1

Important Notions in Measure Theory

The modern approach to study Probability Theory is built on Measure Theory. In order to follow this lecture, it is essential to have a minimum understanding and familiarity with Measure Theory. For this reason, we will start by reviewing some notions in Measure Theory: we will recall the important definitions and theorems along with a few proofs. The proofs provided here are classical ones and the techniques involved will also be seen repeatedly in Probability Theory; those which are omitted require more technical details from Measure Theory. Interested readers are invited to take a careful look at Rudin's book "Real and Complex Analysis".

1.1 Measurable Spaces and Measures

Given a set, we desire to define a measure (測度) which is a function that attributes a mass to (potentially) all the subsets. Additionally, we want a measure to satisfy some specific properties, such as additivity (加法性) or even σ -additivity (σ 加法性). Hence, we will first define measurable spaces and introduce the notion of σ -algebra, which is, vaguely speaking, a collection of subsets on which we can make sense of a measure.

1.1.1 Measurable Sets and σ -algebras

First, let us start with the notion of σ -algebra.

Definition 1.1.1: Let E be a set. A subset $A \subseteq \mathcal{P}(E)$ is called a σ -algebra (σ 代數) if the following properties are satisfied.

- (a) $E \in \mathcal{A}$.
- (b) If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.
- (c) If for all $n \in \mathbb{N}$, $A_n \in \mathcal{A}$, then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

The elements of \mathcal{A} are called *measurable sets* (可測集合), or \mathcal{A} -measurable sets, if one wants to emphasize the underlying σ -algebra. The couple (E, \mathcal{A}) is called a *measurable space* (可測空間).

Remark 1.1.2: In the above definition, σ means that in the condition (c), the union can be any *countable* union. If we replace this condition by any *finite* union, then the corresponding definition defines what we call an *algebra* (代數), in the sense of *algebra of sets*, or *set algebra*.

In Section 1.1.2 below, we will define the notion of measure, which is closely related to the σ -algebra of the considered space. Moreover, later in Probability Theory, we will also see the importance and applications of σ -algebra. For example, in Chapter 5, we will define the notion of *conditional probability* and *conditional expectation*.

Example 1.1.3: Given a set E. We have two extremal σ -algebras: the finest (最精緻的) is $\mathcal{A} = \mathcal{P}(E)$ and the coarsest (最粗糙) is $\mathcal{A} = \{\emptyset, E\}$. The latter is also called the trivial (平凡) σ -algebra.

In order to construct other examples of σ -algebras, we introduce the notion of *generated* σ -algebra (生成 σ 代數).

Definition 1.1.4: Let \mathcal{C} be a subset of $\mathcal{P}(E)$. Then the smallest σ -algebra containing \mathcal{C} exists, denoted by $\sigma(\mathcal{C})$ and is given by,

$$\sigma(\mathcal{C}) = \bigcap_{\substack{\mathcal{A} \text{ is a } \sigma\text{-algebra} \\ \text{s.t. } \mathcal{C} \subseteq \mathcal{A}}} \mathcal{A}.$$

In the definition, the intersection is well defined because $\mathcal{A} = \mathcal{P}(E)$ is a σ -algebra containing \mathcal{C} .

Definition 1.1.5: Let E be a set, and \mathcal{O} be a set of subsets of E satisfying

- (a) $E \in \mathcal{O}$ and $\emptyset \in \mathcal{O}$.
- (b) For any finitely many open sets $U_1, \ldots, U_n \in \mathcal{O}$, we have $U_1 \cap \cdots \cap U_n \in \mathcal{O}$.
- (c) For any family of open sets $(U_i)_{i\in I}$ with $U_i\in\mathcal{O}$, we have $\bigcup_{i\in I}U_i\in\mathcal{O}$.

Then, we call (E, \mathcal{O}) a topological space (拓撲空間) and the elements in \mathcal{O} open sets (開集).

Definition 1.1.6: Let (E, \mathcal{O}) be a topological space.

- (1) We denote by $\sigma(\mathcal{O})$ the σ -algebra generated by \mathcal{O} , the open sets of the topological space.
- (2) It is also called Borel σ -algebra (伯雷爾 σ 代數) of E, which can be denoted by $\mathcal{B}(E)$, if there is a canonical choice for \mathcal{O} .
- (3) We call Borel sets (伯雷爾集合) the elements of $\mathcal{B}(E)$.

In other words, Borel σ -algebra is the smallest σ -algebra containing all the open sets of E.

Next, whenever we talk about topological spaces, the σ -algebra we consider will always be its Borel σ -algebra. For example, when we want to equip \mathbb{R} or \mathbb{R}^d with a σ -algebra to turn them into measurable spaces, we take the open sets to be given by any equivalent norm on \mathbb{R} or \mathbb{R}^d , and the corresponding Borel σ -algebra. Actually, in the class of Probability Theory, the most of the spaces we will discuss fall into this setting.

Question 1.1.7: Prove that the σ -algebra generated by each of the three following sets of intervals is equal to $\mathcal{B}(\mathbb{R})$,

- (1) $\mathcal{I} = \{(a, b) : a < b, a, b \in \mathbb{R}\},\$
- (2) $\mathcal{I} = \{(-\infty, a) : a \in \mathbb{R}\},\$
- (3) $\mathcal{I} = \{(-\infty, a) : a \in \mathbb{Q}\}.$

The next important notion to introduce is *prodcut* σ -algebra.

Definition 1.1.8: Given two measurable spaces (E_1, A_1) and (E_2, A_2) , we can define the *product* σ -algebra (積 σ 代數) on their product space $E_1 \times E_2$,

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2).$$

Question 1.1.9: Show that $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

1.1.2 Measures

Given a measurable space (E, A), we want to define a *measure* on it.

Definition 1.1.10: A function $\mu: \mathcal{A} \longrightarrow [0, \infty]$ is called a *positive measure* (正測度) or simply *measure* (測度) if the following axioms (公理) are satisfied,

- $\mu(\varnothing) = 0$,
- (σ -additivity) For any disjoint sequence $(A_n)_{n\geqslant 1}$ on \mathcal{A} , we have

$$\mu\Big(\bigcup_{n\geqslant 1} A_n\Big) = \sum_{n\geqslant 1} \mu(A_n). \tag{1.1}$$

Moreover, we call (E, A, μ) a measure space (測度空間).

Proposition 1.1.11: Let (E, A, μ) be a measure space. We have the following properties.

(1) If $A, B \in \mathcal{A}$, $A \subseteq B$, $\mu(A) \leqslant \mu(B)$ and $\mu(A) < \infty$, then

$$\mu(B \backslash A) = \mu(B) - \mu(A).$$

(2) If $A, B \in \mathcal{A}$, then

$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B).$$

(3) (Lower continuity) Let $(A_n)_{n\geqslant 1}$ be a sequence of increasing elements in \mathcal{A} (i.e., $A_n\subseteq A_{n+1}$ for all n). Then, we have

$$\mu\Big(\bigcup_{n>1} A_n\Big) = \lim_{n\to\infty} \uparrow \mu(A_n).$$

(4) (Upper continuity) Let $(B_n)_{n\geqslant 1}$ be a sequence of decreasing elements in \mathcal{A} (i.e., $B_{n+1}\subseteq B_n$ for all n). If there exists n_0 such that $\mu(B_{n_0})<\infty$, then

$$\mu\Big(\bigcap_{n>1} B_n\Big) = \lim_{n\to\infty} \downarrow \mu(B_n).$$

(5) If $(A_n)_{n\geqslant 1}$ is a sequence of elements in A, then

$$\mu\Big(\bigcup_{n\geqslant 1}A_n\Big)\leqslant \sum_{n\geqslant 1}\mu(A_n).$$

Proof: See Exercise 1.5.

Definition 1.1.12: Given a measure μ .

- The quantity $\mu(E)$ is called the *total mass* (總質量) of μ .
- If $\mu(E)=1$, we say that μ is a probability measure (機率測度).
- If $\mu(E) < \infty$, we say that μ is a finite measure (有限測度).
- If there exists an increasing measurable subsets (E_n) such that $E = \bigcup E_n$ and that for all n, we have $\mu(E_n) < \infty$, then we say that μ is a σ -finite measure (σ 有限測度).
- Let $x \in E$ and suppose that $\{x\} \in A$. If $\mu(\{x\}) > 0$, then we say that x is an atom (原子) of μ and that μ is an atomic measure (原子測度). Otherwise, we say that μ is an atomless measure (無原子測度).

Example 1.1.13:

- (1) If μ is a finite measure on (E, \mathcal{A}) , then $\frac{\mu}{\mu(E)}$ is a probability measure on the same measurable space.
- (2) On the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, the Lebesgue measure μ is the unique measure such that $\mu([a,b]) = \mu((a,b)) = b-a$ for any a < b. Its uniqueness is a consequence of the monotone class lemma, see Corollary 1.1.19 and Remark 1.1.20 for details. Its existence can be derived from Theorem 1.2.29.
- (3) (Dirac measure) Given a measurable space (E, A). Let $x \in E$ and suppose $\{x\} \in A$. The measure $\mu = \delta_x$ is the *Dirac measure* (狄拉克測度) at x.

Proposition 1.1.14 (Upper and lower continuity): Let (E, A) be a measurable space. Define $\mu : A \longrightarrow [0, \infty]$ satisfying

- $\mu(\emptyset) = 0$,
- (Finite additivity) For any finite disjoint sequence of $(A_n)_{1 \le n \le N}$ with values in A, we have

$$\mu\Big(\bigcup_{n=1}^{N} A_n\Big) = \sum_{n=1}^{N} \mu(A_n).$$

Then, the following properties are equivalent.

(i) $(\sigma$ -additivity) μ satisfies σ -additivity mentioned in Eq. (1.1), that is, (E, \mathcal{A}, μ) is a measure space.

(ii) (Lower continuity) For any increasing sequence $(A_n)_{n\geqslant 1}$ with values in A, we have

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \uparrow \mu(A_n).$$

(iii) (Upper continuity) For any decreasing sequence $(A_n)_{n\geqslant 1}$ with values in A, if there exists n_0 such that $\mu(A_{n_0})<\infty$, then we have

$$\mu\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \downarrow \mu(A_n).$$

Proof: Let us prove (i) \Longrightarrow (ii). Given an increasing sequence $(A_n)_{n\geqslant 1}$, define the sequence $(B_n)_{n\geqslant 1}$ as follows. Set $B_1:=A_1$ and $B_n:=A_n\backslash A_{n-1}$ for all $n\geqslant 2$. Under this construction, the elements B_n are pairwise disjoint and for all $n\geqslant 1$, we have

$$\bigcup_{k=1}^{n} B_k = A_n = \bigcup_{k=1}^{n} A_k \quad \text{and} \quad \bigcup_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} A_k.$$

As a consequence of σ -additivity, we find

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k)$$
$$= \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} B_k\right) = \lim_{n \to \infty} \mu(A_n).$$

Let us prove (ii) \Longrightarrow (i). Consider a sequence $(A_n)_{n\geqslant 1}$ of disjoint elements and define the sequence $(B_n)_{n\geqslant 1}$ as follows,

$$\forall n \geqslant 1, \qquad B_n := \bigcup_{k=1}^n A_k.$$

We note that $(B_n)_{n\geqslant 1}$ is an increasing sequence and using the property (ii), we find

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(A_k) = \sum_{k=1}^{\infty} \mu(A_k).$$

Let us prove (ii) \Longrightarrow (iii). Consider a decreasing sequence $(A_n)_{n\geqslant 1}$ with n_0 such that $\mu(A_{n_0})<\infty$. Set $B_n:=A_n^c\cap A_{n_0}$ for all $n\geqslant 1$. Then, the sequence $(B_n)_{n\geqslant 1}$ is increasing. Using the property (ii), we find

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \mu\left(\bigcap_{n=n_0}^{\infty} (A_n \cap A_{n_0})\right) = \mu\left(A_{n_0} \setminus \left(\bigcup_{n=n_0}^{\infty} B_n\right)\right)$$
$$= \mu(A_{n_0}) - \mu\left(\bigcup_{n=n_0}^{\infty} B_n\right)$$
$$= \mu(A_{n_0}) - \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_n).$$

To finish the proof, we use a similar method to prove (iii) \Longrightarrow (ii).

1.1.3 Monotone Classes

In the previous subsections, we defined the notion of σ -algebras and measures. However, σ -algebras are not easy to manipulate directly, since in general, one does not have a way to write down a generic element from them. Apart from this, in the definition of a measure, we talk about countable unions of *disjoint* sequences of subsets; but in the definition of a σ -algebra, this can be countable unions of *any* sequence of subsets. As a consequence, when we need to construct a measure on a measurable space, or to prove some specific conditions such as the uniqueness of the measure, it can be a bit tricky. In this subsection, we will introduce the notion of *monotone classes*, state the monotone class lemma (Theorem 1.1.18) and discuss about the uniqueness of the measure (Corollary 1.1.19).

Definition 1.1.15: Let \mathcal{M} be a subset of $\mathcal{P}(E)$. We call \mathcal{M} a monotone class (單調類) if the following conditions are satisfied.

- (a) $E \in \mathcal{M}$.
- (b) If $A, B \in \mathcal{M}$ and $A \subseteq B$, then $B \setminus A \in \mathcal{M}$.
- (c) If $(A_n)_{n\in\mathbb{N}}$ is an increasing sequence of elements in \mathcal{M} , then $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{M}$.

Remark 1.1.16 : Any σ -algebra is also a monotone class.

As in the case of σ -algebras, we can also define the notion of a generated monoton class (生成單調類).

Definition 1.1.17: For any $C \subseteq \mathcal{P}(E)$, there exists a smallest monotone class such that it contains C, denoted

$$\mathcal{M}(\mathcal{C}) = \bigcap_{\substack{\mathcal{M} \text{ is a monotone class} \\ \text{s.t. } \mathcal{C} \subset \mathcal{M}}} \mathcal{M}.$$

The following lemma tells us the conditions under which a generated monotone class and a generated σ -algebra are equal.

Theorem 1.1.18 (Monotone class lemma) : If $C \subseteq \mathcal{P}(E)$ is closed under finite intersection, then $\mathcal{M}(C) = \sigma(C)$.

This is one of the most important statements in Measure Theory. We only provide the necessary steps for the proof, the complete proof being an exercise.

Proof: From the above remark, we know that $\mathcal{M}(\mathcal{C}) \subseteq \sigma(\mathcal{C})$, so we only need to prove the other inclusion. We need to prove the two following points.

- (1) If \mathcal{M} is a monotone class and is closed under finite intersections, then \mathcal{M} is a σ -algebra.
- (2) Prove that $\mathcal{M}(\mathcal{C})$ is closed under finite intersections in two steps:

- (a) Given $A \in \mathcal{C}$, let $\mathcal{M}_1 = \{B \in \mathcal{M}(\mathcal{C}) : A \cap B \in \mathcal{M}(\mathcal{C})\}$ and prove $\mathcal{M}_1 = \mathcal{M}(\mathcal{C})$.
- (b) Given $B \in \mathcal{M}(\mathcal{C})$, let $\mathcal{M}_2 = \{A \in \mathcal{M}(\mathcal{C}) : A \cap B \in \mathcal{M}(\mathcal{C})\}$ and prove $\mathcal{M}_2 = \mathcal{M}(\mathcal{C})$.

The monotone class lemma allows us to show the uniqueness of the measure.

Corollary 1.1.19: Let μ and ν be two measures on the measurable space (E, A). Assume that there exists a subset $C \subseteq A$ which is closed under finite intersections satisfying $\sigma(C) = A$ and such that for all $A \in C$, we have $\mu(A) = \nu(A)$.

- (1) (Finite measure) If $\mu(E) = \nu(E) < \infty$, then $\mu = \nu$.
- (2) (σ -finite measure) If there exists a increasing sequence (E_n) in \mathcal{C} such that $E = \bigcup E_n$ and that for all n, we have $\mu(E_n) = \nu(E_n)$, then $\mu = \nu$.

Proof:

- (1) Let $\mathcal{G} = \{A \in \mathcal{A} : \mu(A) = \nu(A)\}$. From the hypothesis, we have $\mathcal{C} \subseteq \mathcal{G}$. Using the properties of a measure, we can show that \mathcal{G} is a monotone class. Moreover, since \mathcal{C} is closed under finite intersections, according to the monotone class lemma, we have $\mathcal{M}(\mathcal{C}) = \sigma(\mathcal{C}) = \mathcal{A}$. This proves that $\mathcal{G} = \mathcal{A}$, which is $\mu = \nu$.
- (2) For all n, we can define the restricted measures of μ and ν on E_n ,

$$\forall A \in \mathcal{A}, \quad \mu_n(A) = \mu(A \cap E_n), \quad \nu_n(A) = \nu(A \cap E_n).$$

From the first part of the proof, we obtain $\mu_n = \nu_n$, then from the property (3) of a measure, we get

$$\forall A \in \mathcal{A}, \quad \mu(A) = \lim \uparrow \mu_n(A \cap E_n), \quad \nu(A) = \lim \uparrow \nu_n(A \cap E_n).$$

This proves the desired statement.

Remark 1.1.20: The above corollary states that if there exists two measures λ and λ' on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for all intervals (a,b), we have $\lambda((a,b)) = \lambda'((a,b)) = b-a$, then they must be the same measure $\lambda = \lambda'$.

Question 1.1.21: Please explain why it is important to assume that μ and ν are finite measures or σ -finite measures in Corollary 1.1.19. In other words, is it possible to find infinite measures μ and ν such that $\mu(A) = \nu(A)$ for all $A \in \mathcal{C}$, but $\mu \neq \nu$?