
Chapter 8: Sequences and series of functions

Exercise 8.1 : Let I ⊆ R be an interval and (fn)n⩾1 be a sequence of functions from I to R. Suppose
that fn converges pointwise to a function f .

(1) Suppose that every function fn is convex, show that f is convex.

(2) Suppose that every function fn is non-decrasing, show that f is non-decreasing.

(3) Suppose that every function fn is strictly increasing, is f necessarily strictly increasing?

(4) Suppose that every function fn is periodic with period T , show that f is periodic with period T .

Exercise 8.2 : Consider the sequence of functions (fn)n⩾1 defined as below,

∀n ∈ N, ∀x ∈ R, fn(x) = sin
(
x + 1

n

)
.

Show that (fn)n⩾1 converges uniformly on R.

Exercise 8.3 : For n ∈ N, define the function un on R+ as below,

∀x ⩾ 0, un(x) = x

n2 + x2 .

(1) Show that the series
∑

n⩾1 un converges pointwise on R+.

(2) Show that the series
∑

n⩾1 un converges uniformly on [0, A] for any A > 0.

(3) Show that for every n ∈ N, we have

2n∑
k=n+1

n

n2 + k2 ⩾ 1
5

.

(4) Deduce that the series
∑

n⩾1 un does not converge uniformly on R+.

Exercise 8.4 :

(1) Let us consider a sequence of functions (fn)n⩾1 defined on R+ as follows,

∀n ∈ N, ∀x ⩾ 0, fn(x) =


(
1 − x

n

)n
if x ∈ [0, n],

0 if x > n.

Show that (fn)n⩾1 converges uniformly to f : x 7→ e−x on R+.

(2) Consider another sequence of functions (gn)n⩾1 defined on C as follows,

∀n ∈ N, ∀z ∈ C, gn(z) =
(
1 + z

n

)n
.

Show that (gn)n⩾1 converges uniformly to g on every compact subset of C.
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Exercise 8.5 : For n ∈ N, define un : R+ → R as below,

∀x ∈ R+, un(x) = x

n2 + x2 .

(1) Show that the series of functions
∑

un converges pointwise on R+, but does not converge uni-
formly on R+.

(2) Show that the series of functions
∑

(−1)nun converges uniformly on R+ but does not converge
normally on R+.

Exercise 8.6 : Let f : R → R be a function and (Pn)n⩾1 be a sequence of polynomials that converges
uniformly to f on R.

(1) Show that there exists N ⩾ 1 such that

∀n ⩾ N, ∀x ∈ R, |Pn(x) − f(x)| ⩽ 1.

(2) When n ⩾ N , what can we say about the polynomial Pn − PN?

(3) Deduce that f is a polynomial function.

Exercise 8.7 : Let I = [a, b] be a segment and (fn)n⩾1 be a sequence of (not necessarily continuous)
functions from I to R. Suppose that

(i) for each n ⩾ 1, the function fn is increasing on I ;

(ii) the sequence (fn)n⩾1 converges pointwise to a continuous function f : I → R.

(1) Show that f is increasing on I .

(2) Let us fix ε > 0. Show that we can find a partition P = (xk)0⩽k⩽m ∈ P([a, b]) such that

∀k = 0, . . . , m − 1, |f(xk+1) − f(xk)| ⩽ ε.

(3) Show that there exists N ⩾ 1 such that

∀n ⩾ N, ∀k = 0, . . . , m, |f(xk) − fn(xk)| ⩽ ε.

(4) Deduce that for all n ⩾ N and x ∈ [a, b], we have |fn(x) − f(x)| ⩽ 2ε, and conclude that (fn)n⩾1
converges to f uniformly.
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Exercise 8.8 :

(1) Let I = [a, b] ⊆ R be a segment, (W, ‖·‖) be a normed vector space, and K > 0. Consider a
seuqnece of functions (fn)n⩾1 from I to W that are K-Lipschitz continuous. Show that if (fn)n⩾1
converges pointwise to f , then the convergence is uniform.

(2) Let I = (a, b) ⊆ R be an interval and (fn)n⩾1 be a sequence of convex functions from I to R that
converges pointwise to f . We want to show that this convergence is uniform on every segment of
I .
(a) Let c, d ∈ I such that [c, d] ⊆ (a, b). Consider p ∈ (a, c) and q ∈ (d, b). Show that the

following two sequences(
fn(p) − fn(c)

p − c

)
n⩾1

, and
(

fn(d) − fn(q)
d − q

)
n⩾1

are convergent, so bounded.
(b) Let K > 0 be a constant that is an upper bound of the absolute value of the terms of the

above two sequences. Show that (fn)n⩾1 is a sequence of K-Lipschitz continuous functions
on [c, d].

(c) Conclude that (fn)n⩾1 converges uniformly to f on [c, d].
(d) Is it true that (fn)n⩾1 converges to f uniformly on (a, b) in general?

Exercise 8.9 (Cantor–Lebesgue function) : We recall the subsets (Cn)n⩾0 defined in Exercise 2.21,

C0 = [0, 1], Cn+1 = 1
3Cn ∪ (1

3Cn + 2
3), ∀n ⩾ 0,

and their intersection C :=
⋂

n⩾0 Cn called the Cantor set. For n ⩾ 1, we also define In := [0, 1]\Cn,
which is an open subset of R. Let us define a sequence of functions (fn)n⩾0 by induction,

∀x ∈ [0, 1], f0(x) = x, and fn+1(x) =


1
2fn(3x) if x ∈ [0, 1

3 ],
1
2 if x ∈ [1

3 , 2
3 ],

1
2 + 1

2fn(3x − 2) if x ∈ [2
3 , 1].

(1) Represent graphically the functions f0, f1, and f2.

(2) Show that ‖fn+2 − fn+1‖∞ = 1
2 ‖fn+1 − fn‖∞ for every n ⩾ 0.

(3) Deduce that the sequence of functions (fn)n⩾0 converges pointwise to a limit function f , which is
continuous.

(4) For any fixed integers m ⩽ n, show that fn is a constant function on every open subinterval of
Im.

(5) Deduce that f ′(x) = 0 for every x ∈ [0, 1]\C.

The limit function f is called the Cantor–Lebesgue function. It is a non-zero function that has zero deriva-
tive on [0, 1] except for the measure zero set C. Therefore, the function f does not satisfy the first funda-
mental theorem of calculus.
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Exercise 8.10 : Consider the sequenece of functions (fn)n⩾1 defined as below,

∀n ∈ N, ∀x ∈
[
0,

π

2

]
, fn(x) =

(
cos x

)n · sin x.

(1) Show that (fn)n⩾1 converges uniformly to the zero function. Hint: see below1.

(2) For n ⩾ 1, define gn = (n + 1)fn.
(a) Show that for any δ ∈ (0, π

2 ), the sequence of functions (gn)n⩾1 converges uniformly to the
zero function on [δ, π

2 ].
(b) Find the limit of the following sequence(∫ π/2

0
gn(t) dt

)
n⩾1

,

and deduce that (gn)n⩾1 does not converge uniformly on [0, π
2 ].

Exercise 8.11 : Let
∑

n⩾1 an and
∑

n⩾1 bn be two absolutely convergent series in R, and c ∈ R.

(1) Show that the following function f is well defined on R,

∀x ∈ R, f(x) = c +
∑
n⩾1

(
an cos(nx) + bn sin(nx)

)
.

(2) Show that the function f is continuous on R.

(3) If, in addition, the series
∑

nan and
∑

nbn converges absolutely, show that

∀x ∈ R, f ′(x) =
∑
n⩾1

n
(
bn cos(nx) − an sin(nx)

)
.

(4) Find the value of
∫ 2π

0 f .

Exercise 8.12 : Let g : [0, 1] → R be a continuous function, and (fn)n⩾0 be a sequence of functions on
[0, 1] defined as follows,

f0 ≡ 0, and ∀n ∈ N0, ∀x ∈ [0, 1], fn+1(x) = g(x) +
∫ x

0
fn(t) dt.

(1) Use an induction to show that for every n ∈ N0 and x ∈ [0, 1], we have

|fn+1(x) − fn(x)| ⩽ xn

n!
‖g‖∞ .

(2) Show that (fn)n⩾0 converges uniformly to a continuous function f satisfying

∀x ∈ [0, 1], f(x) = g(x) +
∫ x

0
f(t) dt.

1Look at the behavior around 0 and away from 0 separately.
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Exercise 8.13 : Show that the following function is of class C∞ on R∗
+ := (0, +∞),

∀x > 0, f(x) =
∑
n⩾0

(−1)n

x + n
.

Exercise 8.14 : Define the functions un : R+ → R as below,

∀n ∈ N, ∀x ⩾ 0, un(x) = e−x
√

n

n3/2 .

(1) Show that the series of functions S =
∑

n⩾1 un is well defined on R+.

(2) Check that S is continuous and is of class C∞ on R+.

(3) Show that S does not have a right derivative at 0. Hint: see below2.

Exercise 8.15 :

(1) Check that the following function is well defined,

∀x > 0, f(x) =
∑
n⩾1

1
1 + n2x

.

(2) Consider the function
u : R∗

+ × R+ → R,
(x, t) 7→ 1

1+xt2 .

(a) Check that for every fixed x > 0, the function t 7→ u(x, t) is integrable on R+.
(b) For every x > 0, compute the following integral∫ +∞

0
u(x, t) dt = π

2
√

x
.

(c) Check that for every x > 0, we have∣∣∣f(x) −
∫ +∞

0
u(x, t) dt

∣∣∣ ⩽ u(x, 0) = 1.

(d) Deduce that when x → 0+, we have

f(x) = π

2
√

x
+ O(1).

2Show that the limit S(x)−S(0)
x

does not exist when x → 0+.
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Exercise 8.16 : Let
∑

anzn be a power series with radius of convergence R ∈ [0, +∞).

(1) Write R′ for the radius of convergence of the power series
∑

anz2n. Determine the relation be-
tween R′ and R.

(2) Write R′′ for the radius of convergence of the power series
∑

a2nzn. Determine the relation be-
tween R′ and R.

Exercise 8.17 : Find the radius of convergence of the power series
∑

anzn for different choices of
(an)n⩾1,

(1) an = cosh(n),

(2) an = sinh(n),

(3) an = cosh(n)
n ,

(4) an =
(
1 + 1√

n

)n
,

(5) an = e
√

n,

(6) an = nα, α ∈ R,

(7) an =
∑n

k=1
1
k ,

(8) an = n(−1)n ,

(9) an =
(2n

n

)
.

Exercise 8.18 :

(1) Let
∑

anzn be a power series with radius of convergence R > 0. Show that the radius of conver-
gence of

∑ an
n! zn is +∞.

(2) Suppose that the power series
∑ an

n! zn has radius of convergence R < +∞. What can we say
about the radius of convergence of

∑
anzn?

Exercise 8.19 : Let
∑

anzn and
∑

bnzn be two power series with radius of convergence R1 and R2.
Consider the power series

∑
anbnzn and denote its radius of convergence by R.

(1) Show that R ⩾ R1R2.

(2) Find an example for which we have R > R1R2.

Exercise 8.20 : Let (an)n⩾1 be a sequence of nonzero complex numbers such that

|an+2|
|an|

−−−→
n→∞

2.

Show that the radius of convergence of the power series
∑

anzn is 1√
2 .

Exercise 8.21 : Let
∑

anzn be a power series with radius of convergence R. Let Sn =
∑n

k=0 ak be the
partial sums of

∑
an. Denote the radius of convergence of

∑
Snzn by r.

(1) Show that r ⩽ R.

(2) Show that min{1, R} ⩽ r. Hint: see below3.

3The power series
∑

Snzn can be seen as the Cauchy product between
∑

anzn and a specific power series that you need to
choose.
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Exercise 8.22 : Find the radius of convergence and explicit the sum of each of the following power
series,

(1)
∑
n⩾0

n2zn,

(2)
∑
n⩾0

zn

2n + 1
,

(3)
∑
n⩾1

zn

n(n + 2)
,

(4)
∑
n⩾0

zn

n!
cos(nθ), θ ∈ R,

(5)
∑
n⩾0

n(−1)n
zn,

(6)
∑
n⩾1

(
1 + · · · + 1

n

)
zn.

Exercise 8.23 :

(1) Justify why we may rewrite the following function as a power series,

∀z ∈ D(0, 1), 1
1 − z

=
∑
n⩾0

zn.

(2) (a) Use (1) and apply a theorem carefully to justify that we have the following power series,

∀x ∈ (−1, 1), ln(1 + x) =
∑
n⩾0

(−1)n

n + 1
xn+1 =

∑
n⩾1

(−1)n+1

n
xn.

(b) Use (2a) and apply a theorem carefully to justify that we have

∑
n⩾1

(−1)n+1

n
= ln 2.

(3) (a) Use (1) to deduce that

∀x ∈ (−1, 1), 1
1 + x2 =

∑
n⩾0

(−1)nx2n.

(b) Then, show that
∀x ∈ (−1, 1), arctan(x) =

∑
n⩾0

(−1)n

2n + 1
x2n+1.

(4) Use (3b) to show that ∑
n⩾0

(−1)n

2n + 1
= lim

x→1−
arctan(x) = π

4
.

(5) Mimic the previous questions to show that

∑
n⩾0

(−1)n

3n + 1
= 1

3

(
ln 2 + π√

3

)
.
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Exercise 8.24 : Let f(x) =
∑

anxn be a real-valued power series with radius of convergence R > 0.
We say that f is an even function if f(x) = f(−x) for all x ∈ (−R, R). Show that f is an even function
if and only if a2k+1 = 0 for all k ∈ N0.

Exercise 8.25 : Let f be a real-valued power series with radius of convergence R > 0. Suppose that
there exists r ∈ (0, R) such that f(x) = 0 for x ∈ (−r, r). Show that f(x) = 0 for all x ∈ (−R, R).

Exercise 8.26 : Let f(z) =
∑

anzn be a power series with radius of convergence R = +∞. Suppose
that f is bounded on C. Show that f is a constant function on C. Hint: see below4.

Exercise 8.27 : Expand the following functions into power series around x = 0. Do not forget to write
down the radius of convergence of each of the power series.

(1) ln(a + x), a > 0,

(2) ln(1 + 2x2),

(3) 1
a−x , a 6= 0,

(4) sin(x).

Exercise 8.28 : Let (cn)n⩾0 be a real sequence defined by c0 = 1 and the following recurrence formula,

∀n ∈ N0, cn+1 =
n∑

k=0
ckcn−k.

(1) Suppose that the power series
∑

cnzn has radius of convergence R > 0 and denote the series by
f(z). Show that

∀z ∈ D(0, R), zf(z)2 = f(z) − 1, and f(z) = 1
2z

(
1 −

√
1 − 4z

)
.

(2) Show that the function z 7→ 1
2z

(
1−

√
1 − 4z

)
can be extended to 0 by continuity, and can bewritten

as a power series around 0. Find the corresponding power series and its radius of convergence.

(3) Deduce that

∀n ∈ N0, cn = 1
n + 1

(
2n

n

)
.

Exercise 8.29 : We want to study the following function around 0,

f : x 7→
∫ +∞

0
e−t2 sin(tx) dt.

(1) (a) For k ∈ N0, show that ∫ +∞

0
t2k+1e−t2 dt = k!

2
.

(b) Find an expansion in power series of f around 0 by integrating term by term. Do not forget
to justify why you can proceed this way.

(2) Find a differential equation satisfied by f . Apply the method in Example 8.3.35 to determine an
expansion in power series of f around 0.

4Use the Cauchy’s formula in Theorem 8.3.26.
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Exercise 8.30 : Let (K, d) be a compact metric space and F ⊆ C(K,R) is a subset. Show that if F is
equicontinuous, then F is also equicontinuous.

Exercise 8.31 : Let (K, d) be a compact metric space and C(K,R) be equipped with the norm ‖·‖∞.
Consider a subset F ⊆ C(K,R).

(1) Suppose that F is precompact.
(a) Show that for every ε > 0, there exists f ∈ F such that B(f, ε) ∩ F is infinite.
(b) Deduce that if (fn)n⩾1 is a sequence in F , then we may extract a Cauchy subsequence from

(fn)n⩾1.

(2) Suppose that from any sequence (fn)n⩾1 in F , we may extract a Cauchy subsequence.
(a) Check that F is complete.
(b) Let (gn)n⩾1 be a sequence in F . For every n ⩾ 1, check that we may choose fn ∈ F with

‖fn − gn‖∞ ⩽ 2−n. Show that (gn)n⩾1 has a convergent subsequence in F .
(c) Deduce that F is precompact.

Exercise 8.32 : Define the following function on R>0,

∀x > 0, g(x) =
∫ ∞

0

e−t

t + x
dt.

(1) Explain why g is well defined on R>0.

(2) Show that g(x) ∼ 1
x when x → +∞. Hint: see below5.

Exercise 8.33 : Use the dominated convergence theorem (Theorem 8.5.5) to show the following conver-
gence, ∫ √

n

0

(
1 − t2

n

)n
dt −−−→

n→∞

∫ ∞

0
e−t2 dt.

Then, use Wallis’ integrals (Exercise A1.2) to deduce the value of the integral∫ ∞

0
e−t2 dt.

Hint: see below6.

5Apply the dominated convergence theorem to the integral defining xg(x).
6Consider the sequence of piecewise continuous functions (fn)n⩾1 defined by fn : t 7→ (1 − t2

n
)n1[0,

√
n](t).
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Exercise 8.34 : We define
∀n ∈ N, In =

∫ 1

0
ln(1 + tn) dt.

(1) Show that limn→∞ In = 0.

(2) Use the change of variables t = u1/n and the dominated convergence theorem to show that

nIn −−−→
n→∞

∫ 1

0

ln(1 + u)
u

du.

(3) Deduce that

In ∼ 1
n

∫ 1

0

ln(1 + u)
u

du.

Exercise 8.35 : Let
∀x > 0, g(x) =

∫ +∞

0

e−t − e−xt

t
dt.

(1) Show that g is well defined on (0, +∞).

(2) Show that g is of class C1. Find g′ and g.

Exercise 8.36 : Show that for x > 1, we have

Γ(x) ζ(x) =
∫ +∞

0

tx−1

et − 1
dt.

Exercise 8.37 : Let

∀x ⩾ 0, g(x) =
∫ +∞

0

e−x2t2

1 + t2 dt, and I =
∫ +∞

0
e−u2 du.

(1) Show that g is well defined on R+.

(2) Show that g is of class C1 and is a solution to the differential equation,

y′ − 2xy = −2I.

(3) Deduce that I =
√

π
2 .
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