Important Notions in Measure

Theory

AR PHERER

The modern approach to study Probability Theory is built on Measure Theory. In order to follow this
lecture, it is essential to have a minimum understanding and familiarity with Measure Theory. For this reason,
we will start by reviewing some notions in Measure Theory: we will recall the important definitions and
theorems along with a few proofs. The proofs provided here are classical ones and the techniques involved
will also be seen repeatedly in Probability Theory; those which are omitted require more technical details
from Measure Theory. Interested readers are invited to take a careful look at Rudin’s book “Real and Complex
Analysis”.

1.1 Measurable Spaces and Measures
Given a set, we desire to define a measure (I E) which is a function that attributes a mass to (potentially)
all the subsets. Additionally, we want a measure to satisfy some specific properties, such as additivity (7%

%) or even o-additivity (o I7EME). Hence, we will first define measurable spaces and introduce the notion
of o-algebra, which is, vaguely speaking, a collection of subsets on which we can make sense of a measure.

1.1.1 Measurable Sets and o-algebras

First, let us start with the notion of o-algebra.

Definition 1.1.1: Let E be a set. A subset A C P(E) is called a 0-algebra (o X)) if the following
properties are satisfied.

(a) £ € A.
(b) If A € A, then A° € A.
(c) Ifforalln € N, A, € A, then |,y 4n € A

The elements of A are called measurable sets (R]BIEE ) , or A-measurable sets, if one wants to
emphasize the underlying o-algebra. The couple (E,.A) is called a measurable space (FJ;AIZEfE]) .

Remark 1.1.2 :In the above definition, 0 means that in the condition (c), the union can be any countable
union. If we replace this condition by any finite union, then the corresponding definition defines what we
call an algebra (fXER), in the sense of algebra of sets, or set algebra.
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Chapter 1  Important Notions in Measure Theory

In Section 1.1.2 below, we will define the notion of measure, which is closely related to the o-algebra of
the considered space. Moreover, later in Probability Theory, we will also see the importance and applications
of o-algebra. For example, in Chapter 5, we will define the notion of conditional probability and conditional

expectation.

Example 1.1.3: Given a set E. We have two extremal o-algebras: the finest (BR¥5#EY) is A = P(E)
and the coarsest (Bx#H#E) is A = {@, E}. The latter is also called the trivial (¥ J.) o-algebra.

In order to construct other examples of o-algebras, we introduce the notion of generated o-algebra (4%

o 8.

Definition 1.1.4: Let C be a subset of P(E). Then the smallest o-algebra containing C exists, denoted
by o(C) and is given by,
o(C) = ﬂ A.

Aisa o-algebra
st.CCA

In the definition, the intersection is well defined because A = P(E) is a o-algebra containing C.

Definition 1.1.5:Let F be a set, and O be a set of subsets of E satisfying
(@) F€Oand @ € O.
(b) For any finitely many open sets Uy, ..., U, € O,wehave Uy N---NU, € O.

(c) For any family of open sets (U;);c; with U; € O, we have U,c; U; € O.

Then, we call (E, O) a topological space (¥a#£ZEfE]) and the elements in O open sets (B£E).

Definition 1.1.6 : Let (E, O) be a topological space.
(1) We denote by o(QO) the o-algebra generated by O, the open sets of the topological space.
(2) Tt is also called Borel o-algebra (1A H o X&) of F, which can be denoted by B(E), if there

is a canonical choice for O.

(3) We call Borel sets (fHEETIEER) the elements of B(E).

In other words, Borel o-algebra is the smallest o-algebra containing all the open sets of E.
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Next, whenever we talk about topological spaces, the o-algebra we consider will always be its Borel o-
algebra. For example, when we want to equip R or R? with a o-algebra to turn them into measurable spaces,
we take the open sets to be given by any equivalent norm on R or R?, and the corresponding Borel o-algebra.
Actually, in the class of Probability Theory, the most of the spaces we will discuss fall into this setting.

Question 1.1.7: Prove that the o-algebra generated by each of the three following sets of intervals is equal
to B(R),

(1) Z={(a,b) :a < b,a,beR},
(2) ZT={(—00,a): a € R},
(3) Z ={(—00,a) : a € Q}.

The next important notion to introduce is prodcut o-algebra.

Definition 1.1.8 : Given two measurable spaces (E1,.4;) and (E>2, A2), we can define the product
o-algebra (& o K80 on their product space F X Fo,

A1 ® Ay = O'(Al X Ag: A1 € A1, Ay € ./42).

Question 1.1.9: Show that B(R?) = B(R) ® B(R).

1.1.2 Measures

Given a measurable space (E, .A), we want to define a measure on it.

Definition 1.1.10 : A function i : A — [0, 00] is called a positive measure (IEHIE) or simply
measure GAIFE) if the following axioms (2IE) are satisfied,

« u(2) =0,

« (o-additivity) For any disjoint sequence (A ),>1 on A, we have

(U An) =3 ulAn). (1)

n>1 n=>1

Moreover, we call (E, A, ;1) a measure space (HIEEZER) .

Proposition 1.1.11: Let (E, A, 11) be a measure space. We have the following properties.
(1) IfA,Be A, AC B, u(A) < u(B) and u(A) < oo, then

u(B\A) = u(B) — pu(A).
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Chapter 1  Important Notions in Measure Theory

(2) IfA, B € A, then

1(A) + u(B) = p(AU B) + p(AN B).

(3) (Lower continuity) Let (A,,)n>1 be a sequence of increasing elements in A (i.e, A, C A1 forall
n). Then, we have

u( | An) = Jlim 1 u(4n)

n>1

(4) (Upper continuity) Let (By,),>1 be a sequence of decreasing elements in A (i.e, B, +1 C B, forall
n). If there exists ng such that j1(By,) < oo, then

u( N Bn) = lim | pu(Bn).

n>1

(5) If (Ay)n>1 is a sequence of elements in A, then

n(U A4n) <X n4n).

n>1 n>1

Proof : See Exercise 1.5. O

F—E AERPHNEEHRS

(2) ZABe A 8|

1(A) + p(B) = u(AU B) + u(AN B).

3) [TEEM] B (A1 BIREE A PREE RS (WRERYNREAE - EME
An C An—|—1) ’ ,E\IJ

u( U An> = lim T u(4,).

n—00
n=>1

(@) [LEEM] B (B BRETE APRERFY] (CRERENREAE - EME
Bn+1 - Bn) ° %ﬁ& no ﬁ'?%l‘ /-L(Bno) < o0 /E\IJ

(1 82) = fi, 0050

n>1

(5) & (Ap)n>1 AEBUETE A PRIFS > B

n>1 n=1

Definition 1.1.12: Given a measure .

)

« The quantity p(E) is called the total mass (2B &) of p.

If 4(E) = 1, we say that j is a probability measure (FEZEAIE) .

. If u(E) < oo, we say that i is a finite measure (BFRRIE) .

If there exists an increasing measurable subsets (E,,) such that £ = UE), and that for all n, we
have y(E,) < oo, then we say that j is a o-finite measure (o BRHE) .

« Letz € E and suppose that {z} € A. If u({z}) > 0, then we say that z is an atom (JRF) of u
and that y is an atomic measure (JRFRIE) . Otherwise, we say that y is an atomless measure

ERFRE).

5 2EBEE 15 ° 0

EE1.1.12 D BWE—RE 1o

o BB u(E) B p BEE R (total mass) ©

« & u(B) =1 MR 1 B8 HERHE (probability measure) .
« & u(E) < oo B 1 2EABRBE (finite measure) ©

 EETEEEAANFES (B, ' #19 E = UE, BERAE n» HFIE w(E,) < oo » B
FEEAIER 1 =18 o AFRME (o-finite measure) ©

- Bz e EXRE {z} € Ao FH u({z}) > 0 HEMER 2 B p NET (atom) » WER 1 1@
JEFHIE (atomic measure) 5 RZ  BIER ¢ BEME FHE (atomless measure) ©

Example 1.1.13:

(1) If p is a finite measure on (E,.A), then ﬁ is a probability measure on the same measurable
space.

(2) On the measurable space (R, B(R)), the Lebesgue measure p is the unique measure such that
p([a,b]) = p((a,b)) = b — a for any a < b. Its uniqueness is a consequence of the monotone
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Chapter 1  Important Notions in Measure Theory

class lemma, see Corollary 1.1.19 and Remark 1.1.20 for details. Its existence can be derived
from Theorem 1.2.29.

(3) (Dirac measure) Given a measurable space (F,.A). Let + € E and suppose {z} € A. The
measure (= 6, is the Dirac measure JKBISTRIE) at x.
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Proposition 1.1.14 (Upper and lower continuity) : Let (E, A) be a measurable space. Define i : A —
[0, o] satisfying

.« u(2) =0,

« (Finite additivity) For any finite disjoint sequence of (A, )1<n<n With values in A, we have

u(U 42) = 3t

n=1
Then, the following properties are equivalent.

ECz

(i) (o0-additivity) u satisfies o-additivity mentioned in Eq. (1.1), that is, (E, A, 1) is a measure space.

(ii) (Lower continuity) For any increasing sequence (A, )n>1 with values in A, we have
o0
p(U 4An) = lim 1 p(4,).
n=1

(iii) (Upper continuity) For any decreasing sequence (Ay,)n>1 with values in A, if there exists ng such
that j1(Ap,) < oo, then we have

(1 An) = i, i)
n=1

@114 [DEERTEE] S (5,A) ATHEN  TEES 1 A — (0,00 BR
« w(@)=0;

- [BEMEE] $REFRBET A PNARERET (A))1<ny * EME
N N
M( LJ Aﬂ) = E:/$@4
n=1 n=1

AITIIMEESEE -
() (oAl pimEst (1.1) F8Y o AN - BRER (B, A, 1) ZEHEZER -
(i) [FEE] BRESEUETE A PREEEFS (A,)n> » FFIE

M( G An) = lim 1 p(Ap).
n=1

(i) [E&EHE] HREZIET A RPEGERFS (An)ns1 * BFE no 1§ 1(A,,) < oo 8l

ESAlREE]
u( N An) = lim | p(4n).
n=1

Proof : Let us prove (i) = (ii). Given an increasing sequence (A;,),>1, define the sequence (B,)n>1
as follows. Set By := A; and B,, :== A,\A,,_1 for all n > 2. Under this construction, the elements B,
are pairwise disjoint and for all n > 1, we have

UBk:An:UAk and UBk:UAk"
k=1 k=1 k=1 k=1

As a consequence of o-additivity, we find

(U)o (U B) = 3t = i Y-
k=1 k=1 k=1

ﬁ&MQ{&r=ﬂ&M%>
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Let us prove (ii) = (i). Consider a sequence (A, ),>1 of disjoint elements and define the sequence
(Bn)n>1 as follows,

Vn > 1, B, = U Ap.

We note that (B,,),>1 is an increasing sequence and using the property (ii), we find

u(UM)zu(UBk)—,}ggou( n) = lim Y pu(Ay) =Y p(A)
k=1 k=1 k=1 k=1

Let us prove (if) = (iii). Consider a decreasing sequence (A,,),>1 with ng such that ;(A4,,) < oco.
Set B,, := A N A, for all n > 1. Then, the sequence (By,),>1 is increasing. Using the property (ii),
we find

(7)o ) oo )

n=ng n=ng

:u(Ano)—u< @ Bn>

= 1(Ang) — Tim p(By) = Tim pu(Ap).

n—oo

To finish the proof, we use a similar method to prove (iii) = (ii). O

1.1.3 Monotone Classes

In the previous subsections, we defined the notion of o-algebras and measures. However, o-algebras
are not easy to manipulate directly, since in general, one does not have a way to write down a generic
element from them. Apart from this, in the definition of a measure, we talk about countable unions of disjoint
sequences of subsets; but in the definition of a o-algebra, this can be countable unions of any sequence of
subsets. As a consequence, when we need to construct a measure on a measurable space, or to prove some
specific conditions such as the uniqueness of the measure, it can be a bit tricky. In this subsection, we will
introduce the notion of monotone classes, state the monotone class lemma (Theorem 1.1.18) and discuss about
the uniqueness of the measure (Corollary 1.1.19).

Definition 1.1.15: Let M be a subset of P(E). We call M a monotone class (BEF&%8) if the following
conditions are satisfied.

(a) £ e M.
(b) f A,B € Mand A C B, then B\A € M.

(c) If (A)nen is an increasing sequence of elements in M, then (J, ey An € M.

Last modified: 16:46 on Tuesday 2" September, 2025

F—E AERPHNEZHRS

B (i) = () e BERERFFEY (A))n>1 THTIARKEZRFT (B,)ns1 -

BFERER] > (B))ns1 =EREFS) - FLARER i) B4EE - HME
N(UAk> :M<UBk> = lim p(Bn) = lim Y pu(Ag) = Y u(A).
k=1 k=1 k=1 k=1

O (if) —> (iii) ° %F‘;E,UZB’JF“ B (An)nz1 AU no BB 1(An,) < oo IR > 17 R
By i= AS N Ay » BUFEB (By)ns1 EEEEEY - FIFD i) HOME - HFTE

() fywrac) e 32

n=ngo n=no

—M(Ano)—u< D Bn>

= (1(Ang) — lim p(Bn) = lim p(Ap).

ol
X

=% - BT UARBELEYFERTERA (i) = (i) O

SE=/E B

ERIE - BHE—EZM[ > ZRAERT c ABURAENER © B o ABLFZ—EIFIRIENE
£ HS—MRKE X BREH o RBPHTRLERES ° FRibzH  TRAENEZRT - HMIET5HEY
RHRAHFTIRINE - B o ABBRHAIRERTHFY  FIUERFAEE—ERAZE~Rz L2
BAE - EEAEREGET - AENKE— - SLEEmRF - WEl - EEEP - HFAE5E
WIS > W ERGREEES I (F 1.1.18) » URFRAENHE—4 (RE1119) o

EE1115 S MABPE) NFES & MinE FIHEH :

(@ Ee M-

(b) BEABEMRACB BB\Ae Mo

(©) B (Ap)nen RTE M Z ERRIBEERS] > Bl U,ey An € M ©
AIfBz 7B 8 (monotone class) ©

BBIB : 20254 9 H 2 H 16:46



Chapter 1  Important Notions in Measure Theory

Remark 1.1.16 : Any o-algebra is also a monotone class.

As in the case of o-algebras, we can also define the notion of a generated monoton class (4%

oo =

EECEC)N

Definition 1.1.17 : For any C C P(E), there exists a smallest monotone class such that it contains
C, denoted

N M.

M is a monotone class
s.t. CCM

M(C)

The following lemma tells us the conditions under which a generated monotone class and a generated
o-algebra are equal.

Theorem 1.1.18 (Monotone class lemma) : If C C P(E) is closed under finite intersection, then
M(C) =0a(C).

This is one of the most important statements in Measure Theory. We only provide the necessary steps for
the proof, the complete proof being an exercise.

Proof : From the above remark, we know that M(C) C ¢(C), so we only need to prove the other
inclusion. We need to prove the two following points.

(1) If M is a monotone class and is closed under finite intersections, then M is a o-algebra.
(2) Prove that M(C) is closed under finite intersections in two steps:

(a) Given A € C,let My = {B e M(C): An B € M(C)} and prove M; = M(C).
(b) Given B € M(C),let My ={A € M(C): An B € M(C)} and prove My = M(C)

O

The monotone class lemma allows us to show the uniqueness of the measure.

Corollary 1.1.19 : Let ;1 and v be two measures on the measurable space (E, A). Assume that there
exists a subset C C A which is closed under finite intersections satisfying o(C) = A and such that for all
A € C, we have u(A) = v(A).

(1) (Finite measure) If u(E) = v(FE) < oo, then = v.

(2) (o-finite measure) If there exists a increasing sequence (Ey,) in C such that E = UE,, and that for
all n, we have u(E,) = v(E,), then u = v.

Proof :

(1) LetG = {A € A: u(A) = v(A)}. From the hypothesis, we have C C G. Using the properties

of a measure, we can show that G is a monotone class. Moreover, since C is closed under finite
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intersections, according to the monotone class lemma, we have M(C) = o(C) = A. This proves

that G = A, whichis y = v.

(2) For all n, we can define the restricted measures of p and v on F,,,
VAe A, pn(A)=p(ANE,), v,(A)=v(ANE,).

From the first part of the proof, we obtain p,, = v, then from the property (3) of a measure, we

get
VAe A, p(A) =lim*T u(ANE,), v(A)=lm7Tv,(ANE,).

This proves the desired statement.

Remark 1.1.20 : The above corollary states that if there exists two measures A and A" on (R, B(R)) such
that for all intervals (a,b), we have A((a,b)) = N ((a,b)) = b — a, then they must be the same measure
A=\

Question 1.1.21: Please explain why it is important to assume that ; and v are finite measures or o-finite

measures in Corollary 1.1.19. In other words, is it possible to find infinite measures ; and v such that
u(A) = v(A) forall A € C,but u # v?
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F—E AERPHNEZHRS

M(C)=o(C)= A BILBBG = A R = v e
(2) BRFAE n» HPIRTUER 1 & v RIBE B, LRVAE :
VAE A, pn(A) =u(ANE), vn(A)=v(ANE,).
RIBEE—85 - BB . = v, BEFERIENYEE=  &RMSB
VA€ A, A =lim?tu(ANE,), v(A)=1lim1 (AN E,).
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SRR 1120 ¢ BAREEHFRMEET R BR) LEERERNE AR N - ERERFAEHER
(a,b) » BIE A((a,b)) = N((a,b)) =b—a AMEFIBERFE—ERE A= N o

FIRE 1.1.21 : SEEBSAEERE 119 - BRAENE « ERAENRREEEN © RAER -
TRMBRERAE o K v BRERAE AcC B n(A) =v(A)  BAIEB n#0v?
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