Chapter 8: Sequences and series of functions

Exercise 8.1 :Let I C R be an interval and (f),),>1 be a sequence of functions from I to R. Suppose
that f,, converges pointwise to a function f.

(1) Suppose that every function f,, is convex, show that f is convex.
(2) Suppose that every function f;, is non-decrasing, show that f is non-decreasing.
(3) Suppose that every function f,, is strictly increasing, is f necessarily strictly increasing?

(4) Suppose that every function f,, is periodic with period 7', show that f is periodic with period 7T

Exercise 8.2 : Consider the sequence of functions ( f,)n>1 defined as below,
. 1
Vne N,Vz e R, fu(z)=sin (x + —).
n

Show that (f,,)n>1 converges uniformly on R.

Exercise 8.3 : For n € N, define the function u,, on R as below,

x
(1) Show that the series ), -, u, converges pointwise on R .
(2) Show that the series 3_, - u, converges uniformly on [0, A] for any A > 0.

(3) Show that for every n € N, we have

2n

S e
2 2 = :

k:m_ln +k 5

(4) Deduce that the series ) _, - u, does not converge uniformly on R.

Exercise 8.4 :

(1) Let us consider a sequence of functions (f,,),>1 defined on R as follows,

1—£n if 0
Vn e N,Ve >0,  fo(z) = ( n) if z € [0,n],
0 ifx > n.

Show that (f,,)n>1 converges uniformly to f : x — e * on R,.

(2) Consider another sequence of functions (g, ),>1 defined on C as follows,
zZ\n
N n(z)=(14+—=) .
VneNVz€C, gn(2) ( +n)

Show that (g, )n>1 converges uniformly to g on every compact subset of C.
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Exercise 8.5 : For n € N, define u,, : Ry — R as below,

x

(1) Show that the series of functions ) u, converges pointwise on R, but does not converge uni-
formly on R..

(2) Show that the series of functions > (—1)"u,, converges uniformly on R but does not converge
normally on R .

Exercise 8.6 : Let f : R — R be a function and (P,),>1 be a sequence of polynomials that converges
uniformly to f on R.

(1) Show that there exists N > 1 such that
Vn > N,Vx e R, |P,(z)— f(x)] < 1.

(2) When n > N, what can we say about the polynomial P,, — Py?

(3) Deduce that f is a polynomial function.

Exercise 8.7 : Let I = [a,b] be a segment and (f,,),>1 be a sequence of (not necessarily continuous)
functions from I to R. Suppose that

(i) for each m > 1, the function f, is increasing on I;
(ii) the sequence (f,)n>1 converges pointwise to a continuous function f : [ — R.
(1) Show that f is increasing on I.

(2) Letus fix € > 0. Show that we can find a partition P = (x1)o<rk<m € P([a,b]) such that
Vk:07...,m—1, |f($]€+1)—f(l‘k)’<5
(3) Show that there exists N > 1 such that

VYn> N,Vk=0,...,m, |f(zr)— fulzg)] <e.

(4) Deduce that foralln > N and x € [a, b], we have | f,,(x) — f(x)| < 2¢, and conclude that (fy,)n>1
converges to f uniformly.
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Exercise 8.8 :

(1) Let I = [a,b] C R be a segment, (W, ||-||) be a normed vector space, and K > 0. Consider a
seuqnece of functions (fy,)n>1 from I to W that are K-Lipschitz continuous. Show that if ( f;,)n>1
converges pointwise to f, then the convergence is uniform.

(2) Let I = (a,b) C R be an interval and ( f,,)n>1 be a sequence of convex functions from I to R that
converges pointwise to f. We want to show that this convergence is uniform on every segment of

I

(a) Let ¢,d € I such that [¢,d] C (a,b). Consider p € (a,c) and ¢ € (d,b). Show that the
following two sequences

fu(p) = fulc) 0 Jn(d) — fn(q)
< p—c >n>1’ and ( >n>1
are convergent, so bounded.

(b) Let K > 0 be a constant that is an upper bound of the absolute value of the terms of the
above two sequences. Show that (f,,),>1 is a sequence of K -Lipschitz continuous functions
on [c, d].

(c) Conclude that (f,,),>1 converges uniformly to f on [c, d].

(d) Is it true that (fy,),>1 converges to f uniformly on (a,b) in general?

Exercise 8.9 (Cantor-Lebesgue function) : We recall the subsets (C),),,>0 defined in Exercise 2.21,
Co=1[0,1], Cny1=3CU(3Cn+3), Yn >0,

and their intersection C := (0,5 Cy, called the Cantor set. For n > 1, we also define I,, := [0,1]\C,,
which is an open subset of R. Let us define a sequence of functions ( f,,),>0 by induction,

%f”(gx) ifz € [07 %]7
Vo € [Oa 1]7 fo(l') =T, and fnJrl(:L‘) = % ifr e [%, %L
T+ 33z —2) ifxe[2,1).

(1) Represent graphically the functions fy, fi, and f.

(2) Show that || fr42 — futille = % | fa+1 — fullo for every n > 0.

(3) Deduce that the sequence of functions ( f,,)n>0 converges pointwise to a limit function f, which is
continuous.

(4) For any fixed integers m < n, show that f,, is a constant function on every open subinterval of
Ip,.

(5) Deduce that f/(x) = 0 for every = € [0, 1]\C.

The limit function f is called the Cantor—-Lebesgue function. It is a non-zero function that has zero deriva-
tive on [0, 1] except for the measure zero set C. Therefore, the function f does not satisfy the first funda-
mental theorem of calculus.
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Exercise 8.10 : Consider the sequenece of functions (fy,),>1 defined as below,
™ n .
Vn € N,Vz € {0, 5}, fn(z) = (cosz)” -sinw.

(1) Show that (f,,),>1 converges uniformly to the zero function. Hint: see below’.

(2) Forn > 1, define g, = (n+ 1) f».

a) Show that for any € (0, Z), the sequence of functions (g, ),>1 converges uniformly to the
y 2 q > g y
zero function on [d, 7).

(b) Find the limit of the following sequence

w/2
( / gn(t) dt) ,
0 n=1

and deduce that (g,,),>1 does not converge uniformly on [0, 5].

Exercise 8.11: Let ), -, anand ), -, b, be two absolutely convergent series in R, and ¢ € R.

(1) Show that the following function f is well defined on R,

Ve R, f(z)=c+ > (ancos(nz)+ bysin(nz)).

n=1

(2) Show that the function f is continuous on R.

(3) If, in addition, the series > na, and > nb,, converges absolutely, show that

Ve eR, f'(z) =) n(bncos(nz) — aysin(nz)).

n=1

(4) Find the value of f02 T f.

Exercise 8.12 : Let g : [0, 1] — R be a continuous function, and ( f,,)»>0 be a sequence of functions on
[0, 1] defined as follows,

x
fo=0, and VneNg,Vre[0,1], fop1(z)=g(z) +/ fu(t) dt.
0
(1) Use an induction to show that for every n € Ny and = € [0, 1], we have
‘,L.’Vl
‘fn-i—l(x) - fn(w)| < I’ HgHoo
(2) Show that (f,,)n>0 converges uniformly to a continuous function f satisfying

vre(0,1, f(z)=g() +/Ozf(t) dt.

'Look at the behavior around 0 and away from 0 separately.
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Exercise 8.13 : Show that the following function is of class C** on R* := (0, +-00),

Ve >0, f(x)= Z (=1"

n>0x+n

Exercise 8.14 : Define the functions u,, : Ry — R as below,

VneNVe 20, up(z)=—75

(1) Show that the series of functions S = }_, - uy, is well defined on R .
(2) Check that S is continuous and is of class C* on R .

(3) Show that S does not have a right derivative at 0. Hint: see below?.

Exercise 8.15 :

(1) Check that the following function is well defined,

1

n=1

(2) Consider the function
u: Ry xRy — I[l%,
(@) Check that for every fixed z > 0, the function ¢ — u(x,t) is integrable on R

(b) For every x > 0, compute the following integral
+o0o
/ u(z, t)dt = T
0

(c) Check that for every > 0, we have
“+o0o
f(@) —/ u(e,t) dt] < u(,0) = 1.
0

(d) Deduce that when z — 0+, we have

f(z) = % +O(1).

2Show that the limit M does not exist when x — 0+.
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Exercise 8.16 : Let > a,, 2" be a power series with radius of convergence R € [0, +00).

(1) Write R’ for the radius of convergence of the power series 3" a,2%". Determine the relation be-
tween R’ and R.

(2) Write R” for the radius of convergence of the power series 3 as,2". Determine the relation be-
tween R’ and R.

Exercise 8.17 : Find the radius of convergence of the power series ) a,z" for different choices of

(an)n>1,

(1) ay = cosh(n), @ an=(1+2L)" (7) an=Y7_1 4
(2) a, = sinh(n), G) ap = eV, (8) an, =n-V",
(3) an = 5, ©) an=n® a€R, ©) an = (7).

Exercise 8.18 :

(1) Let Y a,z" be a power series with radius of convergence R > 0. Show that the radius of conver-
gence of > 712" is +o0.

(2) Suppose that the power series ) 742" has radius of convergence R < +oo. What can we say
about the radius of convergence of > a,,2"?

Exercise 8.19 : Let > a,2" and >_ b, 2" be two power series with radius of convergence R; and Ry.
Consider the power series > a,b, 2" and denote its radius of convergence by R.

(1) Show that R > R Ra.

(2) Find an example for which we have R > R Rs.

Exercise 8.20 : Let (a,),>1 be a sequence of nonzero complex numbers such that

|an+2| 2
|an‘ n—00

Show that the radius of convergence of the power series Y a,2" is %

Exercise 8.21: Let )~ a, 2" be a power series with radius of convergence R. Let S, = Y }_, aj be the
partial sums of > a,. Denote the radius of convergence of > S,,2" by r.

(1) Show thatr < R.

(2) Show that min{1, R} < r. Hint: see below”.

*The power series Y  Snz" can be seen as the Cauchy product between Y a,, 2™ and a specific power series that you need to
choose.
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Exercise 8.22 : Find the radius of convergence and explicit the sum of each of the following power

series,
2._n n
(1) Z ntzw, (4) Z Z—' cos(nd), 0 € R,
n=0 n>0 n:
2" n
(2) , G) S nb"
2 2
Ak 1
() Y, ©) 3 (14 +-)em
; n(n+ 2) n%:l ( n)

Exercise 8.23 :

(1) Justify why we may rewrite the following function as a power series,

1
Vz € D(0,1), — => 2"

n>0

(2) (a) Use (1) and apply a theorem carefully to justify that we have the following power series,

vee (-1,1), ln(l+z)=> (D" i1 _ > (—171"+1 "

z”.
n—+1

n=0 n>1

(b) Use (2a) and apply a theorem carefully to justify that we have

_1\n+1
7( D) =1In2.
n>=1
(3) (a) Use (1) to deduce that
1
Vo € (—1,1 = (—1)"a*
S ( ) )7 1 _’_:1:2 T;)( ) z

(b) Then, show that

Vo € (—1,1), arctan(x) = Z (=1)

(4) Use (3b) to show that

> 2(_1) = lim arctan(x) = Z

>0 n+1 T—1—

(5) Mimic the previous questions to show that

P “(m2+ ),

Z3n+1 3 V3
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Exercise 8.24 : Let f(z) = >_ a,x"” be a real-valued power series with radius of convergence R > 0.
We say that f is an even function if f(z) = f(—=x) forall z € (—R, R). Show that f is an even function
if and only if asg 1 = 0 for all k£ € Ny.

Exercise 8.25 : Let f be a real-valued power series with radius of convergence R > 0. Suppose that
there exists 7 € (0, R) such that f(x) = 0 for x € (—r,r). Show that f(z) = 0 forall z € (—R, R).

Exercise 8.26 : Let f(z) = >_ a,,2" be a power series with radius of convergence R = +00. Suppose
that f is bounded on C. Show that f is a constant function on C. Hint: see below*.

Exercise 8.27 : Expand the following functions into power series around # = 0. Do not forget to write
down the radius of convergence of each of the power series.

(1) In(a+x),a >0, (3) ——,a #0,

a—x’

(2) In(1 + 22?), (4) sin(x).
Exercise 8.28 : Let (¢,,),>0 be a real sequence defined by ¢y = 1 and the following recurrence formula,
n
Vn € No, cpy1 = Z CkCn—k-
k=0

(1) Suppose that the power series > ¢, 2" has radius of convergence R > 0 and denote the series by

f(2). Show that

Vz€ D(0,R), zf(2)>=f(z)—1, and f(z):2—12(1—\/1—4z).

(2) Show that the function z — i (1—+/1 — 4z) can be extended to 0 by continuity, and can be written
as a power series around 0. Find the corresponding power series and its radius of convergence.

1 2n
Vn € Np, = .
" 0: Cn n—i—l(n)

(3) Deduce that

Exercise 8.29 : We want to study the following function around 0,
“+o0 2
frax— / eV sin(tx) dt.
0

(1) (a) For k € Ny, show that
|

/+Oo R T
0 2’
(b) Find an expansion in power series of f around 0 by integrating term by term. Do not forget
P P Yy integ g y g
to justify why you can proceed this way.

(2) Find a differential equation satisfied by f. Apply the method in Example 8.3.35 to determine an
expansion in power series of f around 0.

4Use the Cauchy’s formula in Theorem 8.3.26.
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Exercise 8.30 : Let (K, d) be a compact metric space and F C C(K,R) is a subset. Show that if F is
equicontinuous, then F is also equicontinuous.

Exercise 8.31 : Let (K, d) be a compact metric space and C(K,R) be equipped with the norm ||| ..
Consider a subset 7 C C(K,R).
(1) Suppose that F is precompact.
(a) Show that for every € > 0, there exists f € F such that B(f,e) N F is infinite.
(b) Deduce that if (f,)n>1 is a sequence in F, then we may extract a Cauchy subsequence from
(fa)n=1.
(2) Suppose that from any sequence ( f,)n>1 in F, we may extract a Cauchy subsequence.

(a) Check that F is complete.

(b) Let (gn)n>1 be a sequence in F. For every n > 1, check that we may choose f,, € F with
Il fr — gnllo < 27" Show that (gy),>1 has a convergent subsequence in F.

(c) Deduce that F is precompact.

Exercise 8.32 : Define the following function on R,

0o =t
= dt.
Ve >0, g(x) /0 P

(1) Explain why g is well defined on R+.

(2) Show that g(z) ~ 1 when z — +o00. Hint: see below”’.

Exercise 8.33 : Use the dominated convergence theorem (Theorem 8.5.5) to show the following conver-

gence,
oo

/Oﬁ (1—t2)ndt—> et dt.

n n—oo 0

Then, use Wallis’ integrals (Exercise A1.2) to deduce the value of the integral

o0
/ e_t2 de.
0

Hint: see below®.

> Apply the dominated convergence theorem to the integral defining xg(x).
SConsider the sequence of piecewise continuous functions ( f, )r>1 defined by f, : t — (1 — %)nﬂ[o,\/ﬂ (t).
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Exercise 8.34 : We define .
VneN, I,= / In(1 + ) dt.
0

(1) Show that lim,, o I, = 0.

(2) Use the change of variables ¢ = u!/™ and the dominated convergence theorem to show that

(1 + u)
nl, —= /0 ” du.

(3) Deduce that
1
I, ~ l/ L(l ) du.
0

n u

Exercise 8.35 : Let
+o00 eft _ efxt

Ve >0, g(z) :/ —dt.
0 t

(1) Show that g is well defined on (0, +00).

(2) Show that g is of class C!. Find ¢’ and g.

Exercise 8.36 : Show that for x > 1, we have

Exercise 8.37 : Let
too e_xztz

+o0 9
—5dt, and I:/ e du.
1+t 0

Vo >0, g(z) =/
0

(1) Show that g is well defined on R..

(2) Show that g is of class C! and is a solution to the differential equation,

y — 2zy = —21I.

_ VT
(3) Deduce that I = Y.
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