
Chapter 7: Complements on Riemann Integrals

Exercise 7.1 : Let f : [1, +∞) → R be a non-negative continuous function. Suppose that it is integrable
on [1, +∞).

(1) If the limit limx→+∞ f(x) exists, show that it is 0.

(2) Give a counterexample to justify that limx→+∞ f(x) may fail to exist.

(3) Give a counterexample to justify that f may fail to be bounded on [1, +∞).

(4) Suppose that f is uniformly continuous on [1, +∞), show that limx→+∞ f(x) = 0.

(5) Suppose that f is Lipschitz continuous on [1, +∞), show that lim infn→+∞
√

nf(n) = 0.

Exercise 7.2 : Let α, β ∈ R. Depending on the values of α and β, find the behavior of the integral∫
I

dx

xα| ln x|β
,

where we take

(1) I = (0, 1
2 ]; (2) I = [1

2 , 1); (3) I = (1, 2]; (4) I = [2, +∞).

Exercise 7.3 : Let M ∈ R and f : [M, +∞) → R+ be a piecewise continuous function.

(1) Suppose that f is integrable on [M, +∞). Show that∫ 2n

n
f(t) dt −−−→

n→∞
0.

(2) Suppose that f is integrable and decreasing on [M, +∞). Show that f(x) = o( 1
x) when x → ∞.

Exercise 7.4 : Find the behavior of the following integrals,

(1)
∫ 1

0

sinh(
√

t) ln t√
t − sin t

,

(2)
∫ ∞

1

ln(t2 − t)
(1 + t)2 ,

(3)
∫ ∞

0

dt

et − 1
,

(4)
∫ ∞

0

te−
√

t

1 + t2 dt,

(5)
∫ ∞

0

ln t

1 + t2 dt,

(6)
∫ ∞

0

√
| ln t|

(t − 1)
√

t
dt.

(7)
∫ 1

0

dt

1 −
√

t
,

(8)
∫ ∞

0

(
1 + t ln

( t

t + 1

))
dt.
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Exercise 7.5 : Determine the behavior of each of the following integrals, and their values in the case that
they are well defined,

(1)
∫ π

2

0

cos u√
sin u

du, (2)
∫ ∞

1
ln

(
1 + 1

t2

)
dt.

Exercise 7.6 : Let f ∈ C1(R+,R) such that both∫ ∞

0
f(t) dt and

∫ ∞

0
f ′(t)2 dt

are convergent.

(1) Let F be the primitive of f such that F (0) = 0. Show that F is of class C2.

(2) For x ⩾ 0, show that

F (x + 1) = F (x) + f(x) + R(x), where R(x) =
∫ x+1

x
(x + 1 − t)f ′(t) dt.

(3) Show that R(x) → 0 when x → +∞.

(4) Deduce that f(x) → 0 when x → +∞.

Exercise 7.7 : For every n ∈ N, define

In =
∫ ∞

0

dt

(1 + t2)n
.

(1) Show that for every n ⩾ 1, the integral In is well defined.

(2) For each n ⩾ 1, find a relation between In and In+1.

(3) Find the value of In for n ⩾ 1.

Exercise 7.8 : Let n ∈ N and f : [1, +∞) → R be a C∞ function. Recall the Euler’s summation formula
that we saw in Corollary 5.2.23,

n∑
k=1

f(k) =
∫ n

1
f(x) dx +

∫ n

1
f ′(x)

(
{x} − 1

2

)
dx + 1

2
[
f(n) + f(1)

]
.

Recall we had defined the 1-periodic functions (Gp)p⩾1 in Problem 6 of the midterm exam.

(1) Check that G1(x) = {x} − 1
2 .

(2) Check that for k ⩾ 2 and x ∈ R,

Gk(x) = k

∫ x

1
Gk−1(t) dt + Bk,

where Bk = Gk(0).
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(3) Show that for any m ⩾ 1, we have

n∑
k=1

f(k) =
∫ n

1
f(x) dx + 1

(2m + 1)!

∫ n

1
G2m+1(x)f (2m+1)(x) dx

+
m∑

r=1

B2r

(2r)!
[
f (2r−1)(n) − f (2r−1)(1)

]
+ 1

2
[
f(n) + f(1)

]
.

(4) Fix m ⩾ 1. Suppose that f (2m+1) is integrable on [1, +∞).
(a) Show that the following integral is well defined,∫ ∞

1
f (2m+1)(x)G2m+1(x) dx

(b) Deduce that
n∑

k=1
f(k) =

∫ n

1
f(x) dx + C + E(n),

where

C = 1
2

f(1) −
m∑

r=1

B2r

(2r)!
f (2r−1)(1) + 1

(2m + 1)!

∫ ∞

1
G2m+1(x)f (2m+1)(x) dx

and

E(n) = 1
2

f(n) +
m∑

r=1

B2r

(2r)!
f (2r−1)(n) − 1

(2m + 1)!

∫ ∞

n
G2m+1(x)f (2m+1)(x) dx.

(5) Applications: prove the following asymptotics.
(a) For s > 1 and N ⩾ 1,

n∑
k=1

1
ks

= ζ(s)− 1
(s − 1)ns−1 + 1

2ns
−

N∑
r=1

B2r

(2r)!
·(s + 2r − 2)2r−1

ns+2r−1 +O
( 1

ns+2N

)
when n → ∞,

where (a)p is the falling factorial symbol defined by

∀a ∈ R, p ∈ N, (a)p := a · (a − 1) · (a − 2) · · · (a − p + 1).

(b) For N ⩾ 1,

n∑
k=1

1
k

= ln n + γ + 1
2n

−
N∑

k⩾1

B2k

2kn2k
+ O

( 1
n2N+1

)
when n → ∞.

This is the last expression in Example 6.2.9.
(c) For N ⩾ 1,

n∑
k=1

ln k =
(
n+ 1

2
)

ln n−n+ 1
2

ln(2π)+
N∑

r=1

B2r

2r(2r − 1)n2r−1 +O
( 1

n2N

)
when n → ∞.
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Moreover, deduce the Stirling’s approximation formula,

n! =
√

2πn

(
n

e

)n(
1+ 1

12n
+ 1

288n2 − 139
51840n3 − 571

2488320n4 +O
( 1

n5

))
when n → ∞.

Exercise 7.9 : We want to study properties of the Gamma function defined in Example 7.1.21, and find
a characterization of it.

(1) Let f, g : (0, +∞) → R be functions. Let p, q > 1 be such that 1
p + 1

q = 1. Suppose that both
the functions |f |p and |g|q are integrable on (0, +∞). Show that the product fg is integrable on
(0, +∞) and ∫ ∞

0
|fg| ⩽

( ∫ ∞

0
|f |p

)1/p( ∫ ∞

0
|g|q

)1/q

.

(2) Let p, q > 1 be such that 1
p + 1

q = 1. Show that

Γ
(x

p
+ y

q

)
⩽ Γ(x)

1
p Γ(y)

1
q , ∀x, y > 0.

(3) Show that x 7→ ln Γ(x) is convex on (0, +∞).

(4) Show that for all x ∈ (0, 1) and n ∈ N, we have

x ln(n) ⩽ ln Γ(n + x + 1) − ln(n!) ⩽ x ln(n + 1).

(5) Deduce that for 0 < x < 1, we have

0 ⩽ ln Γ(x) − ln
(

nxn!
x(x + 1) . . . (x + n)

)
⩽ x ln

(
1 + 1

n

)
.

(6) Deduce that
Γ(x) = lim

n→∞
nxn!

x(x + 1) . . . (x + n)
for x ∈ (0, 1), and also for all x > 0.

(7) Conclude that for x > 0,

Γ(x) = 1
x

∞∏
n=1

(1 + 1/n)x

1 + x/n
.

(8) Prove the following characterization of the Gamma function. Let f : (0, +∞) → R be a function
satisfying the following three properties,
(i) ln f(x) is convex;
(ii) f(x) = (x − 1)f(x − 1) for all x > 1;
(iii) f(1) = 1.
Then, f(x) = Γ(x). Hint: see below1.

1Repeat the arguments in (4), (5), and (6), using f instead of Γ.
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Exercise 7.10 :

(1) Prove that the following improper integral is convergent,

I :=
∫ π

0
ln(sin x) dx.

(2) Show that ∫ π/2

0
log(sin t) dt =

∫ π/2

0
log(cos t) dt.

(3) Compute the value of I by using the change of variables x = 2t and applying the identity sin(2t) =
2 sin t cos t.

Exercise 7.11 : Let f ∈ PC(R+,R) such that
∫ ∞

0 f(t) dt converges.

(1) Find the limit when x → +∞ of the following integral,∫ x

x/2
f(t) dt.

(2) Suppose that f is non-negative and is decreasing. Show that f(x) = o( 1
x) when x → +∞.

(3) When the assumption in (2) is not satisfied, find a counterexample.

Exercise 7.12 (Cauchy principal value) : Let I = [a, b] be a segment and c ∈ (a, b). Let f : I\{c} → R
be a piecewise continuous function. If the following limit exists,

lim
ε→0+

( ∫ c−ε

a
f(x) dx +

∫ b

c+ε
f(x) dx

)
,

then we call the above limit Cauchy principal value of the improper integral, denoted by

p. v.

∫ b

a
f(x) dx := lim

ε→0+

( ∫ c−ε

a
f(x) dx +

∫ b

c+ε
f(x) dx

)
.

Find the Cauchy principal of the following improper integrals,

(1)
∫ a

−a

dx

x
, a > 0; (2)

∫ b

a

dx

x − c
, a < c < b.
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Exercise 7.13 : Let f : [1, +∞) → R be a continuous function. Show that the following two properties
are equivalent. Hint: integration by parts.

(1) When x → +∞, the following limit exists,

1
x

∫ x

1
f(t) dt.

(2) When x → +∞, the following limit exists,

x

∫ ∞

x

f(t)
t2 dt.

Show that when the above two properties are satisfied, the two limits are equal.

Exercise 7.14 : Suppose that f : [a, ∞) → R is continuous and decreases to 0 as x → +∞.

(1) Show that if
∫ ∞

a |f(x) cos x| dx converges, then both of the integrals
∫ ∞

a f(x) sin x dx and∫ ∞
a f(x) cos x dx are absolutely convergent.

(2) Show that if
∫ ∞

a |f(x) cos x| dx diverges, then both of the integrals
∫ ∞

a f(x) sin x dx and∫ ∞
a f(x) cos x dx are conditionally convergent.

Exercise 7.15 : Let f : [0, ∞) → R be a continuous function such that ℓ := limx→∞ f(x) exists. Let
a < b. We want to study the following integral

I :=
∫ ∞

0

f(ax) − f(bx)
x

dx.

Let g : (0, ∞) → R be defined by

∀x ∈ (0, ∞), g(x) = f(ax) − f(bx)
x

.

(1) (a) Assume that f is differentiable at 0+. Find an equivalence of g at 0+ and deduce that g is
integrable on (0, 1].

(b) Find a function f such that g is not integrable on (0, 1].
(c) Let ε > 0. Show that if f(x) = ℓ + o(x−ε) when x → +∞, then g is integrable on [1, +∞).

(2) For y ⩾ x > 0, let
I(x, y) :=

∫ y

x

f(at) − f(bt)
t

dt.

(a) Make a change of variables to show that for y ⩾ x > 0, we have

I(x, y) =
∫ bx

ax

f(u)
u

du −
∫ by

ay

f(u)
u

du.

(b) Show that

lim
x→0+

∫ bx

ax

f(u)
u

du = f(0) ln
( b

a

)
and lim

y→+∞

∫ by

ay

f(u)
u

du = ℓ ln
( b

a

)
.
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(c) Deduce the value of the limit limx→0+ limy→+∞ I(x, y).

(3) Can you explain why when f is only continuous, we may find a function f such that g is not
integrable on (0, 1], while the limit in (2c) is well defined?

(4) Show that the function x 7→ 1
x(e−ax − e−bx) is integrable on (0, +∞) and find the value of the

following integral, ∫ ∞

0

e−ax − e−bx

x
dx.

Exercise 7.16 : Find the behavior of the following integrals,

(1)
∫ ∞

1

sin t√
t

dt,

(2)
∫ ∞

1
ln

(
1 + sin t√

t

)
dt,

(3)
∫ ∞

0
cos(t2 + t) dt,

(4)
∫ ∞

1

sin t

tα
ln

( t + 1
t − 1

)
dt, α ∈ R.

Exercise 7.17 : Consider the function f : R+ → R defined by

f(0) = 0, and f(t) = sin t − t

t2 , ∀t > 0.

(1) Check that f is continuous on R+.

(2) Find the limit when x → 0+ of ∫ 3x

x

sin t

t2 dt.

(3) Explain why the following integral converges,∫ ∞

0

sin3 t

t2 dt.

(4) Find the value of the integral in the previous question. Hint: see below2.

2Note that 4 sin3 t = 3 sin t − sin(3t).
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Exercise 7.18 : Consider the function f : [0, π] → R defined by

∀x ∈ R+, f(x) =


1
x − 1

2 sin( x
2 ) , if x > 0,

0, if x = 0.

(1) Show that f is of class C1 on [0, π].

(2) For every n ∈ N0, show that the following integral is well defined,

In :=
∫ π

0

sin
(

2n+1
2 t

)
sin

(
t
2

) dt.

(3) For every n ∈ N0, find the value of In+1 − In and the value of In.

(4) Let g : [0, π] → R be a C1 function. Show that

lim
λ→+∞

∫ π

0
g(t) sin(λt) dt = 0.

(5) Show that the following integral is convergent and find its value,

I =
∫ ∞

0

sin t

t
dt.

Exercise 7.19 (Laplace’s method, Theorem 7.3.1) : In this exercise, we are going to proof the Laplace’s
method stated in Theorem 7.3.1. First, note that we may assume g(c) > 0.

(1) Show that for any λ ⩾ 1, the function x 7→ g(x)eλh(x) is integrable on (a, b).

(2) For any ε ∈ (0, g(c)) ∩ (0, −h′′(c)), show that there exists δ > 0 such that

h(c) + 1
2

(
h′′(c) + ε

)
(x − c)2 ⩾ h(x) ⩾ h(c) + 1

2
(
h′′(c) − ε

)
(x − c)2,

and
g(c) + ε ⩾ g(x) ⩾ g(c) − ε,

for all x ∈ [c − δ, c + δ] ⊆ (a, b).

Next, we consider the decomposition∫ b

a
g(x)eλh(x) dx =

∫ c−δ

a
g(x)eλh(x) dx +

∫ c+δ

c−δ
g(x)eλh(x) dx +

∫ b

c+δ
g(x)eλh(x) dx.

(3) We first deal with the term
∫ c+δ

c−δ g(x)eλh(x) dx. Show that

∫ c+δ

c−δ
g(x)eλh(x) dx ⩾

(
g(c) − ε

)
eλh(c)

√
1

λ(−h′′(c) + ε)

∫ δ
√

λ(−h′′(c)+ε)

−δ
√

λ(−h′′(c)+ε)
e− 1

2 t2 dt
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and ∫ c+δ

c−δ
g(x)eλh(x) dx ⩽

(
g(c) + ε

)
eλh(c)

√
1

λ(−h′′(c) − ε)

∫ δ
√

λ(−h′′(c)−ε)

−δ
√

λ(−h′′(c)−ε)
e− 1

2 t2 dt.

Deduce that ∫ c+δ

c−δ
g(x)eλh(x) dx ∼

√
2π

−λh′′(c)
· g(c)eλh(c), when λ → +∞.

(4) Now, we deal with the remaining terms. Show that there exists η > 0 such that |x− c| ⩾ δ implies
h(x) ⩽ h(c) − η. Then, deduce that for any λ ⩾ 1, we have∣∣∣∣e−λh(c)

∫ c−δ

a
g(x)eλh(x) dx

∣∣∣∣ ⩽ M · e−ηλ, and
∣∣∣∣e−λh(c)

∫ b

c+δ
g(x)eλh(x) dx

∣∣∣∣ ⩽ M · e−ηλ,

where
M = e−h(c)+η

∫ b

a
|g(x)|eh(x) dx

is a constant.

(5) Conclude the theorem.
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