Basics of Probability Theory

2.1 Basic Definitions

In this section, we will define and discuss the most basic notions in Probability Theory, including proba-
bility spaces, random variables, expectation, characteristic function, and so on.

From the point of view of Analysis, Probability Theory can be seen as a particular case where the total mass
of the measure is equal to 1. This means that the most of the results and theorems we reviewed in Chapter
1 are still valid. Moreover, from the point of view of Probability Theory, the probability space itself is not so
much important; instead, one is more interested in the values taken by a random variable along with their
frequencies.

We have the following correspondance between different notions:

probability space <— measure space

events +— elements of a o-algebra
random variable = ¢<— measurable function
expectation +— integral

We are going to give more precise definitions to the aforementioned notions with examples.

2.1.1 Probability Spaces

We reviewed the definition of measurable spaces in Section 1.1. In Probability Theory, the probability
spaces we will define are just particular cases of such spaces.

Definition 2.1.1:Let P be a measure of total mass 1 on the measurable space (£2,.4). We call P a
probability measure (F§ZERIE) and (O, A, P) a probability space ($%3EZER]) o

. The set Q is caclled sample space (}%Z<~ZEfE) , which can be regarded as the space of “randomness
units” in our random experiment.

« The set A contains all the measurable events, also called events, which are subsets of {2 whose “proba-
bility” can be measured. In other words, an element A € A is a subset of (2, including “random units”
satisfying some particular conditions.

« For any A € A, the quantity P(A) describes the probability that the measurable event A occurs.

« If the sample space (2 is discrete (finite or countably infinite), then we may consider A = P(2) and
any probability measure P defined on the measurable space (€2, .4) is called a discrete probability (B
%), and the probability space (2, A, P) is called a discrete probability space (BfRII%3RZEf]).
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Example 2.1.2 (Discrete probability spaces) : Given a fair dice with numbers 1 to 6.

(1) Consider a random experiment where the dice is drawn twice. We can set the probability space
to be = {1,...,6}? and the set of measurable events A = P(Q). Then, the probability

measure P satisfies P(A) = % forall A € A.

(2) Consider an unfair coin whose Head appears with twice the probability of tail. We toss the coin
three times. The probability space is equal to,

2 = {(Head, Head, Head), (Head, Head, Tail), (Head, Tail, Head), (Head, Tail, Tail),
(Tail, Head, Head), (Tail, Head, Tail), (Tail, Tail, Head), (Tail, Tail, Tail)},

The set of measurable events is A = P(2) and the probability measure P is defined as P(w) =
(%)H("J) (%)T("J), where for any w € 2, we denote H (w) and T'(w) the number of times that head

and tail appear.

Example 2.1.3 (General probability space) : The unit circle in the plane is denoted by
St:={zeC:|z| =1} ~R/(2rZ),

and can be interpreted as unit directions in the two-dimensional space. If we consider the measurable

space (St, B(S!)) and the probability measure

b—a
27

P([a,b]) = a<blb—al <27

then P is a uniform measure defined on S! = R/(27Z). This may also be seen as the probability
measure on the quotient space S! “induced” by the Lebesgue measure on R.

2.1.2 Random Variables

In Probability Theory, the probability space is not so important eventually. What we are interested in is
what we can observe and measure in a random experiment, and the frequencies of different outcomes. Hence,
below we will define the notion of random variables and see it as “the outcome of the unit random event in
a random experiment”.

Definition 2.1.4: Let ({2, A, P) be a probability space and (F, £) be a measurable space. A measurable
function X : Q — F is called a random variable (FE¥EE2Y) with values in E.

Example 2.1.5 : We take the examples from Example 2.1.2 in the previous section, and consider
random variables defined above.

(1) Let X((¢,7)) =i+ j. Then X is a random variable with values in {2, ...,12}.

(2) Let H(w) be “the number of heads in w”. Then, H is a random variable with valuesin {0, 1, 2, 3}.
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Example 2.1.6 : Consider the probability space defined as in Example 2.1.3 and the following random
variables,

X(w) = cos(w), Y (w) = sin(w), Yw € St
Then, the random variables X and Y take values in [—1, 1] can be regarded as the projections of the
uniform random direction on the z-axis and the y-axis.

The domain of definition (i.e. probability space) of a random variable X : 2 — E is not so relevant,
we care more about its domain of arrival. More precisely, we want to know the probability that a random
variable takes a (some) particular value(s). In other words, we want to understand the image measure of P

under X.

Definition 2.1.7 : Let Px be the image measure (F:48RIE) of P under the random variable X. It is
called the distribution (93#ff) or the law (1) of X. In other words, Py is a probability measure on
the measurable space (£, £) and can be written as,

Px(B) :=P(X"Y(B)), VBEeE.
In the language of Probability Theory, the above quantity is also abbreviated as

Px(B)=P(X € B)=P(we Q: X(w) € B), VB e £.

(2, A,P)

~

X [0,1]

Figure 2.1: The diagram illustrating the image measure Px, or the pushforward
(F 5T #E ) measure of P by the random variable X, also denoted
X.P. What we will care about is the probability measure Py instead
of P.

One should understand the image measure as follows. Given any point w in the probability space €2, the
image X (w) can be seen as a point in £ and Px (B) the probability that this point is in B.

Example 2.1.8:Let (2, A, P) be a probability space, where Q2 = [0, 7], A is the Borel o-algebra, and
P = L\ Consider the random variable X : (€2, A,P) — R defined by

X(w) =sin(w), weN=][0,n].

The image measure Py is defined on the measurable space ([0, 1], B([0, 1])). To characterize it, it is
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enough to know Px ([a,b]) forall0 < a < b < 1. For 0 < a < b < 1, we have

Px([a,b]) =P(w € Q : sin(w) € [a, b])

—PweN:wesintasin b))+ PweQ:we|r—sin b —sin"!a)

2
= Z(sin™'b—sin"ta).
™

Remark 2.1.9: If two random variables X : (Q1,.4;,P1) — (F,€) and Y : (Q9, A2,P2) — (F,E) have
the same distribution, that is, Py x := X.[P1 = Y,Py =: P>y, then we may write

x99y oo X~Y o X~Pay.

If we want to say that X has distribution p, that is ’; x = p, then we may write
X ~p,

and say that X follows the distribution of .

Remark 2.1.10 : In the case that (E, £) = (R?, B(R?)), Px is a probability measure on (R?, B(R?)). If it is
absolutely continuous with respect to the Lebesgue measure A on R?, then by the Radon-Nikodym theorem
(Theorem 1.3.16), we can find a density function g : R — R such that Px can be written as Py = g - \.
We call g the probability density function (¥$32% E K 2) of the random variable X.

Remark 2.1.11 (Canonical construction of a random variable) : If 11 is a probability measure defined on R,
we can construct a random variable whose distribution is y. Consider @ = R, A = B(R?), P = p and
let X(w) = w. We can easily check that the distribution of X is y. Later in Proposition 2.1.23, when a
probability distribution p in R is given, we will see how to construct a real-valued random variable with the
distribution p starting from the uniform one.

2.1.3 Expectation

The first quantity of interest, after we define the notion of random variables, is expectation.

Definition 2.1.12 : Let X be an real-valued random variable (also called a real random variable).
Then we can define its expectation (HHZE{H) if one of the following conditions is satisfied,

« X is non-negative,
« X can have either sign and [ | X|dP < oc.

In this case, we write
E[X] = / X (w) P(dw). 2.1)
Q

Let X = (X1,...,X,) be a d-dimensional real random variable (or R%-valued). If all the expecations
E[X;] are well-defined, then we define the expectation of X to be E[X| = (E[X],...,E[Xy4]).
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Remark 2.1.13 : Let B be a measurable subset and X = 1p. Then, E[X]| = P(B). Generally speaking, we
can view E[X] as the “average” of the random variable X. For example, in the case that () is a finite set and
[P is the uniform distribution, the quantity E[X| represents the (weighted) average of all the possible values
taken by X.

Proposition 2.1.14 : Let X be a random variable with values in (E,£). Then, for any measurable
function f : E — [0, o], we have

E[f(X)] = /E f(2)Px (dz).

Proof : First, we show the statement for indicator functions f = 1p where B € £ is any measurable
set. Then using linear combinations, the statement also holds for any non-negative simple function.
To conclude, we use the fact that a non-negative measurable function is the non-decreasing limit of
a sequence of non-negative simple functions (Proposition 1.2.14), then by the monotone convergence
theorem, the statement is true. O

Remark 2.1.15 : Even if f is not non-negative, as long as the expectation E[|f(X)|] is finite, the above
statement still holds. We recall that the integral of a general function without sign constraints is defined in

the same way, see Definition 1.2.18.

Remark 2.1.16 : From above, we know that the probability distribution Px allows us to compute the ex-
pectation of any random variable of type f(X) easily. For its converse, we may consider f = 1p for any
measurable set B € £, then we find E[f(X)] = P(X € B) = Px(B). We should not forget that the proba-
bility measure Px is defined on £, meaning that (Px (B))pes uniquely determines the probability measure.
Alternatively speaking, if we can write

E[f(X)) = [ fa. (2.2)

for “enough number” of measurable functions f, then the above discussion allows us to recover the distribu-
tion of the random variable X, which is given by the probability measure v. In practice, we may for instance
compute Eq. (2.2) for all non-negative measurable functions or all functions in C.(R?).

Example 2.1.17 : We look at the same example as in Example 2.1.8 and compare their computations.
Recall that (2,4, P) is a probability space, where 2 = [0, ], A is the Borel o-algebra, and P = 2.
The random variable X : (2, A,P) — R is defined by

X(w) =sin(w), weQ=][0,n].

We may characterize the distribution of X by computing E[f(X)] for all non-negative measurable
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functions f : R — R. For a non-negative measurable function f : R — R, we write

B[f(X)] = EF(X(@)] =+ [ flsinw) d

9 (/2
=— f(sinw) dw

™ Jo
2 rl dz
=;/0 Fla) ==

where in the second line, we use the symmetry w +— 7 — w of the integrand; and in the third line, we
apply the change of variables x = sin w. This means that the image measure P x writes

2 dzx
=

It is an absolutely continuous measure with respect to the Lebesgue measure, with density given by

e —
T \1—x

5.

The following proposition gives an important example that illustrates such an idea.

Proposition 2.1.18 : Let (X1,..., X;) be a random variable with values in R?. Assume that it has a
probability density function p(x1,...,xq). Then, for any 1 < j < d, the random variable X also has a
probability density function which is written as,

pj(a:) = /]Rd—l p(a;l, sy L1, Ly Ljgly - ,(L‘d) dxl 360 d.%'j_l d(L‘j_H 505 dxd.

Remark 2.1.19 : In the case of a bi-dimensional random variable (d = 2), we have,

p1(x) Z/Rp(:v,y) dy,  p2(y) Z/Rp(x,y) da.

Proof : Let 7 be the projection on the j-th coordinate, 7j(x1,...,24) = ;. Then, for any non-
negative measurable function f : R — R, we can apply Fubini’s theorem,

EIf(X5)] =Elf(m (X)) = | Flxi)p(er, ... wa)dar ... drg
— Af(xj)(/ﬁgd_lp(xl,...,xd) dey...dzj_1dzjq .. .d:z:d> dz;

= /Rf(xj)pj(wj) da;.
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Remark 2.1.20 :If X = (Xy,...,Xy) is a d-dimensional real random variable, the distribution of X is
called the marginal distribution (#1#&5 ), denoted P x;- From the above proposition, we can easily show
that P X; = (Wj)*P x, meaning that we can recover the law of X; from the law of X. However, it is important
to note that knowing all the marginal distributions Px; does not allow us to recover the law of X.

Question 2.1.21: Construct two bi-dimensional real random variables X = (X1, X2) and X' = (X1, X})

such that for j = 1,2, X; and X j’ have the same marginal distribution, where as the distributions of X and
X' are not equal.

2.1.4 Cumulative Distribution Function

Definition 2.1.22: Let X be a real-valued random variable. We define the function Fx : R — [0, 1]
by

Fx(t) =P(X <t) =Px((—0,t]), teR.
It is called the cumulative distribution function (RFED MK EL) of the random variable X, denoted
c.d.f, or distribution function (3RERKE) .

We recall that from Theorem 1.2.29, we know that Fx is a non-descreasing and right-continuous function
with limits equal to 0 and 1 at —oo and +00. Moreover, we know that the converse also holds. In other words,
if I is a function satisfying the above properties, then we can find a unique probability measure yp such that
for all t € R, we have F(t) = p((—o0,t]). This means that F is the cumulative distribution function of a
real-valued random variable.

Additionally, the cumulative distribution function F'x characterizes the distribution Py of the random
variable X. In particular, we have,

Pla < X <b) = Fx(b) — Fx(a—), a < b,
Pla < X <b) = Fx(b—) — Fx(a), a <b,
where the discontinuities of F'x correspond to atoms of Px.
If X := (X1,..., Xg) is a random variable with values in RY, then we may define the above notion in a
similar way. For any (t1,...,%;) € R% let us define

Fx(tl,. .. ,td) = ]P)(Xl < tl,...,Xd < td) = ]P’X((—oo,tﬂ X ... X (—OO,td]).

Proposition 2.1.23: Let F' : R — [0, 1] be non-decreasing and right-continuous function with limits
equal to 0 and 1 at —oco and +o0. Define the function h : (0,1) — R by

h(y) :==inf{z e R: F(z) > y}, Yy € (0,1). (2.3)

IfY is a random variable such that Py follows the Lebesgue distribution on [0, 1], then the distribution
function of the random variable h(Y') is F', that is Fy,(y) = F.
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Remark 2.1.24 : In the statement of this proposition, if F' is bijective (i.e. strictly increasing), then we have

h=F1

Proof : Fixy € (0,1) and x € R. If F((x) > y, we find x > h(y) by the definition of h. Conversely, if
F(z) < y, using the right continuity of F', we may find ¢ > 0 such that F'(z + ¢) < y. Then, by the
monotonicity, for any z < x + ¢, we have F'(2) < y, so h(y) > x + ¢ > x. Therefore, the following
equivalence relation holds,

23 hy) & F@) >y

Let Y be a random variable such that Py is the Lebesgue measure on [0, 1] and Z := h(Y"). We note
that Z is also a random variable by Proposition 1.2.2. Since P(Y € (0,1)) = 1, we find

Fy(z) = P(h(Y) < ) = B(Y < F(x)) = Fy(F(2)) = F(a). .

Remark 2.1.25 : By Proposition 2.1.23, we know that if the uniform random variable exists (which is our
assumption and its construction will be done in the course of Measure theory), then for any given distribution
on R, we may construct a real random variable with the given distribution using its distribution function.

2.2 o-algebra Generated by a Random Variable
Let (E, £) be a measurable space.

Definition 2.2.1: For a random variable X : (2, A) — (E, &), we define o(X) to be the smallest
sub-o-algebra of A such that X is measurable, called the o-algebra generated by X,

o(X)={A=X"YB):Beé&}.

Remark 2.2.2 : We may interprete o(X) as the smallest o-algebra allowing us to correctly describe the
random variable X.

Example 2.2.3 : Fix a probability space (€2, .4, P) and consider a random variable X : (2, 4,P) —
(R, B(R)).

(1) If the random variable X is a constant, then o(X) = {&, Q} is the trivial o-algebra.

(2) Given a measurable set A € A, if the random variable X writes X = 14, then o(X) =
{2,A, A°, Q}.

(3) If a random variable X only takes values 0 and 1, then there exists A € A such that X = 14,
so 0(X) is as described in the previous case.

(4) Tt is not hard to check that, for any A, B € Awith A ¢ {@, B, B¢,Q}, the random variable 1 4
is not o (1 g)-measurable. We see that the notion of random variables depends on the o-algebra
with which we equip the sample space.
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Example 2.2.4 : Consider a probability space (2, A,P) := ([0,2),B([0,2)), 1)), where X is the
Lebesgue measure. We define the random variables X, Y : (22, A,P) — ([0, 2), B(]0,2))) by X (w) =
wand Y(w) = [w]. Then,

o(X)=5([0,2)), and oY) ={2,[0,1),[1,2),[0,2)}.
We may note that ([0,2),0(Y"),P) is actually a discrete probability space. In fact, define

Q' :={0,1}, A :={2,{0},{1},{0,1}}, and P := 15+ 341,

then (2, A, P) and (Q', A’,P") have the same structure.

Remark 2.2.5 : We can generalize this definition to any collection of random variables X = (X;);cs. As-
sume that for any i € I, the random variable X takes its values in (E;, &;). Then, we define,

o(X)=0(X;YBy): By &,iel).

)

Proposition 2.2.6 : Let X be a random variable with values in (E, ) and Y be another real-valued
random variable. The following properties are equivalent.

(1) Y is measurable with respect to o(X).

(2) There exists a measurable function f : (E,E) — (R, B(R)) such thatY = f(X).

Proof : According to Proposition 1.2.2, if (2) holds, then (1) also holds.
Assume that Y is measurable with respect to o(X), we want to show (2). First, we deal with the case
where Y is a simple function. Fori € {1,...,n},let \; € Rand A; € 0(X) and write Y as,

n
Y=Y Ala,.
i=1
Foralli € {1,...,n}, we can find B; € & such that A; = X ~!(B;). Hence, Y can be rewritten as,
n n
Y=Y ANl => Ml oX=foX,
i=1 i=1

where f = Y1" | \j1p, is a £-measurable function.
In general, there exists a sequence (Y;,) of simple functions that converges simply to Y
(Proposition 1.2.14). From what we said above, for all n, there exists a measurable function f,, :

E — Rsuch thatV,, = f,(X). Forall z € E, set

~} limy o0 fr(z)  if the limit exists,
flz) = { 0 otherwise.
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According to Proposition 1.2.6, the function f is still measurable. Moreover, note that for all w € €2,

lim f,(X(w)) = lim Y, (w) =Y (w).

n—00 n—oo

If we write = X (w), then in the above definition, the quantity lim f,,(x) exists and we have,

f(X(w)) = Tim_ fn(X(w)) =Y (w),

n—oo

meaning that Y = f(X). O

2.3 Common Probability Distributions

In this section, we will introduce some common probability distributions.

In Section 2.3.1, we characterize two two categories of probability distributions, discrete distributions and
absolutely continuous distributions. In Section 2.3.2, we give examples of common discrete distributions and
in Section 2.3.3, those of absolutely continuous distributions.

2.3.1 Categories of Probability Distributions
We discuss two types of random variables here: discrete random variables and absolutely continuous random
variables.

Let (€2, A, P) be a probability space and (E,£) be a measurable space. Consider a random variable X :
0 — E with values in E.

Definition 2.3.1 (discrete random variables) : When E is a countable set and £ = P(E), the distri-

bution of X writes,

Px = Z POz,

RIS
where p, = P(X = z) ’ §, represents the Dirac measure at . We can understand the above formula

as,
Px(B)=P(XeB)=P(|J{X=2}) =D P(X =2)=>_ p.6(B).
x€B reB zeE
In consequence, to know the distribution of a random variable X, it is sufficient to know the value of

P(X =z)forallz € E.

When the probability space F is not discrete, we only consider the following case where the density function

exists.

Definition 2.3.2 (absolutely continuous random variables) : Assume that (E, &) = (RY, B(RY)). If
Px is absolutely continuous with respect to the Lebesgue measure A, then we say that Px is an ab-
solutely continuous probability distribution (8% E 4173 ), and X is an absolutely continuous
random variable ({8¥1 EABFEFEE ). In such a circumstance, we can apply the Radon-Nikodym
theorem, see Theorem 1.3.16, to obtain a non-negative measurable function p : R? — R, such that

IP’X(B):/Bp(:U)dx.
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This function p is unique up to a set of measure zero and it is called the density function (%K)
or the probability density function ({§ZREE R E) of X. Additionally, in the one-dimensional case
d =1, for all o < 3, we have,

Remark 2.3.3 : If Px has measure zero for any singleton set of RY, then we say that Py is a continuous
measure or a continuous distribution, and that X is a continuous random variable. It is not hard to check
that, an absolutely continuous measure (or random variable) is also continuous. However, in Exercise 1.33,
we have seen that the Cantor distribution is a (probability) measure that is continuous but not absolutely
continuous.

2.3.2 Discrete Random Variables

Below we present some common discrete probability distributions that we will often come across with.
Let (Q,P(£2),P) be a discrete probability space. Write E for the space in which the random variable X :
Q) — F takes value, write fx for the mass function corresponding to the probability distribution Px. We
are interested in the following different distributions.

Uniform distribution (3349 f) Assume F is finite and n = |E/| denotes the number of elements in
E. If the mass function fx satisfies,

fx(x)=P(X =2) = —, Vo e E,
then we say that X is a random variable with the uniform distribution on E, denoted X ~ Unif(E).

Ex. :Draw a fair dice with six faces with numbers in {1,...,6}.

Bernoulli distribution ({85715 ) Let p € [0, 1] be an additional parameter. If E = {0,1} and fx
satisfies,

fx)=PX=1)=p, [fx(0)=PX=0)=1-p,

then we say that X is a random variable with the Bernoulli distribution of parameter p, denoted X ~ Ber(p).

Ex. : Toss an unfair coin whose probability of getting head (denoted by 1) is p and probability of getting
tail (denoted 0) is 1 — p.

Binomial distribution (ZIAT % ) Let n € Ng and p € [0, 1] be two additional parameters. If
E ={0,...,n} and fx satisfies,
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then we say that X is a random variable with the Binomial distribution of parameter (n,p), denoted X ~
Bin(n, p).

Ex. :Consider the unfair coin above tossed n times, then the number of heads follows the binomial
distribution.

0.20 0.20

0.15 0.15

0.10 0.10
0.05 0.05

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 2.2: Mass functions of the binomial distribution with parameters n =
30,p = 0.2 on the left and n = 30, p = 0.5 on the right.

Geometric distribution (3125 ) Let p € (0,1) be an additional parameter. If ¥ = Ny and fx
satisfies,

fx(k) =P(X =k) = (1—p)*p, Vk € No,

then we say that X is a random variable with the geometric distribution of paramter p, denoted X ~ Geo(p).

Ex. :Toss the unfair coin described above. The number of tails before the first head appears follows
the geometric distribution. If we interpret head as “success” and tail as “failure”, then this distribution
gives the number of failures before the first success.

0.40 0.40 1
0.35 0.35
0.30 0.30
0.25 0.25
0.20 0.20
0.15 0.15
0.10 0.10

0.05 0.05

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 2.3: Mass functions of the geometric distribution with parameters n =
30, p = 0.2 on the left and n = 30, p = 0.4 on the right.

Hypergeometric distribution (83%{a4%3 ) Given nonnegative integers N, K, n with 0 < K < N.
Take E={(n— N+ K)VO0,...,K An}and fx satisfying

o =rx=n=(3)(VTF) /(0). wee

then we say that X is a random variable with the hypergeometric distribution with parameters (N, K, n),
denoted X ~ Hypergeo(N, K, n).
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Ex. :In an urn containing N balls, among which K are white. When we perform a sampling of n
balls without replacement, the number of selected white balls satisfies the hypergeometric distribution
Hypergeo(N, K, n).

Poisson distribution (TH¥2% ) Let A > 0 be an additional parameter. If ' = Ny and P satisfies,

PUN

= ﬁe N \V/k € NO.

P(X =k)
then we say that X is a random variable with the Poisson distribution of parameter A, denoted X ~ Pois(\).
0.20 0.20

0.15 0.15

0.10 0.10
0.05 0.05

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 2.4: Mass functions of the Poisson distribution with parameter A = 5 on
the left and A = 10 on the right.

Remark 2.3.4 : Either from a theoretical perspective or from applications, Poisson distribution is an im-
portant distribution. Later, when we talk about convergence of probability distributions, we will see that
the Poisson distribution can be obtained via the limit of Binomial distributions. In other words, let X,, be a
random variable with distribution Bin(n, py, ), then if np, — A when n goes to infinity, then

lim P(X,, =k), Vké&€ Zx.

n—oo

2.3.3 Random Variables with Density

In this section, we will define some common distributions of continuous random variables and discuss
some of their properties. Let us denote by X the continuous random variable of concern and let fx be its
probability density function.

Uniform distribution (3349 1) Let a < b. If p writes,

1

P@) = s Tj(a).

then we say that X is a random variable with the uniform distribution on [a, b], denoted X ~ Unif([a, b]).

Exponential distribution (3585 ) Let A > 0 be an additional parameter. If fx satisfies

fx(x) = /\e*’\ajll]%0 (x), Vo € R,
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then we say that X is a random variable with the exponential distribution of parameter A, denoted X ~ £(\)
or X ~ Exp(A). It is not hard to check that,

1 1
E|X]| = - and Var(X) = —.
X]=5 (X) = 55
1.0 1.0
— A=0.2
— A=0.5
— A=0.8
0.8 0.8
0.6 0.6
0.4 0.4
— A=0.2
— A=05
0.2 0.2 — r=08
1 2 3 4 5 6 1 2 3 4 5 6

Figure 2.5: The left figure shows the probability density function of the expo-
nential distribution with different parameters, the right figure shows
their distribution functions.

Normal distribution ((EHESF) or Gaussian distribution (FEI% ) Letm € Rand o > 0 be
two additional parameters. If fx satisfies
1 2

) = e (= 250,

then we say that X is a random variable with the Gaussian (or normal) distribution with mean m and variance
o2, denoted X ~ N(m,0?). It is not hard to check that, if X ~ N (m, o?), then

EX]=m and Var(X) = o2

When m = 0, we say that X is centered (EH); when o = 1, we say that X is reduced (#J1t); when both
are satisfied, we call it the standard normal distribution (Y2ZEEREDR) .

1.0
0.8

0.6

(NN
Qaa
X

ooo
o

15  -10  -05 05 10 15 -15 -10  -05 0s 10 15

Figure 2.6: The left figure shows the probability density function of the Gaussian
distribution with different parameters, the right figure shows their
distribution functions. Here we take p = 0.
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Cauchy distribution (P53 ) Given parameters v > 0 and x¢ € R. If fx satisfies

1 1 ot
- == , Vz € R,
MO S Emy e

then we say that X is a Cauchy distribution with parameters (zg,y), denoted X ~ Cauchy(xg, ). It is not
hard to check that the expectation of a Cauchy distribution is not defined. (See Exercise 2.15.)

2.0 1.04

111
I

0.
0.
1.

(SN

v
v
v 0.8

0.6

4

[l
<<=

nin

oo
[S0-1N]

<)

-20 -15 -1.0 -05 0.5 1.0 1.5 2.0 -3 -2 -1 0 1 2 3

Figure 2.7: The left figure shows the probability density function of the Cauchy
distribution with different parameters, the right figure shows their
distribution functions. Here we take zo = 0.

Gamma distribution (1¥55 ) Given parameters o, 3 > 0. If fx satisfies

1 -1 _—px
fX(:U) = @Baxa 16 A ]11‘>07 Va: S R7

where I'(«) is the Gamma function defined by

then we say that X is a Gamma distribution with parameters («, 3), denoted X ~ I'(«, 8) or X ~ Gamma(c, 3).
We recall some important properties of the Gamma function, I'(a + 1) = al'(«) for all @ > 0 (change of
variables), ['(1) = 1, and I'(1) = /7.

1.0 1.0
—a=1p=1
—a=1B=2
—a=2,p=1
08 a=2p=2 0.8
— a=3,=3
06 0.6
0.4 0.4
—a=1B=1
- u=1,E=2
] —a=2B=1
0.2 0.2 a=2,B=2
— a=3,B=3
1 2 3 4 5 6 1 2 3 4 5 6

Figure 2.8: The left figure shows the probability density function of the Gamma
distribution with different parameters, the right figure shows their
distribution functions.
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Beta distribution (BIZ%f) Given parameters «, 3 > 0. If fx satisfies

1 -
fX(x) = B(O[,B)x 1(1 - x>ﬁ 11x€(0,1)7 Vz € R,
where B(«, (3) is the Beta function, defined by
b oa - [()T(5)
B,:/a11—51d:77
@8 = [ a0 e = N0

then we say that X is the Beta distribution with parameters («, 3), denoted X ~ Beta(«, 3).

Remark 2.3.5 : The probability distribution Beta(1, 1) is the uniform distribution on [0, 1]. We also have
the following symmetry, for X ~ Beta(a, 3), we have 1 — X ~ Beta(f3, «).

3.0 1.0

2.5

[
RRAKRKRK
i
WNNEE
]
[ESNINTS

TEEED

0.8
2.0
0.6
15
0.4

1.0

0.5 0.2

[RE RN
RRRARK
W
WhNEE
I
WHANNE

TETED

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6

o
©

1.0

Figure 2.9: The left figure shows the probability density function of the Beta
distribution with different parameters, the right figure shows their
distribution functions.

2.4 Moments of Random Variables

Moments are expectations of powers of random variables and exhibit some non-linear properties. An
important example is the notion of variance in both statistics and probability. In Probability Theory, methods
of moments (B7Z 75 7&) also have important applications in showing existence in Graph Theory or Number
Theory, see Exercise 2.24 and Exercise 2.25 for instance.

2.4.1 Moments and Variance

Definition 2.4.1: Fix a positive integer k > 1. We say that the k-th moment (%) of a real random
variable X is finite if E[| X |*] < 0o, or X € L*. We call E[X*] the k-th moment of X.

Definition 2.4.2:Let X € L?(Q2, P(2),P). Then, the variance (BEH) of X is defined as,

Var(X) :=E [(X — E[X])?] > 0. (2.4)
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Its standard deviation (2ZEZ) is denoted

ox =/ Var(X).

Remark 2.4.3 : We can understand the variance Var(X) in the above definition as a quantity measuring
how much X deviates from its expectation E[X].

It is important to square in the definition given by Eq. (2.4), otherwise, we would find
E[X —E[X]]=E[X] -E[X] =0,

which cannot describe correctly how far the random variable X is away from its expectation.

To avoid the cancellation from happening, we may look at the quantity E[| X —E[X]|]. It has the advantage
that we do not need to require the condition X & L%, we only need X € L' instead. However, the absolute
value has less regularity than the square function, which is its disadvantage, leading to more complicated
computations. Later in another chapter, we will see the importance of the square in probability theory, in
particular, its relation with the central limit theorem.

We can understand the variance Var(X) in the above definition as such: it measures how much X deviates
from its expectation E[X]. Moreover, we can notice that, Var(X) = 0 if and only if X is almost surely a
constant.

Proposition 2.4.4 : The variance Var(X) satisfies the following optimization problem,

Var(X) = altrel]%E [(X —a)?].

Proof : We only need to show that, we have, for any real nubmer a that
E[(X —a)?] = Var(X) + (E[X] — a)®.

By a direct computation, we find

E[(X - a)?] = E [((X - E[X]) + (E[X] - a))’]
= Var(X) + 2(E[X] — a) E[X — E[X]] + (E[X] — a)?
= Var(X) + (E[X] — a)*.

Using the expectation and the variance, we can estimate the following probability,

Markov’s inequality (BAJkAE) If X € L (2, A,P) and a > 0, then
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Bienaymé-Chebyshev inequality (S€LEEXFER) IfX € L?(Q, A,P) and a > 0, then

P(IX — E[X]| > a) < % Var(X).

4

Definition 2.4.5:If X, Y € L?(Q, P(Q2),P), then their covariance (FXEEE) is defined by,
Cov(X,Y) =E[(X —E[X))(Y —E[Y])] =E[X(Y —E[Y))] = E[XY] - E[X]E[Y].

We note that, the definition of covariance extends that of variance, Var(X) = Cov(X, X).

Remark 2.4.6 : The covariance measures the correlation (BAEf %) between two random variables X and Y,
which is not the same notion as independence. See Section 3.1.2.

Remark 2.4.7 : Given a discrete probability space (€2, P(2),P), it is not hard to check that the covariance
function
Cov(-,-) : L*(, A,P) x L*(Q, A,P) — R

is a symmetric and bilinear operator. In other words, for all X, Y, Z € L?(2, A,P) and a,b € R, we have

Cov(X,Y) = Cov(Y, X),
Cov(aX +bY,Z) =aCov(X,Z)+ bCov(Y, Z).

This allows us to apply the Cauchy-Schwarz inequality to obtain

| Cov(X,Y)| \/Var )\/Var(Y

Moreoever, if one of X and Y is almost surely a constant, then Cov(X,Y") = 0.

Definition 2.4.8 : Consider a random variable X = (X7,..., X;) with values in R?. Let us assume
that all its components ara in L?(Q, A, P). Then, we may define the covariance matrix (3% E&%E
fE) of X by

Kx = (Cov(X;, X;))

1<i,j<d’

Question 2.4.9: Prove that when X is a d-dimensional real random variable, its covariance matrix Kx is a
positive semi-definite (3 IEXE) symmetric matrix. In other words, prove that for all A = (Aq,..., \q) € R%,
we have AK x AT > 0.

Question 2.4.10: If A is a matrix of size n X d and X is a d-dimensional real random variable, define Y = AX
and prove that Ky = AKx AT,

2.4.2 Linear Regression
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Let X,Y1,...,Y, be random variables in L?(2, A, P). We want to find a random variable which is a linear
combination of 1, Y7, ..., Y, approximating X. In other words, we want to look for real numbers fy, ..., B,
that minimize the following quantity,

E[(X — (Bo+ BiY1 + ... BaY0))?].

Proposition 2.4.11: When () is a solution to the following linear system,

> Cov(Y;, Yy) = Cov(X, Yy), 1< k<, (2.5)
g=il
we set n
Z =E[X]+)_a;(¥; - E[Y))), (2.6)
j=1

and we have,

. 21 2
i B [(X = (Bo+ B1Ya + .. BuYa))’] = E[(X — 2)?).

Proof : Let H be the vector subspace of L%(Q2, A, P) generated by 1,Y7,...,Y,. Since Z reaches the
minimum of the functional U € H — || X — U||,, Z is the orthogonal projection of X on H. If we
write Z as,

n
Z = ag+ Y a;(Y; — E[Y}), (2.7)
j=1
we get E[(X — Z) - 1] = 0 from the properties of the orthogonal projection, giving ap = E[X].
Similarly, for all 1 < k < n, we have

E[(X-2) (Vi —E[Yi])] =0,

meaning that Cov(X,Y)) = Cov(Z,Y}). To conclude, we use the linear combination of Z in Eq. (2.7)
to obtain Eq. (2.5).

Conversely, if («;) satisfies Eq. (2.5), then Z defined in Eq. (2.6) is an element in H and since X — Z
and H are orthogonal, Z is the orthogonal projection of X on H. O

2.4.3 Characteristic Function

Definition 2.4.12:If X is a random variable with values in R?, then its characteristic function (4=
BRE) Py : R? — C is defined by,

Dx(¢) =E [exp(ié - X)), ¢ eR-

Remark 2.4.13 : The above definition rewrites,

B () = /R Py (da).
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In other words, we can see ® y as the Fourier transform (fEILZEEH) of Py, ie., Px(€) = Px(€). Moreover,
from the dominated convergence theorem, we know that ® x is a bounded continuous function on RY,

Below we give the list of characteristic functions of the distributions mentioned in Section 2.3.

random variableX | characteristic function ® x (§)
Ber (p) 1—p+pe't
Bin(n, p) (1 —p+pe)n
p
Geo(p) =)
Pois(\) exp(A(el€ — 1))
eifb _ eifa
Unif([a, b —
ni ([a’ ]) lf(b—a)
A
EX) A—i&
N (m,o?) exp(imé — 02¢?)

In this section, we will prove that the characteristic function of a random variable determines entirely its
distribution.

First, we prove the invariance (72 1%) of the normal distribution under the map of Fourier transform
F PX — P X.

Lemma 2.4.14: Let X be a random variable with distribution N'(0, o2), then

D (§) = exp (- "2252), £ €R.

Proof : Using the parity of the integrand, the imaginary part of ®x (&) is zero. Thus, we need to
compute,

(&) :/R\/lz?e_ﬁmcos(ﬁx) dz.

We take the derivative of the above formula. Since the integrable function =z |x|e*x2/ 2 bounds

T sin(fa;)e_mg/ 2 the differential operator can be inverted with the integration operator, i.e.,

() = —/R \/127_‘_%6_902/2 sin(&x) d.
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We apply the formula of integration by parts and get,

\ﬁ /2 cos(Ex) da = —£f(€).

As a consequence, f is a solution to the differential equation f'(§) = —¢f(§) with initial condition
f(0) = 1. Due to uniqueness, we deduce that f(£) = exp(—£2/2). O

Theorem 2.4.15 : Given a random variable X. Then, its distribution can be entirely determined by its
characteristic function. In other words, the Fourier transform F : Px — Py is injective (BB §¥) on the
space of distributions on R%.

Proof : First, we start with the one-dimensional case d = 1. For all ¢ > 0, the density function of the
normal distribution N(0, ) writes,

go(x) = 5 2exp<—— .
If v is a probability measure on R, we define,

fol@) = | go@—w)ntdy) = gox ua),
fio (dz) = fo(z) dx
We show the statement in two steps,
(1) po can be entirely defined by i;

(2) for any function ¢ € Cp(R), when 0 — 0, we have the convergence [ ¢(x)u,(dz) —

Jp(z)p(dz).

We prove (1) now. From Lemma 2.4.14, we know that for all x € R, we have,

2

V2ro2g,(r) = exp ( - %) = /Reif“gl/a(g) d¢.

Then, we can rewrite f,(z) as,

2) = [ gala —y)u(dy) = m/ ([ €106 a6 n(ay)

= 5 [ @ [ e utan)) ag

= ﬂ% /]R €% g1/ (E)i(—€) €. (2.8)

In the second-last equality, we use Fubini’s Theorem (Theorem 1.4.3), because p is a probability measure
and gy /, is integrable with respect to Lebesgue measure.
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To prove (2), we note that for all ¢ € C(R), we have,

[ e@mode) = [e@)( [ g0y = nutay) do = [ g7 = ewn(ay), 29)

where we use Fubini’s Theorem and the property that g, is an even function. Next, we need other
properties of g,

/gg(m) de =1, and lim go(x)dx =0, Ve >0,
720 /{jz|>e}

which gives us easily,
vy eR,  lim goxo(y) = ¢(y). (2.10)

Since for all 0 > 0, |g, * | < sup |¢|, from the dominated convergence theorem, we obtain,

timy [ oo (de) = lim [ g0 % onty) = [ elw)n(da).

o—0

Hence, the theorem is true when d = 1.
For a general value of d, the proof is similar. We define the following function,

d
90 (@1, xa) = [ 9o (),
j=1
and use the fact that for all £ € R%, we have,
i ! i (d)
Lo @e o = [ goe)e da; = (2202929 (0).
=1
’ 0
Question 2.4.16: C,(R) denotes the set of functions in Cy(R) that are compactly supported (B 3Z15).

Prove that, for ¢ € C.(R), we can improve the convergence in Eq. (2.10) and replace with the uniform
convergence on R. In other words, show that,

VSO € CC(R)7 ||gg*s0—<p|foo wo'

Proposition 2.4.17 : Let X = (X1,...,Xy,) be a n-dimensional real random variable. Assume that
|| X||3 is integrable, then ®x is a C* function and when & = (€1, ... ,&,) tends to 0, we have,

d

d
x(6) =141 GEIX] -5 D GE&EX X + o)),

j=1 7,k=1

Proof : It is not hard to check that
(a) For all ¢ € R™, the function 2 — !¢ is integrable with respect to Px.

(b) For all z € R", the function £ +— ¢'¢ is differentiable with respect to &, and its differential at &
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writes . .
n=M,...,nn) Zinjxjeig'z or Zixjeig'z dg;.
i=j Jj=1
(c) Forall j = 1,...,n, the partial derivative x > iz; '€ is continuous, and can be dominated by

xj, which is integrable with respect to Px, since X; € L2 C L.

Therefore, Theorem 1.2.24 allows us to invert the differential operator and the integration operator
when we compute the derivative of ®x, which is

0D
E;

Moreover, Theorem 1.2.22 implies that these partial derivatives are continuous.

For the second partial derivatives, we can proceed in a similar way. In particular, we need to use the
fact that E[| X; Xx|] < E[X;]?E[Xg)? < oo to justify that the second derivative and the integral can
be inverted. O

Vi=1,...,n, (&) = iE[X;e' ¢ ¥].

It is important to note that, only the characteristic function describes the probability distribution entirely,
but not the moments. In general, knowing all the moment (E[X*])> is not enough to deduce the probability
distribution of X. In Exercise 2.22, we will see counterexamples. In particular, we will construct (at least)
two different probability distributions having the same moments. Then, in Exercise 2.23, we will discuss the
situations in which the moments uniquely determine the probability distribution.

2.4.4 Generating Function

When a discrete random variable takes values in the set of nonnegative integers Ny, we may define its

generating function ((ERNERER) .

Definition 2.4.18 : Let X be a discrete random variable with values in Ny. Its generating function

G x is defined for s € C such that
Gx(s) =E[sX] = > P(X =n)s" (2.11)
n=0

converges. Conversely, if we know the generating function of a discrete random variable X, then by
reading its coefficients, we recover the distribution of X.

The series defined by Eq. (2.11) satisfies some properties, which are considered as prerequisites that were
studied in the calculus class. Below is a reminder on these results.

Convergence There exists a radius of convergence (WHH1E) 0 < R < oo such that the series Gx ()
converges when |s| < R; and the series Gx (s) diverges when |s| > R. Moreover, for any R’ < R, the series
Gx (s) converges uniformly on {s : |s| < R'}. Here we note that we clearly have R > 1 because Gx (1) = 1.

Differentiability We may differentiate the series Gx(s) term by term infinitely many times on its
domain of definition {s : |s| < R}.
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Uniqueness If there exists 0 < R’ < R such that the equality Gx(s) = Gy (s) holds for all |s| < R/,
then for all n € Ny, we have P(X = n) = P(Y = n). Moreover, we have

1 n
P(X =n)= mG&Q(O), ¥n > 0.

Continuity (Abel’s theorem) Since all the terms P(X = n) are nonnegative, if R < oo, we have

hmGX ZP

Proposition 2.4.19 : We may compute the expectation of X using the derivative of Gx,

G'v(1) = li%rllGX(s) =E[X] € [0, 0]
S
More generally, for any positive integer p > 1, we have
GP .= %Ggg)(s) —E[X(X-1)...(X —p+1)],

which means that from the generating function of X, we can easily obtain all the moments of X. In
particular, for X € L?(Q,P(Q),P), we have

Var(X) = G%(1) + G’ (1) — G'x(1)*.

Proof : For all positive integer p > 1, by the continuity of el )( )on {s : |s| < R} (knowing that

R > 1), we find
hmG ZP nn—1)...(n—p+1) = ZIP’ ©(n),

where p(n) =n(n —1)...(n —p+ 1), as desired.
Let X € L?(Q, P(Q),P). From the above property, we find

E[X?] = E[X(X - )] + E[X] = G%(1) + Gk (1),

so Var(X) = E[X?] — E[X]? = G% (1) + G'x (1) — G’y (1)?, as desired. O

Example 2.4.20 :If X is a random variable following the binomial distribution Bin(n, p), then its
generating function writes,

Gx(s) = Zn: <n)p’“(1 —p)" " = ((1—p) +ps)".

k=0 k
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We may compute its expectation
E[X] = Gx(s)s=1 = [n((1 = p) +ps)" "0, =np.
If we want to compute its variance, we start with
G (1) = [n(n = 1)((L = p) +ps)" "] _, = n(n - 1)p?

then find
Var(X) = n(n —1)p* + np — (np)* = np — np* = np(1 — p).

When our goal is to compute the moments of X, we may directly define its moment generating function

(ENELEMEE) , allowing us to simplify the computations.

Definition 2.4.21 : Given a discrete random variable X with values in Ny, we define its moment

generating function (BNZEEMEKEZR) , or exponential generating function (FEBUEMEKEN) , as

Mx(t) := Gx(e') = E[etX],

where we denote the converging radius of G x by R and require ¢’ < R.

Remark 2.4.22 : If we define the moment generating function by Mx (t) := E[e!*], then we only need to
require that X is a real discrete random variable.

Proposition 2.4.23 : The moments of the discrete random variable X can be computed using the deriva-
tives of M x. More precisely, we have, for all nonnegative integer k > 0,

E[X*] = M{)(0).

Proof : We have

Mx(t)=> "P(X =k => > P(X =k)
k=0 k=0n=0
5 (Sem b - £ e
n=0 n—= 0

We may also define the Laplace transform (HI ZHIHT#5#) of X as follows,
Lx(\) :=E[e ).

We need to note that, similar to the exponential generating function, this is not well defined for all A € R.
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2.4.5 Tail Probability

Given a random variable X, the quantities P(|X| > A) or P(|X| > \) are called tail probability (B imt%
) . Generally speaking, higher the order of the moment of X we can control, smaller is the tail probability,
and vice versa.

Definition 2.4.24 : We can classify the distribution of a random variable into different categories
depending on the tail probability.

(1) sub-Gaussian distribution (Ri@HT730) : there exist C, ¢ > 0 such that,

P(|X]| > z) < Cexp(—cz?), T — 00.

(2) heavy-tailed distribution (B4 ) : there exists C, o > 0 such that,

P(|X| > z) ~Cx™ ¢, x — o0.

Remark 2.4.25 : We may note that the Cauchy distribution is a heavy-tailed distribution. Indeed, if X ~
Cauchy(0, 1), then

2
P(|X]|>z) ~ —, T — 00.
T

Moreover, a Gaussian distribution is also a sub-Gaussian distribution.

Question 2.4.26: Given a random variable X, prove that the three following statements are equivalent.
(1) X is a sub-Gaussian distribution.
(2) There exist C, ¢ > 0 such that E[e*X] < C exp(ct?).
(3) There exists C' > 0 such that for all £ > 1, we have E[| X |¥] < (Ck)*/2.

Question 2.4.27: Let X be a real random variable and k£ > 0. If X is in Lk, prove that when A — oo, we

have that
M P(X] >\ — 0.
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