , ∀n ∈ N.

(1) Show that un −−−→
n→∞

+∞.

(2) Find an asymptotic expression of un up to the order o
(

ln n
n

)
.

Exercise 6.12 : Define the sequence

∀n ⩾ 1, Sn =
n∑

k=1
ln k.

(1) Show that for every k ⩾ 2, we have∫ k

k−1
ln t dt ⩽ ln k ⩽

∫ k+1

k
ln t dt.

Deduce that Sn = n ln n − n + o(n).

(2) By considering the sequence (An)n⩾1, defined by

∀n ⩾ 1, An = Sn − n ln n + n,

show that An − An−1 ∼ 1
2n and deduce that An ∼ 1

2 ln n.

(3) Let Dn := Sn − n ln n + n − 1
2 ln n for n ⩾ 1. Show that Dn − Dn−1 ∼ − 1

12n2 .

(4) Show that Dn converges to some D∞ when n → ∞. Deduce that there exists some constant
C > 0 such that

n! ∼ C
(n

e

)n√
n.

(5) Using the expression of I2n from Exercise A1.2 to show that C =
√

2π.

(6) Show that
n! ∼

√
2πn

(n

e

)n(
1 + 1

12n
+ o

( 1
n

))
.

Exercise 6.13 : Our goal is to compute the value of the series
∑

n⩾1
1

n2 . Let Sn =
∑n

k=1
1

k2 for n ∈ N be
its n-th partial sum.

(1) Recall briefly why for α > 1, we have

∑
k⩾n

1
kα

∼ 1
(α − 1)nα−1 , when n → ∞.

(2) Let f : [0, π] → R be a C1 function. Show that

∫ π

0
f(t) sin

(
(2n + 1)t

2

)
dt −−−→

n→∞
0.
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(3) Consider the function An : (0, π] → R defined by

An(t) = 1
2

+
n∑

k=1
cos(kt), ∀t ∈ (0, π].

Show that

An(t) =
sin
( (2n+1)t

2
)

2 sin( t
2)

.

(4) Find a, b ∈ R such that

∀n ∈ N,

∫ π

0
(at2 + bt) cos(nt) dt = 1

n2 .

In what follows, let us fix such values for a and b.

(5) Check that

∀n ∈ N,

∫ π

0
(at2 + bt)An(t) dt = Sn − π2

6
,

and Sn −−−→
n→∞

π2

6 .

(6) Deduce that

Sn = π2

6
− 1

n
+ o

( 1
n

)
, when n → ∞.

Exercise 6.14 : Let (un)n⩾0 be a sequence defined by u0 = 1 and

∀n ∈ N, un+1 = sin un.

(1) Check that (un)n⩾0 converges to 0.

(2) Find the limit of un+1
un

and un+un+1
un

when n → ∞.

(3) Find the limit of un−un+1
u3

n
when n → ∞.

(4) Show that when n → ∞, we have the equivalence

1
u2

n+1
− 1

u2
n

∼ 1
3

.

Deduce an equivalence of un when n → ∞.

(5) Show that
1

u2
n+1

− 1
u2

n

− 1
3

= u2
n

15
+ o(u2

n).

Deduce that

un =
√

3√
n

− 3
√

3
10

ln n

n3/2 + o

(
ln n

n3/2

)
.
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Exercise 6.15 : Let
∑

n⩾1 un be a divergent series with non-negative terms. Write Sn =
∑n

k=1 uk for all
n ⩾ 1. Fix α > 1.

(1) Show that for n ⩾ 2, we have
un

Sα
n

⩽
∫ Sn

Sn−1

dt

tα
.

(2) Show that the series
∑

n
un
Sα

n
is convergent.

Exercise 6.16 : Let (un)n⩾1 be a sequence in a Banach space (W, ‖·‖) and

λ := lim sup
n→∞

‖un‖1/n ∈ [0, +∞].

Show the following properties.

(1) If λ < 1, then the series
∑

un is absolutely convergent.

(2) If λ > 1, then the series
∑

un is divergent.

(3) If λ = 1, then we cannot conclude.

Exercise 6.17 : Let x ∈ C and a ∈ R. Find the behavior of the following series by the ratio test
(Theorem 6.3.1) and the root test (Theorem 6.3.6).

(1)
∑ xn

n! .

(2)
∑ xn

(2n
n ) .

(3)
∑ n!

nan .

(4)
∑ na(ln n)n

n! .

(5)
∑ (n!)a

(2n)! .

(6)
∑ ann!

nn .

Exercise 6.18 : Let (un)n⩾1 be a sequence with strictly positive terms such that

un+1
un

= 1 + α

n
+ O

( 1
n2

)
, for some α ∈ R.

Fix β ∈ R and let
∀n ∈ N, vn = ln((n + 1)βun+1) − ln(nβun).

(1) For which value(s) of β does the series
∑

vn converge?

(2) For each of these values, show that there exists A > 0 such that un ∼ Anα.
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Exercise 6.19 :

(1) Show that the series
∑

n
(−1)n

√
n

converges.

(2) Show that for n → ∞, we have

(−1)n

√
n + (−1)n

= (−1)n

√
n

− 1
n

+ o
( 1

n

)
.

(3) What is the behavior of the following series?

∑
n

(−1)n

√
n + (−1)n

.

Exercise 6.20 : Use the comparison theorem (Theorem 6.2.3) and alternating series (Theorem 6.4.2) to
determine the behavior of the series

∑
un where the general term un is given by different expressions.

Let α > β > 0.

(1) un = ln
(
1 + (−1)n

2n + 1

)
, (2) un = (−1)n√

nα + (−1)n
, (3) un = (−1)n√

nα + (−1)nnβ
.

Exercise 6.21 :

(1) Justify why the alternating series
∑∞

k=0
(−1)k

(2k)! converges. Does it also converge absolutely?

(2) For every n ∈ N0, consider the partial sum

Sn =
n∑

k=0

(−1)k

(2k)!
.

Show that for n ∈ N, we have

S2n−1 < cos(1) < S2n = S2n−1 + 1
(4n)!

.

(3) Deduce that cos(1) is an irrational number.

(4) Similarly, use the fact that e−1 =
∑∞

k=0
(−1)k

k! to show that e is an irrational number.
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Exercise 6.22 : Let (un)n⩾0 be a decreasing sequence with strictly positive general terms with limit
0. Consider the alternating series

∑
n⩾0(−1)nun which converges by Theorem 6.4.2. Recall that the

remainders are defined by

∀n ∈ N0, Rn =
∞∑

k=n+1
(−1)kuk.

Suppose that the following conditions hold,

∀n ∈ N0, un+2 − 2un+1 + un ⩾ 0 and lim
n→∞

un+1
un

= 1.

(1) Show that for every n ⩾ 0, we have |Rn| + |Rn+1| = un+1.

(2) Show that the sequence (|Rn|)n⩾0 is decreasing.

(3) Deduce that the following equivalence,

Rn ∼ (−1)n+1un

2
, when n → ∞.

(4) Apply this result to the alternating series
∑

n⩾1
(−1)n+1

n to find an asymptotic formula for its partial
sums. Hint: the limit of this series is known, see Example 6.4.4.

Exercise 6.23 :

(1) Show that the Cauchy product of the following two divergent series

(−1 − 2 − 2 − 2 − 2 − · · · )(−1 + 2 − 2 + 2 − 2 + · · · )

is absolutely convergent.

(2) Consider the alternating series
∑

n⩾0
(−1)n
√

n+1 . Show that the Cauchy product of this series with itself
is divergent.

Exercise 6.24 : This exercise is a generalization of Theorem 6.6.3. Let
∑

n⩾0 an be an absolutely con-
vergent series and

∑
n⩾0 bn be a convergent series with terms in a complete normed algebra (A, ·, | · |).

Their Cauchy product is the series
∑

n⩾0 cn given by

∀n ∈ N0, cn =
n∑

k=0
akbn−k.

Show that the series
∑

cn is convergent, and its sum equals

∑
n⩾0

cn =
(∑

p⩾0
ap

)(∑
q⩾0

bq

)
.
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Exercise 6.25 : Consider the double sequence (um,n)m,n⩾1 defined by

∀m, n ⩾ 1, um,n =
(
1 + 1

m

)n
.

(1) Find the iterated limits limn→∞ limm→∞ um,n and limm→∞ limn→∞ um,n.

(2) Does the limit of the sequence (um,n)m,n⩾1 exist? How about the limit of (un,n)n⩾1?

Exercise 6.26 : For a real number k > 1, let us define the Riemann zeta function

ζ(k) =
∞∑

n=1

1
nk

.

(1) Explain briefly why the series ζ(k) is well defined for k > 1.

(2) Show the following identity,
∞∑

k=2
(ζ(k) − 1) = 1.

(3) Show the following identity,

∞∑
k=2

ζ(k) − 1
k

= 1 − γ, where γ = lim
n→∞

[
n∑

k=1

1
k

− ln n

]
.

Exercise 6.27 : Let (um,n)m,n⩾1 be a double sequence in a Banach space (W, ‖·‖). The associated double
series

∑
m,n um,n is the double sequence (sm,n)m,n⩾1 given by

∀m, n ⩾ 1, sm,n =
m∑

i=1

n∑
j=1

ui,j .

If the limit limm,n→∞ sm,n is well defined, then we say that the double series
∑

m,n um,n converges;
if the limit limm,n→∞

∑m
i=1

∑n
j=1 ‖ui,j‖ is well-defined, then we say that the double series

∑
m,n um,n

converges absolutely.

(1) Show that the iterated series
∑

m(
∑

n ‖um,n‖) is convergent if and only if the double series∑
m,n um,n is absolutely convergent.

(2) If the double series
∑

m,n um,n converges absolutely, show that it also converges.

(3) Suppose that the double series
∑

m,n um,n is absolutely convergent. We define

∀n ⩾ 2, cn =
n−1∑
i=1

ui,(n−1) = u1,(n−1) + u2,(n−2) + · · · + u(n−1),1.

Show that the series
∑

n cn is also absolutely convergent and∑
n⩾2

cn =
∑

m,n⩾1
um,n.
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(4) Let (um,n)m,n⩾1 be the double sequence given by

∀m, n ⩾ 1, um,n =


+1 if m − n = 1,

−1 if m − n = −1,

0 otherwise.

(a) Show that both iterated series
∑

n(
∑

m um,n) and
∑

m(
∑

n um,n) converge, but their limits
are not equal.

(b) Show that the double series
∑

m,n um,n does not converge.
(c) Show that the limit limn→∞ sn,n exists.

(5) Show that if the double series and one of the iterated series associated to (um,n)m,n⩾1 converge,
then these two limits are equal.

(6) Show that the convergence of the double series does not imply the convergence of the iterated
series.

(7) Show that the convergence of the double series does not imply that limn→∞ um,n = 0 for each
m ⩾ 1.

Exercise 6.28 : Let un = (−1)n

n for n ∈ N.

(1) Show that
∏

n⩾2(1 + un) converges with limit 1.

(2) Does the series
∑

n⩾2 un converge, absolutely converge, or conditionally converge?

Exercise 6.29 : Let (un)n⩾1 be a sequence defined by

∀n ∈ N, u2n−1 = − 1√
n

, u2n = 1√
n

+ 1
n

.

(1) Show that
∏

n⩾2(1 + un) converges to a nonzero limit.

(2) Does the series
∑

n⩾2 un converge, absolutely converge, or conditionally converge?

Exercise 6.30 : Let (an)n⩾1 be a sequence of real numbers with an > −1 for all n ∈ N.

(1) Show that if the series
∑∞

n=1 an is absolutely convergent, then the infinite product
∏∞

n=1(1 + an)
is convergent.

(2) Suppose that the series
∑

n⩾1 an is convergent. Show that the infinite product
∏

(1 + an) is con-
vergent if and only if the series

∑∞
n=1 a2

n is convergent. Hint: see below1.

Exercise 6.31 : Justify the convergence of the following infinite products, and prove their limits.

(1)
∞∏

n=1

(
1 − 1

n2

)
= 1

2
. (2)

∞∏
n=1

(
1 − 1

4n2

)
= 2

π
.

1Show that there exist positive constants A and B such that if |x| < 1
2 , then Ax2 ⩽ x − log(1 + x) ⩽ Bx2.
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Exercise 6.32 : Let Pn =
∏n

k=2

(
1 + (−1)k

√
k

)
for n ⩾ 2. Show that there exists λ ∈ R such that Pn ∼ eλ

√
n

when n → ∞.

Exercise 6.33 : Let P be the set of all the primes. In this exercise, we will prove
∑

p∈P
1
p is divergent.

(1) Show that for s > 1, we have

−
∑
p∈P

log
(
1 − 1

ps

)
= log ζ(s).

(2) Deduce that there exists M > 0 such that for any s > 1, we have∣∣∣∣∣ ∑
p∈P

1
ps

− log ζ(s)
∣∣∣∣∣ < M.

(3) Show that as s → 1+, we have ζ(s) → +∞.

(4) Conclude that
∑

p∈P
1
p is divergent.
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