Exercise 7.1: Let $f : [1, +\infty) \to \mathbb{R}$ be a non-negative continuous function. Suppose that it is integrable on $[1, +\infty)$.

- (1) If the limit $\lim_{x\to+\infty} f(x)$ exists, show that it is 0.
- (2) Give a counterexample to justify that $\lim_{x\to+\infty} f(x)$ may fail to exist.
- (3) Give a counterexample to justify that f may fail to be bounded on $[1, +\infty)$.
- (4) Suppose that f is uniformly continuous on $[1, +\infty)$, show that $\lim_{x\to +\infty} f(x) = 0$.
- (5) Suppose that f is Lipschitz continuous on $[1, +\infty)$, show that $\liminf_{n \to +\infty} \sqrt{n} f(n) = 0$.

Exercise 7.2: Let $\alpha, \beta \in \mathbb{R}$. Depending on the values of α and β , find the behavior of the integral

$$\int_{I} \frac{\mathrm{d}x}{x^{\alpha} |\ln x|^{\beta}},$$

where we take

(1) $I = (0, \frac{1}{2}];$ (2) $I = [\frac{1}{2}, 1);$ (3) I = (1, 2]; (4) $I = [2, +\infty).$

Exercise 7.3: Let $M \in \mathbb{R}$ and $f : [M, +\infty) \to \mathbb{R}_+$ be a piecewise continuous function.

(1) Suppose that f is integrable on $[M, +\infty)$. Show that

$$\int_{n}^{2n} f(t) \, \mathrm{d}t \xrightarrow[n \to \infty]{} 0$$

(2) Suppose that f is integrable and decreasing on $[M, +\infty)$. Show that $f(x) = o(\frac{1}{x})$ when $x \to \infty$.

Exercise 7.4: Find the behavior of the following integrals,

(1)
$$\int_{0}^{1} \frac{\sinh(\sqrt{t}) \ln t}{\sqrt{t} - \sin t}$$
,
(2) $\int_{1}^{\infty} \frac{\ln(t^{2} - t)}{(1 + t)^{2}}$,
(3) $\int_{0}^{\infty} \frac{dt}{e^{t} - 1}$,
(4) $\int_{0}^{\infty} \frac{te^{-\sqrt{t}}}{1 + t^{2}} dt$,
(5) $\int_{0}^{\infty} \frac{\ln t}{1 + t^{2}} dt$,
(6) $\int_{0}^{\infty} \frac{\sqrt{|\ln t|}}{(t - 1)\sqrt{t}} dt$.
(7) $\int_{0}^{1} \frac{dt}{1 - \sqrt{t}}$,
(8) $\int_{0}^{\infty} \left(1 + t \ln\left(\frac{t}{t + 1}\right)\right) dt$.

Exercise 7.5 : Determine the behavior of each of the following integrals, and their values in the case that they are well defined,

(1)
$$\int_0^{\frac{\pi}{2}} \frac{\cos u}{\sqrt{\sin u}} \, \mathrm{d}u,$$
 (2) $\int_1^{\infty} \ln\left(1 + \frac{1}{t^2}\right) \, \mathrm{d}t.$

Exercise 7.6 : Let $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$ such that both

$$\int_0^\infty f(t) \, \mathrm{d}t$$
 and $\int_0^\infty f'(t)^2 \, \mathrm{d}t$

are convergent.

- (1) Let F be the primitive of f such that F(0) = 0. Show that F is of class C^2 .
- (2) For $x \ge 0$, show that

$$F(x+1) = F(x) + f(x) + R(x)$$
, where $R(x) = \int_{x}^{x+1} (x+1-t)f'(t) dt$.

- (3) Show that $R(x) \to 0$ when $x \to +\infty$.
- (4) Deduce that $f(x) \to 0$ when $x \to +\infty$.

Exercise 7.7 : For every $n \in \mathbb{N}$, define

$$I_n = \int_0^\infty \frac{\mathrm{d}t}{(1+t^2)^n}$$

- (1) Show that for every $n \ge 1$, the integral I_n is well defined.
- (2) For each $n \ge 1$, find a relation between I_n and I_{n+1} .
- (3) Find the value of I_n for $n \ge 1$.

Exercise 7.8: Let $n \in \mathbb{N}$ and $f : [1, +\infty) \to \mathbb{R}$ be a \mathcal{C}^{∞} function. Recall the Euler's summation formula that we saw in Corollary 5.2.23,

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(x) \, \mathrm{d}x + \int_{1}^{n} f'(x) \left(\{x\} - \frac{1}{2} \right) \, \mathrm{d}x + \frac{1}{2} \left[f(n) + f(1) \right]$$

Recall we had defined the 1-periodic functions $(G_p)_{p \ge 1}$ in Problem 6 of the midterm exam.

- (1) Check that $G_1(x) = \{x\} \frac{1}{2}$.
- (2) Check that for $k \ge 2$ and $x \in \mathbb{R}$,

$$G_k(x) = k \int_1^x G_{k-1}(t) \, \mathrm{d}t + B_k;$$

where $B_k = G_k(0)$.

(3) Show that for any $m \ge 1$, we have

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(x) \, \mathrm{d}x + \frac{1}{(2m+1)!} \int_{1}^{n} G_{2m+1}(x) f^{(2m+1)}(x) \, \mathrm{d}x + \sum_{r=1}^{m} \frac{B_{2r}}{(2r)!} \left[f^{(2r-1)}(n) - f^{(2r-1)}(1) \right] + \frac{1}{2} \left[f(n) + f(1) \right]$$

- (4) Fix $m \ge 1$. Suppose that $f^{(2m+1)}$ is integrable on $[1, +\infty)$.
 - (a) Show that the following integral is well defined,

$$\int_{1}^{\infty} f^{(2m+1)}(x) G_{2m+1}(x) \,\mathrm{d}x$$

(b) Deduce that

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(x) \, \mathrm{d}x + C + E(n),$$

where

$$C = \frac{1}{2}f(1) - \sum_{r=1}^{m} \frac{B_{2r}}{(2r)!} f^{(2r-1)}(1) + \frac{1}{(2m+1)!} \int_{1}^{\infty} G_{2m+1}(x) f^{(2m+1)}(x) \, \mathrm{d}x$$

and

$$E(n) = \frac{1}{2}f(n) + \sum_{r=1}^{m} \frac{B_{2r}}{(2r)!} f^{(2r-1)}(n) - \frac{1}{(2m+1)!} \int_{n}^{\infty} G_{2m+1}(x) f^{(2m+1)}(x) \, \mathrm{d}x.$$

- (5) Applications: prove the following asymptotics.
 - (a) For s > 1 and $N \ge 1$,

$$\sum_{k=1}^{n} \frac{1}{k^{s}} = \zeta(s) - \frac{1}{(s-1)n^{s-1}} + \frac{1}{2n^{s}} - \sum_{r=1}^{N} \frac{B_{2r}}{(2r)!} \cdot \frac{(s+2r-2)_{2r-1}}{n^{s+2r-1}} + \mathcal{O}\Big(\frac{1}{n^{s+2N}}\Big) \quad \text{when} \quad n \to \infty,$$

where $(a)_p$ is the falling factorial symbol defined by

$$\forall a \in \mathbb{R}, p \in \mathbb{N}, \quad (a)_p := a \cdot (a-1) \cdot (a-2) \cdots (a-p+1).$$

(b) For $N \ge 1$,

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} - \sum_{k \ge 1}^{N} \frac{B_{2k}}{2kn^{2k}} + \mathcal{O}\Big(\frac{1}{n^{2N+1}}\Big) \quad \text{when} \quad n \to \infty.$$

This is the last expression in Example 6.2.9.

(c) For $N \ge 1$,

$$\sum_{k=1}^{n} \ln k = \left(n + \frac{1}{2}\right) \ln n - n + \frac{1}{2} \ln(2\pi) + \sum_{r=1}^{N} \frac{B_{2r}}{2r(2r-1)n^{2r-1}} + \mathcal{O}\left(\frac{1}{n^{2N}}\right) \quad \text{when} \quad n \to \infty.$$

Moreover, deduce the Stirling's approximation formula,

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} - \frac{571}{2488320n^4} + \mathcal{O}\left(\frac{1}{n^5}\right)\right) \quad \text{when} \quad n \to \infty.$$

Exercise 7.9: We want to study properties of the Gamma function defined in Example 7.1.21, and find a characterization of it.

(1) Let $f, g: (0, +\infty) \to \mathbb{R}$ be functions. Let p, q > 1 be such that $\frac{1}{p} + \frac{1}{q} = 1$. Suppose that both the functions $|f|^p$ and $|g|^q$ are integrable on $(0, +\infty)$. Show that the product fg is integrable on $(0, +\infty)$ and

$$\int_0^\infty |fg| \leqslant \left(\int_0^\infty |f|^p\right)^{1/p} \left(\int_0^\infty |g|^q\right)^{1/q}.$$

(2) Let p, q > 1 be such that $\frac{1}{p} + \frac{1}{q} = 1$. Show that

$$\Gamma\left(\frac{x}{p}+\frac{y}{q}\right) \leqslant \Gamma(x)^{\frac{1}{p}}\Gamma(y)^{\frac{1}{q}}, \quad \forall x, y > 0.$$

- (3) Show that $x \mapsto \ln \Gamma(x)$ is convex on $(0, +\infty)$.
- (4) Show that for all $x \in (0, 1)$ and $n \in \mathbb{N}$, we have

$$x\ln(n) \leq \ln\Gamma(n+x+1) - \ln(n!) \leq x\ln(n+1).$$

(5) Deduce that for 0 < x < 1, we have

$$0 \leq \ln \Gamma(x) - \ln \left(\frac{n^x n!}{x(x+1)\dots(x+n)} \right) \leq x \ln \left(1 + \frac{1}{n} \right).$$

(6) Deduce that

$$\Gamma(x) = \lim_{n \to \infty} \frac{n^x n!}{x(x+1)\dots(x+n)}$$

for $x \in (0, 1)$, and also for all x > 0.

(7) Conclude that for x > 0,

$$\Gamma(x) = \frac{1}{x} \prod_{n=1}^{\infty} \frac{(1+1/n)^x}{1+x/n}.$$

- (8) Prove the following characterization of the Gamma function. Let $f : (0, +\infty) \to \mathbb{R}$ be a function satisfying the following three properties,
 - (i) $\ln f(x)$ is convex;
 - (ii) f(x) = (x 1)f(x 1) for all x > 1;
 - (iii) f(1) = 1.

Then, $f(x) = \Gamma(x)$. Hint: see below¹.

¹Repeat the arguments in (4), (5), and (6), using f instead of Γ .

Exercise 7.10:

(1) Prove that the following improper integral is convergent,

$$I := \int_0^\pi \ln(\sin x) \,\mathrm{d}x.$$

(2) Show that

$$\int_0^{\pi/2} \log(\sin t) \, \mathrm{d}t = \int_0^{\pi/2} \log(\cos t) \, \mathrm{d}t.$$

(3) Compute the value of *I* by using the change of variables x = 2t and applying the identity $\sin(2t) = 2 \sin t \cos t$.

Exercise 7.11: Let $f \in \mathcal{PC}(\mathbb{R}_+, \mathbb{R})$ such that $\int_0^\infty f(t) dt$ converges.

(1) Find the limit when $x \to +\infty$ of the following integral,

$$\int_{x/2}^{x} f(t) \, \mathrm{d}t$$

- (2) Suppose that f is non-negative and is decreasing. Show that $f(x) = o(\frac{1}{x})$ when $x \to +\infty$.
- (3) When the assumption in (2) is not satisfied, find a counterexample.

Exercise 7.12 (Cauchy principal value) : Let I = [a, b] be a segment and $c \in (a, b)$. Let $f : I \setminus \{c\} \to \mathbb{R}$ be a piecewise continuous function. If the following limit exists,

$$\lim_{\varepsilon \to 0+} \Big(\int_a^{c-\varepsilon} f(x) \, \mathrm{d}x + \int_{c+\varepsilon}^b f(x) \, \mathrm{d}x \Big),$$

then we call the above limit Cauchy principal value of the improper integral, denoted by

p.v.
$$\int_{a}^{b} f(x) dx := \lim_{\varepsilon \to 0+} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right)$$

Find the Cauchy principal of the following improper integrals,

(1)
$$\int_{-a}^{a} \frac{\mathrm{d}x}{x}, a > 0;$$
 (2) $\int_{a}^{b} \frac{\mathrm{d}x}{x-c}, a < c < b.$

Exercise 7.13: Let $f : [1, +\infty) \to \mathbb{R}$ be a continuous function. Show that the following two properties are equivalent. Hint: integration by parts.

(1) When $x \to +\infty$, the following limit exists,

$$\frac{1}{x}\int_1^x f(t)\,\mathrm{d}t.$$

(2) When $x \to +\infty$, the following limit exists,

$$x \int_x^\infty \frac{f(t)}{t^2} \,\mathrm{d}t$$

Show that when the above two properties are satisfied, the two limits are equal.

Exercise 7.14 : Suppose that $f : [a, \infty) \to \mathbb{R}$ is continuous and decreases to 0 as $x \to +\infty$.

- (1) Show that if $\int_a^{\infty} |f(x) \cos x| \, dx$ converges, then both of the integrals $\int_a^{\infty} f(x) \sin x \, dx$ and $\int_a^{\infty} f(x) \cos x \, dx$ are absolutely convergent.
- (2) Show that if $\int_a^{\infty} |f(x) \cos x| dx$ diverges, then both of the integrals $\int_a^{\infty} f(x) \sin x dx$ and $\int_a^{\infty} f(x) \cos x dx$ are conditionally convergent.

Exercise 7.15: Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function such that $\ell := \lim_{x \to \infty} f(x)$ exists. Let a < b. We want to study the following integral

$$I := \int_0^\infty \frac{f(ax) - f(bx)}{x} \, \mathrm{d}x.$$

Let $g:(0,\infty)\to\mathbb{R}$ be defined by

$$\forall x \in (0,\infty), \quad g(x) = \frac{f(ax) - f(bx)}{x}.$$

- (1) (a) Assume that f is differentiable at 0+. Find an equivalence of g at 0+ and deduce that g is integrable on (0, 1].
 - (b) Find a function f such that g is not integrable on (0, 1].
 - (c) Let $\varepsilon > 0$. Show that if $f(x) = \ell + o(x^{-\varepsilon})$ when $x \to +\infty$, then g is integrable on $[1, +\infty)$.
- (2) For $y \ge x > 0$, let

$$I(x,y) := \int_x^y \frac{f(at) - f(bt)}{t} \,\mathrm{d}t.$$

(a) Make a change of variables to show that for $y \ge x > 0$, we have

$$I(x,y) = \int_{ax}^{bx} \frac{f(u)}{u} \,\mathrm{d}u - \int_{ay}^{by} \frac{f(u)}{u} \,\mathrm{d}u$$

(b) Show that

$$\lim_{x \to 0+} \int_{ax}^{bx} \frac{f(u)}{u} \, \mathrm{d}u = f(0) \ln\left(\frac{b}{a}\right) \quad \text{and} \quad \lim_{y \to +\infty} \int_{ay}^{by} \frac{f(u)}{u} \, \mathrm{d}u = \ell \ln\left(\frac{b}{a}\right)$$

- (c) Deduce the value of the limit $\lim_{x\to 0+} \lim_{y\to +\infty} I(x, y)$.
- (3) Can you explain why when f is only continuous, we may find a function f such that g is not integrable on (0, 1], while the limit in (2c) is well defined?
- (4) Show that the function $x \mapsto \frac{1}{x}(e^{-ax} e^{-bx})$ is integrable on $(0, +\infty)$ and find the value of the following integral,

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \,\mathrm{d}x$$

Exercise 7.16 : Find the behavior of the following integrals,

(1)
$$\int_{1}^{\infty} \frac{\sin t}{\sqrt{t}} dt,$$

(3)
$$\int_{0}^{\infty} \cos(t^{2} + t) dt,$$

(4)
$$\int_{1}^{\infty} \frac{\sin t}{t^{\alpha}} \ln\left(\frac{t+1}{t-1}\right) dt, \alpha \in \mathbb{R}.$$

Exercise 7.17 : Consider the function $f : \mathbb{R}_+ \to \mathbb{R}$ defined by

$$f(0) = 0$$
, and $f(t) = \frac{\sin t - t}{t^2}$, $\forall t > 0$.

- (1) Check that f is continuous on \mathbb{R}_+ .
- (2) Find the limit when $x \to 0+$ of

$$\int_{x}^{3x} \frac{\sin t}{t^2} \,\mathrm{d}t$$

(3) Explain why the following integral converges,

$$\int_0^\infty \frac{\sin^3 t}{t^2} \,\mathrm{d}t.$$

(4) Find the value of the integral in the previous question. Hint: see $below^2$.

²Note that $4\sin^3 t = 3\sin t - \sin(3t)$.

Exercise 7.18 : Consider the function $f : [0, \pi] \to \mathbb{R}$ defined by

$$\forall x \in \mathbb{R}_+, \quad f(x) = \begin{cases} \frac{1}{x} - \frac{1}{2\sin(\frac{x}{2})}, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$$

- (1) Show that f is of class C^1 on $[0, \pi]$.
- (2) For every $n \in \mathbb{N}_0$, show that the following integral is well defined,

$$I_n := \int_0^\pi \frac{\sin\left(\frac{2n+1}{2}t\right)}{\sin\left(\frac{t}{2}\right)} \,\mathrm{d}t.$$

- (3) For every $n \in \mathbb{N}_0$, find the value of $I_{n+1} I_n$ and the value of I_n .
- (4) Let $g:[0,\pi]\to\mathbb{R}$ be a \mathcal{C}^1 function. Show that

$$\lim_{\lambda \to +\infty} \int_0^{\pi} g(t) \sin(\lambda t) \, \mathrm{d}t = 0.$$

(5) Show that the following integral is convergent and find its value,

$$I = \int_0^\infty \frac{\sin t}{t} \,\mathrm{d}t.$$

Exercise 7.19 (Laplace's method, Theorem 7.3.1) : In this exercise, we are going to proof the Laplace's method stated in Theorem 7.3.1. First, note that we may assume g(c) > 0.

- (1) Show that for any $\lambda \ge 1$, the function $x \mapsto g(x)e^{\lambda h(x)}$ is integrable on (a, b).
- (2) For any $\varepsilon \in (0, g(c)) \cap (0, -h''(c))$, show that there exists $\delta > 0$ such that

$$h(c) + \frac{1}{2} (h''(c) + \varepsilon)(x - c)^2 \ge h(x) \ge h(c) + \frac{1}{2} (h''(c) - \varepsilon)(x - c)^2,$$

and

$$g(c) + \varepsilon \ge g(x) \ge g(c) - \varepsilon_{1}$$

 $\text{ for all } x \in [c-\delta,c+\delta] \subseteq (a,b).$

Next, we consider the decomposition

$$\int_{a}^{b} g(x)e^{\lambda h(x)} \,\mathrm{d}x = \int_{a}^{c-\delta} g(x)e^{\lambda h(x)} \,\mathrm{d}x + \int_{c-\delta}^{c+\delta} g(x)e^{\lambda h(x)} \,\mathrm{d}x + \int_{c+\delta}^{b} g(x)e^{\lambda h(x)} \,\mathrm{d}x.$$

(3) We first deal with the term $\int_{c-\delta}^{c+\delta}g(x)e^{\lambda h(x)}\,\mathrm{d}x.$ Show that

$$\int_{c-\delta}^{c+\delta} g(x)e^{\lambda h(x)} \,\mathrm{d}x \ge \left(g(c) - \varepsilon\right)e^{\lambda h(c)}\sqrt{\frac{1}{\lambda(-h''(c) + \varepsilon)}} \int_{-\delta\sqrt{\lambda(-h''(c) + \varepsilon)}}^{\delta\sqrt{\lambda(-h''(c) + \varepsilon)}} e^{-\frac{1}{2}t^2} \,\mathrm{d}t$$

and

$$\int_{c-\delta}^{c+\delta} g(x) e^{\lambda h(x)} \, \mathrm{d}x \leqslant \left(g(c) + \varepsilon\right) e^{\lambda h(c)} \sqrt{\frac{1}{\lambda(-h''(c) - \varepsilon)}} \int_{-\delta\sqrt{\lambda(-h''(c) - \varepsilon)}}^{\delta\sqrt{\lambda(-h''(c) - \varepsilon)}} e^{-\frac{1}{2}t^2} \, \mathrm{d}t.$$

Deduce that

$$\int_{c-\delta}^{c+\delta} g(x) e^{\lambda h(x)} \, \mathrm{d}x \sim \sqrt{\frac{2\pi}{-\lambda h''(c)}} \cdot g(c) e^{\lambda h(c)}, \quad \text{when } \lambda \to +\infty.$$

(4) Now, we deal with the remaining terms. Show that there exists $\eta > 0$ such that $|x - c| \ge \delta$ implies $h(x) \le h(c) - \eta$. Then, deduce that for any $\lambda \ge 1$, we have

$$\left| e^{-\lambda h(c)} \int_{a}^{c-\delta} g(x) e^{\lambda h(x)} \, \mathrm{d}x \right| \leqslant M \cdot e^{-\eta \lambda}, \quad \text{and} \quad \left| e^{-\lambda h(c)} \int_{c+\delta}^{b} g(x) e^{\lambda h(x)} \, \mathrm{d}x \right| \leqslant M \cdot e^{-\eta \lambda},$$

where

$$M = e^{-h(c)+\eta} \int_a^b |g(x)| e^{h(x)} \,\mathrm{d}x$$

is a constant.

(5) Conclude the theorem.