Important Notions in Measure Theory

The modern approach to study Probability Theory is built on Measure Theory. In order to follow this lecture, it is essential to have a minimum understanding and familiarity with Measure Theory. For this reason, we will start by reviewing some notions in Measure Theory: we will recall the important definitions and theorems along with a few proofs. The proofs provided here are classical ones and the techniques involved will also be seen repeatedly in Probability Theory; those which are omitted require more technical details from Measure Theory. Interested readers are invited to take a careful look at Rudin's book "Real and Complex Analysis".

1.1 Measurable Spaces and Measures

Given a set, we desire to define a measure (測度) which is a function that attributes a mass to (potentially) all the subsets. Additionally, we want a measure to satisfy some specific properties, such as additivity (加法性) or even σ -additivity (σ 加法性). Hence, we will first define measurable spaces and introduce the notion of σ -algebra, which is, vaguely speaking, a collection of subsets on which we can make sense of a measure.

1.1.1 Measurable Sets and σ -algebras

First, let us start with the notion of σ -algebra.

Definition 1.1.1: Let E be a set. A subset $A \subseteq \mathcal{P}(E)$ is called a σ -algebra (σ 代數) if the following properties are satisfied.

- (a) $E \in \mathcal{A}$.
- (b) If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.
- (c) If for all $n \in \mathbb{N}$, $A_n \in \mathcal{A}$, then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

The elements of \mathcal{A} are called *measurable sets* (可測集合), or \mathcal{A} -measurable sets, if one wants to emphasize the underlying σ -algebra. The couple (E, \mathcal{A}) is called a *measurable space* (可測空間).

Remark 1.1.2: In the above definition, σ means that in the condition (c), the union can be any *countable* union. If we replace this condition by any *finite* union, then the corresponding definition defines what we call an *algebra* (代數), in the sense of *algebra of sets*, or *set algebra*.

測度論中的重要概念

現代機率論是建構在測度論之上,因此要學習這門課程,勢必需要對測度論有足夠的熟練程度。也因此,我們先從測度論的複習開始:我們會回顧測度論中重要的定義以及定理,並且給出部份證明;我們回顧的證明通常是經典證明,也就是在機率論中,相同的概念會一再出現的,其餘比較需要測度論的技巧,我們則省略,有興趣的讀者可以參考 Rudin 的《實分析與複分析》(Real and Complex Analysis) 一書。

第一節 可測空間與測度

在測度論中,給定一個集合,我們希望可以定義一個測度去「測量」他的子集合(也有可能是所有的子集合)。此外,我們希望這樣定義出來的測度,能夠具有某些特定的性質及規律,例如加法性 (additivity),或甚至 σ 加法性 (σ -additivity)。也因此,開始討論測度之前,我們要先定義可測空間及 σ 代數的概念,換句話說,也就是討論哪些子集合構成的集合,可以讓我們在上面給出一個合適的測度定義。

第一小節 可測集合及 σ 代數

讓我們從 σ 代數的概念開始。

定義 1.1.1 : 令 E 為一集合, 若 $\mathcal{A} \subseteq \mathcal{P}(E)$ 滿足

- (a) $E \in \mathcal{A}$;
- (b) 若 $A \in \mathcal{A}$,則 $A^c \in \mathcal{A}$;
- (c) 若對於所有 $n \in \mathbb{N}$, $A_n \in \mathcal{A}$,則 $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$,

則我們稱之為 $\underline{\sigma}$ 代數 $(\sigma \text{ algebra})$ 。我們把 A 中的元素稱為<u>可測集合</u> (measurable sets);或是當我們想要強調 σ 代數的時候,可以把他稱做 A 可測集合。此外,我們也稱 (E,A) 為可測空間 (measurable space)。

註解 1.1.2 : 在上述定義中, σ 意指在條件 (c) 中,聯集是任意可數聯集;若我們將此條件中的「可數」改為「有限」,則我們得到代數 (algebra) 的定義。這裡的代數指的是集合代數。

In Section 1.1.2 below, we will define the notion of measure, which is closely related to the σ -algebra of the considered space. Moreover, later in Probability Theory, we will also see the importance and applications of σ -algebra. For example, in Chapter 5, we will define the notion of *conditional probability* and *conditional expectation*.

Example 1.1.3: Given a set E. We have two extremal σ -algebras: the finest (最精緻的) is $\mathcal{A} = \mathcal{P}(E)$ and the coarsest (最粗糙) is $\mathcal{A} = \{\varnothing, E\}$. The latter is also called the trivial (平凡) σ -algebra.

In order to construct other examples of σ -algebras, we introduce the notion of *generated* σ -algebra (生成 σ 代數).

Definition 1.1.4: Let \mathcal{C} be a subset of $\mathcal{P}(E)$. Then the smallest σ -algebra containing \mathcal{C} exists, denoted by $\sigma(\mathcal{C})$ and is given by,

$$\sigma(\mathcal{C}) = \bigcap_{\substack{\mathcal{A} \text{ is a } \sigma\text{-algebra} \\ \text{s.t. } \mathcal{C} \subseteq \mathcal{A}}} \mathcal{A}$$

In the definition, the intersection is well defined because A = P(E) is a σ -algebra containing C.

Definition 1.1.5: Let E be a set, and \mathcal{O} be a set of subsets of E satisfying

- (a) $E \in \mathcal{O}$ and $\emptyset \in \mathcal{O}$.
- (b) For any finitely many open sets $U_1, \ldots, U_n \in \mathcal{O}$, we have $U_1 \cap \cdots \cap U_n \in \mathcal{O}$.
- (c) For any family of open sets $(U_i)_{i\in I}$ with $U_i\in\mathcal{O}$, we have $\bigcup_{i\in I}U_i\in\mathcal{O}$.

Then, we call (E, \mathcal{O}) a topological space (拓撲空間) and the elements in \mathcal{O} open sets (開集).

Definition 1.1.6: Let (E, \mathcal{O}) be a topological space.

- (1) We denote by $\sigma(\mathcal{O})$ the σ -algebra generated by \mathcal{O} , the open sets of the topological space.
- (2) It is also called Borel σ -algebra (伯雷爾 σ 代數) of E, which can be denoted by $\mathcal{B}(E)$, if there is a canonical choice for \mathcal{O} .
- (3) We call Borel sets (伯雷爾集合) the elements of $\mathcal{B}(E)$.

In other words, Borel σ -algebra is the smallest σ -algebra containing all the open sets of E.

在下面第 1.1.2 小節中,我們會給出測度的定義,是和可測空間上的 σ 代數息息相關的;稍後在機率論的部份,我們也會看到 σ 代數的重要性及其應用,例如在第五章中,我們要定義的條件機率及條件期望值。

範例 1.1.3 : 給定任一集合 E ,我們有兩個最極端的 σ 代數:最精緻的 (finest) $\mathcal{A} = \mathcal{P}(E)$ 以及最粗糙 (coarsest) $\mathcal{A} = \{\emptyset, E\}$,後者也稱作平凡 (trivial) 的 σ 代數。

為了能夠構造更多 σ 代數,我們介紹生成 σ 代數 (generated σ -algebra) 的概念。

定義 1.1.4 : 設 \mathcal{C} 為 $\mathcal{P}(E)$ 的子集合,那麼存在一個最小的 σ 代數,使得他包含 \mathcal{C} ,記作 $\sigma(\mathcal{C})$:

$$\sigma(\mathcal{C}) = \bigcap_{\substack{\mathcal{A} \text{ in } \sigma \text{ rts} \\ \text{for } \mathcal{C} \subset \mathcal{A}}} \mathcal{A}.$$

此定義中的交集是定義良好的,因為 $A = \mathcal{P}(E)$ 是個包含 \mathcal{C} 的 σ 代數。

定義 1.1.5 : $\ominus E$ 為集合,且 O 為 E 的子集合所構成的集合,滿足:

- (a) $E \in \mathcal{O}$ 以及 $\emptyset \in \mathcal{O}$ 。
- (b) 對於任意有限多個開集 $U_1, \ldots, U_n \in \mathcal{O}$, 我們有 $U_1 \cap \cdots \cap U_n \in \mathcal{O}$ 。
- (c) 對於任意開集組 $(U_i)_{i\in I}$, 其中 $U_i\in\mathcal{O}$, 我們有 $\bigcup_{i\in I}U_i\in\mathcal{O}$ 。

Then, we call (E, \mathcal{O}) a 拓撲空間 (topological space) and the elements in \mathcal{O} 開集 (open sets).

定義 1.1.6 : 假設 (E, \mathcal{O}) 為拓撲空間 (topological space)。

- (1) 我們把由拓撲空間開集 \mathcal{O} 生成的 σ 代數記作 $\sigma(\mathcal{O})$ 。
- (2) 這也被稱作<u>伯雷爾 σ 代數</u> (Borel σ -algebra) ,當我們有標準的方法選擇 $\mathcal O$ 時,也可以把他記作 $\mathcal B(E)$ 。
- (3) 我們把 $\mathcal{B}(E)$ 之中的元素稱作伯雷爾集合 (Borel sets) 。

換句話說,伯雷爾 σ 代數是包含所有 E 的開集中,最小的 σ 代數;

第一章 測度論中的重要概念

Next, whenever we talk about topological spaces, the σ -algebra we consider will always be its Borel σ -algebra. For example, when we want to equip $\mathbb R$ or $\mathbb R^d$ with a σ -algebra to turn them into measurable spaces, we take the open sets to be given by any equivalent norm on $\mathbb R$ or $\mathbb R^d$, and the corresponding Borel σ -algebra. Actually, in the class of Probability Theory, the most of the spaces we will discuss fall into this setting.

Question 1.1.7: Prove that the σ -algebra generated by each of the three following sets of intervals is equal to $\mathcal{B}(\mathbb{R})$,

- (1) $\mathcal{I} = \{(a, b) : a < b, a, b \in \mathbb{R}\},\$
- (2) $\mathcal{I} = \{(-\infty, a) : a \in \mathbb{R}\},\$
- (3) $\mathcal{I} = \{(-\infty, a) : a \in \mathbb{Q}\}.$

The next important notion to introduce is *prodcut* σ -algebra.

Definition 1.1.8: Given two measurable spaces (E_1, A_1) and (E_2, A_2) , we can define the *product* σ -algebra (積 σ 代數) on their product space $E_1 \times E_2$,

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2).$$

Question 1.1.9: Show that $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

1.1.2 Measures

Given a measurable space (E, A), we want to define a *measure* on it.

Definition 1.1.10: A function $\mu: \mathcal{A} \longrightarrow [0, \infty]$ is called a *positive measure* (正測度) or simply *measure* (測度) if the following axioms (公理) are satisfied,

- $\mu(\varnothing) = 0$,
- (σ -additivity) For any disjoint sequence $(A_n)_{n\geq 1}$ on \mathcal{A} , we have

$$\mu\Big(\bigcup_{n\geq 1} A_n\Big) = \sum_{n\geq 1} \mu(A_n). \tag{1.1}$$

Moreover, we call (E, A, μ) a measure space (測度空間).

Proposition 1.1.11: Let (E, A, μ) be a measure space. We have the following properties.

(1) If
$$A, B \in \mathcal{A}$$
, $A \subseteq B$, $\mu(A) \leqslant \mu(B)$ and $\mu(A) < \infty$, then

$$\mu(B \backslash A) = \mu(B) - \mu(A).$$

接下來,每當我們提到拓撲空間時,我們要考慮的 σ 代數都會是其伯雷爾 σ 代數;例如當我們想要在實空間 \mathbb{R} 或 \mathbb{R}^d 之上賦予 σ 代數、把他們變成可測空間時,我們考慮由任何 \mathbb{R} 或 \mathbb{R}^d 上等價範數所定義的開集,再取相對應的伯雷爾 σ 代數。在機率論中,大部分的時候,我們會討論的都是這樣的情況。

問題 1.1.7:證明下列三種不同類型區間構成的集合所生成的 σ 代數皆為 $\mathcal{B}(\mathbb{R})$:

- (1) $\mathcal{I} = \{(a, b) : a < b, a, b \in \mathbb{R}\},\$
- (2) $\mathcal{I} = \{(-\infty, a) : a \in \mathbb{R}\},\$
- $(3) \mathcal{I} = \{(-\infty, a) : a \in \mathbb{Q}\}.$

下一個要介紹的重要概念是積 σ 代數。

定義 1.1.8 : 給定兩個可測空間 (E_1, A_1) 及 (E_2, A_2) ,我們可以在 $E_1 \times E_2$ 之上定義 積 σ 代數 (product σ -algebra) :

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2).$$

問題 1.1.9: 證明 $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ 。

第二小節 測度

給定一可測空間 (E, A), 我們要給出在此空間上測度的定義。

定義 1.1.10 : 令 $\mu:\mathcal{A}\longrightarrow [0,\infty]$,若 μ 滿足下列公理 (axioms),我們稱之為<u>正測度</u> (positive measure) 或測度 (measure) :

- $\mu(\emptyset) = 0$;
- 【 σ 加法性】對於任何 A 之上的互斥序列 $(A_n)_{n\geq 1}$,我們有

$$\mu\Big(\bigcup_{n\geqslant 1} A_n\Big) = \sum_{n\geqslant 1} \mu(A_n). \tag{1.1}$$

此外,我們稱 (E, A, μ) 為測度空間 (measure space) 。

命題 1.1.11 : 對任意測度空間 (E, A, μ) , 下列性質成立:

(1) 若 $A, B \in \mathcal{A}$, $A \subseteq B$, $\mu(A) \leqslant \mu(B)$ 且 $\mu(A) < \infty$,則有

$$\mu(B \backslash A) = \mu(B) - \mu(A).$$

(2) If $A, B \in \mathcal{A}$, then

$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B).$$

(3) (Lower continuity) Let $(A_n)_{n\geqslant 1}$ be a sequence of increasing elements in \mathcal{A} (i.e., $A_n\subseteq A_{n+1}$ for all n). Then, we have

$$\mu\Big(\bigcup_{n\geqslant 1}A_n\Big)=\lim_{n\to\infty}\uparrow\mu(A_n).$$

(4) (Upper continuity) Let $(B_n)_{n\geqslant 1}$ be a sequence of decreasing elements in \mathcal{A} (i.e., $B_{n+1}\subseteq B_n$ for all n). If there exists n_0 such that $\mu(B_{n_0})<\infty$, then

$$\mu\Big(\bigcap_{n>1} B_n\Big) = \lim_{n\to\infty} \downarrow \mu(B_n).$$

(5) If $(A_n)_{n\geqslant 1}$ is a sequence of elements in A, then

$$\mu\Big(\bigcup_{n\geqslant 1}A_n\Big)\leqslant \sum_{n\geqslant 1}\mu(A_n).$$

Proof: See Exercise 1.5.

Definition 1.1.12: Given a measure μ .

- The quantity $\mu(E)$ is called the *total mass* (總質量) of μ .
- If $\mu(E) = 1$, we say that μ is a probability measure (機率測度)
- If $\mu(E) < \infty$, we say that μ is a finite measure (有限測度)
- If there exists an increasing measurable subsets (E_n) such that $E = \bigcup E_n$ and that for all n, we have $\mu(E_n) < \infty$, then we say that μ is a σ -finite measure $(\sigma$ 有限測度).
- Let $x \in E$ and suppose that $\{x\} \in A$. If $\mu(\{x\}) > 0$, then we say that x is an atom (原子) of μ and that μ is an atomic measure (原子測度). Otherwise, we say that μ is an atomless measure (無原子測度).

Example 1.1.13:

- (1) If μ is a finite measure on (E, \mathcal{A}) , then $\frac{\mu}{\mu(E)}$ is a probability measure on the same measurable space.
- (2) On the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, the Lebesgue measure μ is the unique measure such that $\mu([a,b]) = \mu((a,b)) = b-a$ for any a < b. Its uniqueness is a consequence of the monotone

(2) 若 $A, B \in \mathcal{A}$,則

$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B).$$

(3) 【下連續性】令 $(A_n)_{n\geqslant 1}$ 為取值在 A 中的遞增序列(也就是說對於所有 n ,我們有 $A_n\subseteq A_{n+1}$,則

$$\mu\Big(\bigcup_{n\geqslant 1}A_n\Big)=\lim_{n\to\infty}\uparrow\mu(A_n).$$

(4) 【上連續性】令 $(B_n)_{n\geqslant 1}$ 為取值在 \mathcal{A} 中的遞減序列(也就是說對於所有 n,我們有 $B_{n+1}\subseteq B_n$)。若存在 n_0 使得 $\mu(B_{n_0})<\infty$,則

$$\mu\Big(\bigcap_{n\geqslant 1}B_n\Big)=\lim_{n\to\infty}\downarrow\mu(B_n).$$

(5) 若 $(A_n)_{n\geqslant 1}$ 為取值在 A 中的序列,則

$$\mu\Big(\bigcup_{n\geqslant 1}A_n\Big)\leqslant \sum_{n\geqslant 1}\mu(A_n).$$

證明:參照習題 1.5。

定義 1.1.12 : 給定一測度 μ。

- 我們稱 $\mu(E)$ 為 μ 的總質量 (total mass) 。
- 若 $\mu(E)=1$,我們說 μ 是個 機率測度 (probability measure)
- 若 $\mu(E) < \infty$,我們說 μ 是個有限測度 (finite measure) 。
- 若存在遞增可測的子集合 (E_n) ,使得 $E=\cup E_n$ 且對於所有 n ,我們有 $\mu(E_n)<\infty$,那麼我們說 μ 是個 σ 有限測度(σ -finite measure)。
- 令 $x \in E$ 並假設 $\{x\} \in \mathcal{A}$ 。若 $\mu(\{x\}) > 0$,我們說 $x \in \mu$ 的原子 (atom) ,並說 μ 是個原子測度 (atomic measure) ;反之,則說 μ 是個無原子測度 (atomless measure) 。

範例 1.1.13 :

- (1) 如果 μ 是個在 (E,\mathcal{A}) 上的有限測度,那麼 $\frac{\mu}{\mu(E)}$ 在相同可測空間上是個機率測度。
- (2) 在可測空間 $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ 上,勒貝格測度 μ 是滿足下列條件的唯一測度:對於任意 a < b,我們有 $\mu([a,b]) = \mu((a,b)) = b a$ 。勒貝格測度的唯一性是單調類引理的直接結果,細

class lemma, see Corollary 1.1.19 and Remark 1.1.20 for details. Its existence can be derived from Theorem 1.2.29.

(3) (Dirac measure) Given a measurable space (E, A). Let $x \in E$ and suppose $\{x\} \in A$. The measure $\mu = \delta_x$ is the *Dirac measure* (狄拉克測度) at x.

Proposition 1.1.14 (Upper and lower continuity): Let (E, A) be a measurable space. Define $\mu : A \longrightarrow [0, \infty]$ satisfying

- $\mu(\varnothing) = 0$,
- (Finite additivity) For any finite disjoint sequence of $(A_n)_{1 \leq n \leq N}$ with values in A, we have

$$\mu\Big(\bigcup_{n=1}^{N} A_n\Big) = \sum_{n=1}^{N} \mu(A_n).$$

Then, the following properties are equivalent.

- (i) $(\sigma$ -additivity) μ satisfies σ -additivity mentioned in Eq. (1.1), that is, (E, A, μ) is a measure space.
- (ii) (Lower continuity) For any increasing sequence $(A_n)_{n\geq 1}$ with values in A, we have

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \uparrow \mu(A_n).$$

(iii) (Upper continuity) For any decreasing sequence $(A_n)_{n\geqslant 1}$ with values in \mathcal{A} , if there exists n_0 such that $\mu(A_{n_0})<\infty$, then we have

$$\mu\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \downarrow \mu(A_n).$$

Proof: Let us prove (i) \Longrightarrow (ii). Given an increasing sequence $(A_n)_{n\geqslant 1}$, define the sequence $(B_n)_{n\geqslant 1}$ as follows. Set $B_1:=A_1$ and $B_n:=A_n\backslash A_{n-1}$ for all $n\geqslant 2$. Under this construction, the elements B_n are pairwise disjoint and for all $n\geqslant 1$, we have

$$\bigcup_{k=1}^{n} B_k = A_n = \bigcup_{k=1}^{n} A_k \quad \text{and} \quad \bigcup_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} A_k.$$

As a consequence of σ -additivity, we find

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k)$$
$$= \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} B_k\right) = \lim_{n \to \infty} \mu(A_n).$$

節請見系理 1.1.19 以及註解 1.1.20。他的存在性可以由定理 1.2.29 推得。

(3) 【狄拉克測度】給定可測空間 (E, A)。令 $x \in E$ 並假設 $\{x\} \in A$ 。測度 $\mu = \delta_x$ 是在 x 的 狄拉克測度 (Dirac measure)。

下列命題告訴我們, σ 可加性的假設是重要的,因為他與有限測度的連續性等價。

命題 1.1.14 【上連續與下連續】 : $\ominus (E, A)$ 為可測空間,並且定義 $\mu : A \longrightarrow [0, \infty]$ 滿足:

- $\mu(\emptyset) = 0$;
- 【有限加法性】對於任何取值在 A 中的有限互斥序列 $(A_n)_{1 \le n \le N}$,我們有

$$\mu\Big(\bigcup_{n=1}^{N} A_n\Big) = \sum_{n=1}^{N} \mu(A_n).$$

則下列性質等價。

- (i) 【 σ 可加性】 μ 滿足式 (1.1) 中的 σ 可加性,也就是說 (E, \mathcal{A}, μ) 是個測度空間。
- (ii) 【下連續】對於任意取值在 \mathcal{A} 中的遞增序列 $(A_n)_{n\geqslant 1}$, 我們有

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \uparrow \mu(A_n).$$

(iii) 【上連續】對於任意取值在 A 中的遞減序列 $(A_n)_{n\geqslant 1}$,若存在 n_0 使得 $\mu(A_{n_0})<\infty$,則 我們有

$$\mu\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \downarrow \mu(A_n).$$

證明:證明 (i) \Longrightarrow (ii) 。 給定遞增序列 $(A_n)_{n\geqslant 1}$,由下列方式來定義序列 $(B_n)_{n\geqslant 1}$:設 $B_1:=A_1$,對於所有 $n\geqslant 2$,設 $B_n:=A_n\backslash A_{n-1}$ 。這樣的構造下,所有的 B_n 為兩兩互斥的,且對於所有 $n\geqslant 1$,我們有

$$\bigcup_{k=1}^{n} B_k = A_n = \bigcup_{k=1}^{n} A_k \qquad 以及 \qquad \bigcup_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} A_k.$$

因此根據 σ 可加性,我們有

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k)$$
$$= \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} B_k\right) = \lim_{n \to \infty} \mu(A_n).$$

Let us prove (ii) \Longrightarrow (i). Consider a sequence $(A_n)_{n\geqslant 1}$ of disjoint elements and define the sequence $(B_n)_{n\geqslant 1}$ as follows,

$$\forall n \geqslant 1, \qquad B_n := \bigcup_{k=1}^n A_k.$$

We note that $(B_n)_{n\geqslant 1}$ is an increasing sequence and using the property (ii), we find

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(A_k) = \sum_{k=1}^{\infty} \mu(A_k).$$

Let us prove (ii) \Longrightarrow (iii). Consider a decreasing sequence $(A_n)_{n\geqslant 1}$ with n_0 such that $\mu(A_{n_0})<\infty$. Set $B_n:=A_n^c\cap A_{n_0}$ for all $n\geqslant 1$. Then, the sequence $(B_n)_{n\geqslant 1}$ is increasing. Using the property (ii), we find

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \mu\left(\bigcap_{n=n_0}^{\infty} (A_n \cap A_{n_0})\right) = \mu\left(A_{n_0} \setminus \left(\bigcup_{n=n_0}^{\infty} B_n\right)\right)$$
$$= \mu(A_{n_0}) - \mu\left(\bigcup_{n=n_0}^{\infty} B_n\right)$$
$$= \mu(A_{n_0}) - \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_n).$$

To finish the proof, we use a similar method to prove (iii) \Longrightarrow (ii).

1.1.3 Monotone Classes

In the previous subsections, we defined the notion of σ -algebras and measures. However, σ -algebras are not easy to manipulate directly, since in general, one does not have a way to write down a generic element from them. Apart from this, in the definition of a measure, we talk about countable unions of *disjoint* sequences of subsets; but in the definition of a σ -algebra, this can be countable unions of *any* sequence of subsets. As a consequence, when we need to construct a measure on a measurable space, or to prove some specific conditions such as the uniqueness of the measure, it can be a bit tricky. In this subsection, we will introduce the notion of *monotone classes*, state the monotone class lemma (Theorem 1.1.18) and discuss about the uniqueness of the measure (Corollary 1.1.19).

Definition 1.1.15: Let \mathcal{M} be a subset of $\mathcal{P}(E)$. We call \mathcal{M} a monotone class (單調類) if the following conditions are satisfied.

- (a) $E \in \mathcal{M}$.
- (b) If $A, B \in \mathcal{M}$ and $A \subseteq B$, then $B \setminus A \in \mathcal{M}$.
- (c) If $(A_n)_{n\in\mathbb{N}}$ is an increasing sequence of elements in \mathcal{M} , then $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{M}$.

證明 (ii) \Longrightarrow (i)。考慮互斥序列 $(A_n)_{n\geq 1}$ 並由下列方式來定義序列 $(B_n)_{n\geq 1}$:

$$\forall n \geqslant 1, \qquad B_n := \bigcup_{k=1}^n A_k.$$

我們注意到, $(B_n)_{n\geqslant 1}$ 是個遞增序列,因此根據 (ii) 的性質,我們有

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(A_k) = \sum_{k=1}^{\infty} \mu(A_k).$$

證明 (ii) \Longrightarrow (iii)。考慮遞減的序列 $(A_n)_{n\geqslant 1}$ 以及 n_0 使得 $\mu(A_{n_0})<\infty$ 。對所有 $n\geqslant 1$,設 $B_n:=A_n^c\cap A_{n_0}$,則序列 $(B_n)_{n\geqslant 1}$ 會是遞增的。利用 (ii) 的性質,我們有

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \mu\left(\bigcap_{n=n_0}^{\infty} (A_n \cap A_{n_0})\right) = \mu\left(A_{n_0} \setminus \left(\bigcup_{n=n_0}^{\infty} B_n\right)\right)$$
$$= \mu(A_{n_0}) - \mu\left(\bigcup_{n=n_0}^{\infty} B_n\right)$$
$$= \mu(A_{n_0}) - \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_n).$$

最後,我們可以用類似的手法來證明(iii) ⇒ (ii)。

第三小節 單調類

在前面,給定一個空間,我們定義了 σ 代數以及測度的概念。但 σ 代數並不是一個好操作的定義,因為一般來講,要寫出 σ 代數中的元素並不容易。除此之外,在測度的定義中,我們討論的是<u>互斥</u>可數序列的聯集,但 σ 代數的條件卻是任意可數序列,所以當我們要在一個可測空間之上建構測度,或是證明在某些條件下,測度的唯一性,會比較棘手。也因此,在這小節中,我們要引進單調類的概念,並且敘述單調類引理(定理 1.1.18),以及討論測度的唯一性(系理 1.1.19)。

- (a) $E \in \mathcal{M} \circ$
- (b) 若 $A, B \in \mathcal{M}$ 及 $A \subseteq B$,則 $B \setminus A \in \mathcal{M}$ 。
- (c) 若 $(A_n)_{n\in\mathbb{N}}$ 為在 \mathcal{M} 之上的遞增集合序列,則 $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{M}$ 。

則稱之為單調類 (monotone class)。

Remark 1.1.16: Any σ -algebra is also a monotone class.

As in the case of σ -algebras, we can also define the notion of a *generated monoton class* (生成單調類).

Definition 1.1.17: For any $C \subseteq \mathcal{P}(E)$, there exists a smallest monotone class such that it contains C, denoted

$$\mathcal{M}(\mathcal{C}) = \bigcap_{\substack{\mathcal{M} \text{ is a monotone class} \\ \text{s.t. } \mathcal{C} \subseteq \mathcal{M}}} \mathcal{M}$$

The following lemma tells us the conditions under which a generated monotone class and a generated σ -algebra are equal.

Theorem 1.1.18 (Monotone class lemma) : If $C \subseteq \mathcal{P}(E)$ is closed under finite intersection, then $\mathcal{M}(C) = \sigma(C)$.

This is one of the most important statements in Measure Theory. We only provide the necessary steps for the proof, the complete proof being an exercise.

Proof: From the above remark, we know that $\mathcal{M}(\mathcal{C}) \subseteq \sigma(\mathcal{C})$, so we only need to prove the other inclusion. We need to prove the two following points.

- (1) If \mathcal{M} is a monotone class and is closed under finite intersections, then \mathcal{M} is a σ -algebra.
- (2) Prove that $\mathcal{M}(\mathcal{C})$ is closed under finite intersections in two steps:
 - (a) Given $A \in \mathcal{C}$, let $\mathcal{M}_1 = \{B \in \mathcal{M}(\mathcal{C}) : A \cap B \in \mathcal{M}(\mathcal{C})\}$ and prove $\mathcal{M}_1 = \mathcal{M}(\mathcal{C})$.
 - (b) Given $B \in \mathcal{M}(\mathcal{C})$, let $\mathcal{M}_2 = \{A \in \mathcal{M}(\mathcal{C}) : A \cap B \in \mathcal{M}(\mathcal{C})\}$ and prove $\mathcal{M}_2 = \mathcal{M}(\mathcal{C})$.

The monotone class lemma allows us to show the uniqueness of the measure.

Corollary 1.1.19: Let μ and ν be two measures on the measurable space (E, A). Assume that there exists a subset $C \subseteq A$ which is closed under finite intersections satisfying $\sigma(C) = A$ and such that for all $A \in C$, we have $\mu(A) = \nu(A)$.

- (1) (Finite measure) If $\mu(E) = \nu(E) < \infty$, then $\mu = \nu$.
- (2) (σ -finite measure) If there exists a increasing sequence (E_n) in \mathcal{C} such that $E = \bigcup E_n$ and that for all n, we have $\mu(E_n) = \nu(E_n)$, then $\mu = \nu$.

Proof:

(1) Let $\mathcal{G} = \{A \in \mathcal{A} : \mu(A) = \nu(A)\}$. From the hypothesis, we have $\mathcal{C} \subseteq \mathcal{G}$. Using the properties of a measure, we can show that \mathcal{G} is a monotone class. Moreover, since \mathcal{C} is closed under finite

註解 1.1.16 : 任何一個 σ 代數也是個單調類。

如同 σ 代數的情況,我們也可以定義生成單調類 (generated monotone class) 的概念。

定義 1.1.17 : 對於任意 $\mathcal{C} \subset \mathcal{P}(E)$,存在一個最小的單調類,使得他包含 \mathcal{C} ,記作

$$\mathcal{M}(\mathcal{C}) = \bigcap_{\substack{\mathcal{M} \ \text{eta E in } \mathbb{M} \ \text{eta } \in \mathcal{C} \subseteq \mathcal{M}}} \mathcal{M}.$$

下列引理告訴我們在怎樣的情況下,生成單調類和生成 σ 代數是相等的。

定理 1.1.18 【單調類引理】: 若 $\mathcal{C} \subseteq \mathcal{P}(E)$ 在有限交集下是封閉的,那麼 $\mathcal{M}(\mathcal{C}) = \sigma(\mathcal{C})$ 。

這是測度論中重要定理之一,我們這裡不提供完整的證明,只給出需要證明的步驟。

證明:從上面的註解,我們知道 $\mathcal{M}(\mathcal{C})\subseteq \sigma(\mathcal{C})$,因此只需要證明另一個包含關係。我們需要證明下列兩點:

- (1) 若 M 為單調類,且在有限交集下是封閉的,則 M 為 σ 代數。
- (2) 分兩步驟證明 $\mathcal{M}(\mathcal{C})$ 在有限交集下是封閉的:
 - (a) 給定 $A \in \mathcal{C}$,令 $\mathcal{M}_1 = \{B \in \mathcal{M}(\mathcal{C}) : A \cap B \in \mathcal{M}(\mathcal{C})\}$,證明 $\mathcal{M}_1 = \mathcal{M}(\mathcal{C})$ 。
 - (b) 給定 $B \in \mathcal{M}(\mathcal{C})$,令 $\mathcal{M}_2 = \{A \in \mathcal{M}(\mathcal{C}) : A \cap B \in \mathcal{M}(\mathcal{C})\}$,證明 $\mathcal{M}_2 = \mathcal{M}(\mathcal{C})$ 。

單調類引理可以讓我們證明測度的唯一性。

系理 1.1.19 : 令 μ 及 ν 為兩個在 (E,A) 上的測度。假設存在一個子集合 $\mathcal{C}\subseteq \mathcal{A}$,在有限交集下是封閉的,滿足 $\sigma(\mathcal{C})=\mathcal{A}$ 且對於所有的 $A\in\mathcal{C}$,我們有 $\mu(A)=\nu(A)$ 。

- (1) 【有限測度】若 $\mu(E) = \nu(E) < \infty$,我們有 $\mu = \nu$ 。
- (2) 【 σ 有限測度】若存在 $\mathcal C$ 中遞增序列 (E_n) ,使得 $E=\cup E_n$ 且對於所有 n,我們有 $\mu(E_n)=\nu(E_n)$,那麼 $\mu=\nu$ 。

證明:

(1) 令 $\mathcal{G} = \{A \in \mathcal{A} : \mu(A) = \nu(A)\}$ 。根據假設,我們有 $\mathcal{C} \subseteq \mathcal{G}$,且根據測度的性質,我們可以證明 \mathcal{G} 是個單調類。此外,由於 \mathcal{C} 在有限交集下是封閉的,根據單調類引理,我們有

intersections, according to the monotone class lemma, we have $\mathcal{M}(\mathcal{C}) = \sigma(\mathcal{C}) = \mathcal{A}$. This proves that $\mathcal{G} = \mathcal{A}$, which is $\mu = \nu$.

(2) For all n, we can define the restricted measures of μ and ν on E_n ,

$$\forall A \in \mathcal{A}, \quad \mu_n(A) = \mu(A \cap E_n), \quad \nu_n(A) = \nu(A \cap E_n).$$

From the first part of the proof, we obtain $\mu_n = \nu_n$, then from the property (3) of a measure, we get

$$\forall A \in \mathcal{A}, \quad \mu(A) = \lim \uparrow \mu_n(A \cap E_n), \quad \nu(A) = \lim \uparrow \nu_n(A \cap E_n).$$

This proves the desired statement.

Remark 1.1.20: The above corollary states that if there exists two measures λ and λ' on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for all intervals (a,b), we have $\lambda((a,b)) = \lambda'((a,b)) = b-a$, then they must be the same measure $\lambda = \lambda'$.

Question 1.1.21: Please explain why it is important to assume that μ and ν are finite measures or σ -finite measures in Corollary 1.1.19. In other words, is it possible to find infinite measures μ and ν such that $\mu(A) = \nu(A)$ for all $A \in \mathcal{C}$, but $\mu \neq \nu$?

 $\mathcal{M}(\mathcal{C}) = \sigma(\mathcal{C}) = \mathcal{A}$ 。由此得證 $\mathcal{G} = \mathcal{A}$,也就是 $\mu = \nu$ 。

(2) 對於所有 n,我們可以定義 μ 及 ν 設限在 E_n 上的測度:

$$\forall A \in \mathcal{A}, \quad \mu_n(A) = \mu(A \cap E_n), \quad \nu_n(A) = \nu(A \cap E_n).$$

根據第一部份,我們有 $\mu_n = \nu_n$,接著使用測度的性質三,我們有

$$\forall A \in \mathcal{A}, \quad \mu(A) = \lim \uparrow \mu_n(A \cap E_n), \quad \nu(A) = \lim \uparrow \nu_n(A \cap E_n).$$

由此得證。

註解 1.1.20 : 上述系理告訴我們若存在 $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ 上存在兩個測度 λ 及 λ' ,使得對於所有開區間 (a,b),我們有 $\lambda((a,b)) = \lambda'((a,b)) = b - a$,則他們必定為同一個測度 $\lambda = \lambda'$ 。

問題 1.1.21:請解釋為什麼在系理 1.1.19 中,有限測度或是 σ 有限測度的假設是重要的。換句話說,是否能夠找到無限測度 μ 及 ν ,使得對於所有 $A\in\mathcal{C}$,我們有 $\mu(A)=\nu(A)$,但卻會有 $\mu\neq\nu$?