Exercise 8.1: Let $I \subseteq \mathbb{R}$ be an interval and $(f_n)_{n \ge 1}$ be a sequence of functions from I to \mathbb{R} . Suppose that f_n converges pointwise to a function f.

- (1) Suppose that every function f_n is convex, show that f is convex.
- (2) Suppose that every function f_n is non-decrasing, show that f is non-decreasing.
- (3) Suppose that every function f_n is strictly increasing, is f necessarily strictly increasing?
- (4) Suppose that every function f_n is periodic with period T, show that f is periodic with period T.

Exercise 8.2 : Consider the sequence of functions $(f_n)_{n \ge 1}$ defined as below,

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \quad f_n(x) = \sin\left(x + \frac{1}{n}\right).$$

Show that $(f_n)_{n \ge 1}$ converges uniformly on \mathbb{R} .

Exercise 8.3 : For $n \in \mathbb{N}$, define the function u_n on \mathbb{R}_+ as below,

$$\forall x \ge 0, \quad u_n(x) = \frac{x}{n^2 + x^2}$$

- (1) Show that the series $\sum_{n \ge 1} u_n$ converges pointwise on \mathbb{R}_+ .
- (2) Show that the series $\sum_{n \ge 1} u_n$ converges uniformly on [0, A] for any A > 0.
- (3) Show that for every $n \in \mathbb{N}$, we have

$$\sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2} \ge \frac{1}{5}.$$

(4) Deduce that the series $\sum_{n \ge 1} u_n$ does not converge uniformly on \mathbb{R}_+ .

Exercise 8.4 :

(1) Let us consider a sequence of functions $(f_n)_{n \ge 1}$ defined on \mathbb{R}_+ as follows,

$$\forall n \in \mathbb{N}, \forall x \ge 0, \quad f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{if } x \in [0, n], \\ 0 & \text{if } x > n. \end{cases}$$

Show that $(f_n)_{n \ge 1}$ converges uniformly to $f : x \mapsto e^{-x}$ on \mathbb{R}_+ .

(2) Consider another sequence of functions $(g_n)_{n \ge 1}$ defined on \mathbb{C} as follows,

$$\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, \quad g_n(z) = \left(1 + \frac{z}{n}\right)^n.$$

Show that $(g_n)_{n \ge 1}$ converges uniformly to g on every compact subset of \mathbb{C} .

Exercise 8.5 : For $n \in \mathbb{N}$, define $u_n : \mathbb{R}_+ \to \mathbb{R}$ as below,

$$\forall x \in \mathbb{R}_+, \quad u_n(x) = \frac{x}{n^2 + x^2}.$$

- (1) Show that the series of functions $\sum u_n$ converges pointwise on \mathbb{R}_+ , but does not converge uniformly on \mathbb{R}_+ .
- (2) Show that the series of functions $\sum (-1)^n u_n$ converges uniformly on \mathbb{R}_+ but does not converge normally on \mathbb{R}_+ .

Exercise 8.6: Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $(P_n)_{n \ge 1}$ be a sequence of polynomials that converges uniformly to f on \mathbb{R} .

(1) Show that there exists $N \ge 1$ such that

$$\forall n \ge N, \forall x \in \mathbb{R}, \quad |P_n(x) - f(x)| \le 1.$$

- (2) When $n \ge N$, what can we say about the polynomial $P_n P_N$?
- (3) Deduce that f is a polynomial function.

Exercise 8.7: Let I = [a, b] be a segment and $(f_n)_{n \ge 1}$ be a sequence of (not necessarily continuous) functions from I to \mathbb{R} . Suppose that

- (i) for each $n \ge 1$, the function f_n is increasing on I;
- (ii) the sequence $(f_n)_{n \ge 1}$ converges pointwise to a continuous function $f : I \to \mathbb{R}$.
- (1) Show that f is increasing on I.
- (2) Let us fix $\varepsilon > 0$. Show that we can find a partition $P = (x_k)_{0 \le k \le m} \in \mathcal{P}([a, b])$ such that

$$\forall k = 0, \dots, m - 1, \quad |f(x_{k+1}) - f(x_k)| \leq \varepsilon.$$

(3) Show that there exists $N \ge 1$ such that

$$\forall n \ge N, \forall k = 0, \dots, m, \quad |f(x_k) - f_n(x_k)| \le \varepsilon.$$

(4) Deduce that for all $n \ge N$ and $x \in [a, b]$, we have $|f_n(x) - f(x)| \le 2\varepsilon$, and conclude that $(f_n)_{n \ge 1}$ converges to f uniformly.

Exercise 8.8:

- (1) Let $I = [a, b] \subseteq \mathbb{R}$ be a segment, $(W, \|\cdot\|)$ be a normed vector space, and K > 0. Consider a sequence of functions $(f_n)_{n \ge 1}$ from I to W that are K-Lipschitz continuous. Show that if $(f_n)_{n \ge 1}$ converges pointwise to f, then the convergence is uniform.
- (2) Let I = (a, b) ⊆ ℝ be an interval and (f_n)_{n≥1} be a sequence of convex functions from I to ℝ that converges pointwise to f. We want to show that this convergence is uniform on every segment of I.
 - (a) Let $c, d \in I$ such that $[c, d] \subseteq (a, b)$. Consider $p \in (a, c)$ and $q \in (d, b)$. Show that the following two sequences

$$\left(\frac{f_n(p) - f_n(c)}{p - c}\right)_{n \ge 1}, \quad \text{and} \quad \left(\frac{f_n(d) - f_n(q)}{d - q}\right)_{n \ge 1}$$

are convergent, so bounded.

- (b) Let K > 0 be a constant that is an upper bound of the absolute value of the terms of the above two sequences. Show that (f_n)_{n≥1} is a sequence of K-Lipschitz continuous functions on [c, d].
- (c) Conclude that $(f_n)_{n \ge 1}$ converges uniformly to f on [c, d].
- (d) Is it true that $(f_n)_{n \ge 1}$ converges to f uniformly on (a, b) in general?

Exercise 8.9 (Cantor-Lebesgue function) : We recall the subsets $(C_n)_{n \ge 0}$ defined in Exercise 2.21,

$$C_0 = [0, 1], \quad C_{n+1} = \frac{1}{3}C_n \cup (\frac{1}{3}C_n + \frac{2}{3}), \quad \forall n \ge 0,$$

and their intersection $C := \bigcap_{n \ge 0} C_n$ called the Cantor set. For $n \ge 1$, we also define $I_n := [0, 1] \setminus C_n$, which is an open subset of \mathbb{R} . Let us define a sequence of functions $(f_n)_{n \ge 0}$ by induction,

$$\forall x \in [0,1], \quad f_0(x) = x, \quad \text{and} \quad f_{n+1}(x) = \begin{cases} \frac{1}{2}f_n(3x) & \text{if } x \in [0,\frac{1}{3}], \\ \frac{1}{2} & \text{if } x \in [\frac{1}{3},\frac{2}{3}], \\ \frac{1}{2} + \frac{1}{2}f_n(3x-2) & \text{if } x \in [\frac{2}{3},1]. \end{cases}$$

- (1) Represent graphically the functions f_0 , f_1 , and f_2 .
- (2) Show that $||f_{n+2} f_{n+1}||_{\infty} = \frac{1}{2} ||f_{n+1} f_n||_{\infty}$ for every $n \ge 0$.
- (3) Deduce that the sequence of functions $(f_n)_{n \ge 0}$ converges pointwise to a limit function f, which is continuous.
- (4) For any fixed integers $m \leq n$, show that f_n is a constant function on every open subinterval of I_m .
- (5) Deduce that f'(x) = 0 for every $x \in [0, 1] \setminus C$.

The limit function f is called the *Cantor–Lebesgue function*. It is a non-zero function that has zero derivative on [0, 1] except for the measure zero set C. Therefore, the function f does not satisfy the first fundamental theorem of calculus.

Exercise 8.10 : Consider the sequence of functions $(f_n)_{n \ge 1}$ defined as below,

$$\forall n \in \mathbb{N}, \forall x \in \left[0, \frac{\pi}{2}\right], \quad f_n(x) = \left(\cos x\right)^n \cdot \sin x.$$

- (1) Show that $(f_n)_{n \ge 1}$ converges uniformly to the zero function. Hint: see below¹.
- (2) For $n \ge 1$, define $g_n = (n+1)f_n$.
 - (a) Show that for any $\delta \in (0, \frac{\pi}{2})$, the sequence of functions $(g_n)_{n \ge 1}$ converges uniformly to the zero function on $[\delta, \frac{\pi}{2}]$.
 - (b) Find the limit of the following sequence

$$\left(\int_0^{\pi/2} g_n(t) \,\mathrm{d}t\right)_{n \ge 1},$$

and deduce that $(g_n)_{n \ge 1}$ does not converge uniformly on $[0, \frac{\pi}{2}]$.

Exercise 8.11: Let $\sum_{n \ge 1} a_n$ and $\sum_{n \ge 1} b_n$ be two absolutely convergent series in \mathbb{R} , and $c \in \mathbb{R}$.

(1) Show that the following function f is well defined on \mathbb{R} ,

$$\forall x \in \mathbb{R}, \quad f(x) = c + \sum_{n \ge 1} (a_n \cos(nx) + b_n \sin(nx)).$$

- (2) Show that the function f is continuous on \mathbb{R} .
- (3) If, in addition, the series $\sum na_n$ and $\sum nb_n$ converges absolutely, show that

$$\forall x \in \mathbb{R}, \quad f'(x) = \sum_{n \ge 1} n(b_n \cos(nx) - a_n \sin(nx)).$$

(4) Find the value of $\int_0^{2\pi} f$.

Exercise 8.12: Let $g : [0,1] \to \mathbb{R}$ be a continuous function, and $(f_n)_{n \ge 0}$ be a sequence of functions on [0,1] defined as follows,

$$f_0 \equiv 0$$
, and $\forall n \in \mathbb{N}_0, \forall x \in [0, 1], \quad f_{n+1}(x) = g(x) + \int_0^x f_n(t) \, \mathrm{d}t$

(1) Use an induction to show that for every $n \in \mathbb{N}_0$ and $x \in [0, 1]$, we have

$$|f_{n+1}(x) - f_n(x)| \leq \frac{x^n}{n!} ||g||_{\infty}.$$

(2) Show that $(f_n)_{n \ge 0}$ converges uniformly to a continuous function f satisfying

$$\forall x \in [0,1], \quad f(x) = g(x) + \int_0^x f(t) \, \mathrm{d}t.$$

 $^{^1 \}mathrm{Look}$ at the behavior around 0 and away from 0 separately.

Exercise 8.13 : Show that the following function is of class \mathcal{C}^{∞} on $\mathbb{R}^*_+ := (0, +\infty)$,

$$\forall x > 0, \quad f(x) = \sum_{n \ge 0} \frac{(-1)^n}{x+n}.$$

Exercise 8.14 : Define the functions $u_n : \mathbb{R}_+ \to \mathbb{R}$ as below,

$$\forall n \in \mathbb{N}, \forall x \ge 0, \quad u_n(x) = \frac{e^{-x\sqrt{n}}}{n^{3/2}}.$$

- (1) Show that the series of functions $S = \sum_{n \ge 1} u_n$ is well defined on \mathbb{R}_+ .
- (2) Check that S is continuous and is of class \mathcal{C}^{∞} on \mathbb{R}_+ .
- (3) Show that S does not have a right derivative at 0. Hint: see below².

Exercise 8.15 :

(1) Check that the following function is well defined,

$$\forall x > 0, \quad f(x) = \sum_{n \ge 1} \frac{1}{1 + n^2 x}$$

(2) Consider the function

$$\begin{array}{rccc} u: & \mathbb{R}^*_+ \times \mathbb{R}_+ & \to & \mathbb{R}, \\ & & (x,t) & \mapsto & \frac{1}{1+xt^2}. \end{array}$$

- (a) Check that for every fixed x > 0, the function $t \mapsto u(x, t)$ is integrable on \mathbb{R}_+ .
- (b) For every x > 0, compute the following integral

$$\int_0^{+\infty} u(x,t) \,\mathrm{d}t = \frac{\pi}{2\sqrt{x}}.$$

(c) Check that for every x > 0, we have

$$\left|f(x) - \int_0^{+\infty} u(x,t) \,\mathrm{d}t\right| \leqslant u(x,0) = 1.$$

(d) Deduce that when $x \to 0+$, we have

$$f(x) = \frac{\pi}{2\sqrt{x}} + \mathcal{O}(1).$$

²Show that the limit $\frac{S(x)-S(0)}{x}$ does not exist when $x \to 0+$.

Exercise 8.16: Let $\sum a_n z^n$ be a power series with radius of convergence $R \in [0, +\infty)$.

- (1) Write R' for the radius of convergence of the power series $\sum a_n z^{2n}$. Determine the relation between R' and R.
- (2) Write R" for the radius of convergence of the power series ∑ a_{2n}zⁿ. Determine the relation between R' and R.

Exercise 8.17: Find the radius of convergence of the power series $\sum a_n z^n$ for different choices of $(a_n)_{n \ge 1}$,

- (1) $a_n = \cosh(n),$ (4) $a_n = \left(1 + \frac{1}{\sqrt{n}}\right)^n,$ (7) $a_n = \sum_{k=1}^n \frac{1}{k},$ (2) $a_n = \sinh(n),$ (5) $a_n = e^{\sqrt{n}},$ (8) $a_n = n^{(-1)^n},$
- (3) $a_n = \frac{\cosh(n)}{n}$, (6) $a_n = n^{\alpha}, \alpha \in \mathbb{R}$, (9) $a_n = \binom{2n}{n}$.

Exercise 8.18:

- Let ∑ a_nzⁿ be a power series with radius of convergence R > 0. Show that the radius of convergence of ∑ a_n/n! zⁿ is +∞.
- (2) Suppose that the power series $\sum \frac{a_n}{n!} z^n$ has radius of convergence $R < +\infty$. What can we say about the radius of convergence of $\sum a_n z^n$?

Exercise 8.19: Let $\sum a_n z^n$ and $\sum b_n z^n$ be two power series with radius of convergence R_1 and R_2 . Consider the power series $\sum a_n b_n z^n$ and denote its radius of convergence by R.

- (1) Show that $R \ge R_1 R_2$.
- (2) Find an example for which we have $R > R_1 R_2$.

Exercise 8.20: Let $(a_n)_{n \ge 1}$ be a sequence of nonzero complex numbers such that

$$\frac{|a_{n+2}|}{|a_n|} \xrightarrow[n \to \infty]{} 2$$

Show that the radius of convergence of the power series $\sum a_n z^n$ is $\frac{1}{\sqrt{2}}$.

Exercise 8.21: Let $\sum a_n z^n$ be a power series with radius of convergence R. Let $S_n = \sum_{k=0}^n a_k$ be the partial sums of $\sum a_n$. Denote the radius of convergence of $\sum S_n z^n$ by r.

- (1) Show that $r \leq R$.
- (2) Show that $\min\{1, R\} \leq r$. Hint: see below³.

³The power series $\sum S_n z^n$ can be seen as the Cauchy product between $\sum a_n z^n$ and a specific power series that you need to choose.

Exercise 8.22 : Find the radius of convergence and explicit the sum of each of the following power series,

(1)
$$\sum_{n \ge 0} n^2 z^n$$
,
(2) $\sum_{n \ge 0} \frac{z^n}{2n+1}$,
(3) $\sum_{n \ge 1} \frac{z^n}{n(n+2)}$,
(4) $\sum_{n \ge 0} \frac{z^n}{n!} \cos(n\theta), \theta \in \mathbb{R}$,
(5) $\sum_{n \ge 0} n^{(-1)^n} z^n$,
(6) $\sum_{n \ge 1} \left(1 + \dots + \frac{1}{n}\right) z^n$.

Exercise 8.23 :

(1) Justify why we may rewrite the following function as a power series,

$$\forall z \in D(0,1), \quad \frac{1}{1-z} = \sum_{n \ge 0} z^n.$$

(2) (a) Use (1) and apply a theorem carefully to justify that we have the following power series,

$$\forall x \in (-1,1), \quad \ln(1+x) = \sum_{n \ge 0} \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} x^n.$$

(b) Use (2a) and apply a theorem carefully to justify that we have

$$\sum_{n \ge 1} \frac{(-1)^{n+1}}{n} = \ln 2$$

(3) (a) Use (1) to deduce that

$$\forall x \in (-1,1), \quad \frac{1}{1+x^2} = \sum_{n \ge 0} (-1)^n x^{2n}.$$

(b) Then, show that

$$\forall x \in (-1,1), \quad \arctan(x) = \sum_{n \ge 0} \frac{(-1)^n}{2n+1} x^{2n+1}.$$

(4) Use (3b) to show that

$$\sum_{n \ge 0} \frac{(-1)^n}{2n+1} = \lim_{x \to 1^-} \arctan(x) = \frac{\pi}{4}.$$

(5) Mimic the previous questions to show that

$$\sum_{n \ge 0} \frac{(-1)^n}{3n+1} = \frac{1}{3} \left(\ln 2 + \frac{\pi}{\sqrt{3}} \right).$$

Exercise 8.24: Let $f(x) = \sum a_n x^n$ be a real-valued power series with radius of convergence R > 0. We say that f is an even function if f(x) = f(-x) for all $x \in (-R, R)$. Show that f is an even function if and only if $a_{2k+1} = 0$ for all $k \in \mathbb{N}_0$.

Exercise 8.25: Let f be a real-valued power series with radius of convergence R > 0. Suppose that there exists $r \in (0, R)$ such that f(x) = 0 for $x \in (-r, r)$. Show that f(x) = 0 for all $x \in (-R, R)$.

Exercise 8.26: Let $f(z) = \sum a_n z^n$ be a power series with radius of convergence $R = +\infty$. Suppose that f is bounded on \mathbb{C} . Show that f is a constant function on \mathbb{C} . Hint: see below⁴.

Exercise 8.27: Expand the following functions into power series around x = 0. Do not forget to write down the radius of convergence of each of the power series.

(1) $\ln(a+x), a > 0,$ (2) $\ln(1+2x^2),$ (3) $\frac{1}{a-x}, a \neq 0,$ (4) $\sin(x).$

Exercise 8.28: Let $(c_n)_{n \ge 0}$ be a real sequence defined by $c_0 = 1$ and the following recurrence formula,

$$\forall n \in \mathbb{N}_0, \quad c_{n+1} = \sum_{k=0}^n c_k c_{n-k}.$$

(1) Suppose that the power series $\sum c_n z^n$ has radius of convergence R > 0 and denote the series by f(z). Show that

$$\forall z \in D(0,R), \quad zf(z)^2 = f(z) - 1, \text{ and } f(z) = \frac{1}{2z}(1 - \sqrt{1 - 4z}).$$

- (2) Show that the function $z \mapsto \frac{1}{2z}(1-\sqrt{1-4z})$ can be extended to 0 by continuity, and can be written as a power series around 0. Find the corresponding power series and its radius of convergence.
- (3) Deduce that

$$\forall n \in \mathbb{N}_0, \quad c_n = \frac{1}{n+1} \binom{2n}{n}.$$

Exercise 8.29: We want to study the following function around 0,

$$f: x \mapsto \int_0^{+\infty} e^{-t^2} \sin(tx) \,\mathrm{d}t.$$

(1) (a) For $k \in \mathbb{N}_0$, show that

$$\int_0^{+\infty} t^{2k+1} e^{-t^2} \, \mathrm{d}t = \frac{k!}{2}.$$

- (b) Find an expansion in power series of f around 0 by integrating term by term. Do not forget to justify why you can proceed this way.
- (2) Find a differential equation satisfied by f. Apply the method in Example 8.3.35 to determine an expansion in power series of f around 0.

⁴Use the Cauchy's formula in Theorem 8.3.26.

Exercise 8.30: Let (K, d) be a compact metric space and $\mathcal{F} \subseteq \mathcal{C}(K, \mathbb{R})$ is a subset. Show that if \mathcal{F} is equicontinuous, then $\overline{\mathcal{F}}$ is also equicontinuous.

Exercise 8.31: Let (K, d) be a compact metric space and $\mathcal{C}(K, \mathbb{R})$ be equipped with the norm $\|\cdot\|_{\infty}$. Consider a subset $\mathcal{F} \subseteq \mathcal{C}(K, \mathbb{R})$.

- (1) Suppose that \mathcal{F} is precompact.
 - (a) Show that for every $\varepsilon > 0$, there exists $f \in \mathcal{F}$ such that $B(f, \varepsilon) \cap \mathcal{F}$ is infinite.
 - (b) Deduce that if $(f_n)_{n \ge 1}$ is a sequence in \mathcal{F} , then we may extract a Cauchy subsequence from $(f_n)_{n \ge 1}$.
- (2) Suppose that from any sequence $(f_n)_{n \ge 1}$ in \mathcal{F} , we may extract a Cauchy subsequence.
 - (a) Check that $\overline{\mathcal{F}}$ is complete.
 - (b) Let $(g_n)_{n \ge 1}$ be a sequence in $\overline{\mathcal{F}}$. For every $n \ge 1$, check that we may choose $f_n \in \mathcal{F}$ with $\|f_n g_n\|_{\infty} \le 2^{-n}$. Show that $(g_n)_{n \ge 1}$ has a convergent subsequence in $\overline{\mathcal{F}}$.
 - (c) Deduce that \mathcal{F} is precompact.

Exercise 8.32 : Define the following function on $\mathbb{R}_{>0}$,

$$\forall x > 0, \quad g(x) = \int_0^\infty \frac{e^{-t}}{t+x} \,\mathrm{d}t.$$

- (1) Explain why *g* is well defined on $\mathbb{R}_{>0}$.
- (2) Show that $g(x) \sim \frac{1}{x}$ when $x \to +\infty$. Hint: see below⁵.

Exercise 8.33: Use the dominated convergence theorem (Theorem 8.5.5) to show the following convergence,

$$\int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n \mathrm{d}t \xrightarrow[n \to \infty]{} \int_0^\infty e^{-t^2} \,\mathrm{d}t.$$

Then, use Wallis' integrals (Exercise A1.2) to deduce the value of the integral

$$\int_0^\infty e^{-t^2} \,\mathrm{d}t.$$

Hint: see below⁶.

⁵Apply the dominated convergence theorem to the integral defining xg(x).

⁶Consider the sequence of piecewise continuous functions $(f_n)_{n \ge 1}$ defined by $f_n : t \mapsto (1 - \frac{t^2}{n})^n \mathbb{1}_{[0,\sqrt{n}]}(t)$.

Exercise 8.34 : We define

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^1 \ln(1+t^n) \,\mathrm{d}t$$

- (1) Show that $\lim_{n\to\infty} I_n = 0$.
- (2) Use the change of variables $t = u^{1/n}$ and the dominated convergence theorem to show that

$$nI_n \xrightarrow[n \to \infty]{} \int_0^1 \frac{\ln(1+u)}{u} \,\mathrm{d}u.$$

(3) Deduce that

$$I_n \sim \frac{1}{n} \int_0^1 \frac{\ln(1+u)}{u} \,\mathrm{d}u.$$

Exercise 8.35 : Let

$$\forall x > 0, \quad g(x) = \int_0^{+\infty} \frac{e^{-t} - e^{-xt}}{t} \, \mathrm{d}t$$

- (1) Show that g is well defined on $(0, +\infty)$.
- (2) Show that g is of class C^1 . Find g' and g.

Exercise 8.36 : Show that for x > 1, we have

$$\Gamma(x)\,\zeta(x) = \int_0^{+\infty} \frac{t^{x-1}}{e^t - 1}\,\mathrm{d}t$$

Exercise 8.37 : Let

$$\forall x \ge 0, \quad g(x) = \int_0^{+\infty} \frac{e^{-x^2 t^2}}{1+t^2} \, \mathrm{d}t, \quad \text{and} \quad I = \int_0^{+\infty} e^{-u^2} \, \mathrm{d}u.$$

- (1) Show that g is well defined on \mathbb{R}_+ .
- (2) Show that g is of class C^1 and is a solution to the differential equation,

$$y' - 2xy = -2I.$$

(3) Deduce that $I = \frac{\sqrt{\pi}}{2}$.