
3 Independence of Random Variables

3.1 Different Notions of Independence
In the following chapters, we will discuss two important theorems in the lecture of this semester: the law

of large numbers (Theorem 4.3.1) and the central limit theorem (Theorem 4.5.3). Before stating these two
theorems, we will need to define the notion of independence for different objects: events (Definition 3.1.1),
σ-algebras (Definition 3.1.5) and random variables (Definition 3.1.6).

3.1.1 Independent Events
In this chapter, we consider a probability space (Ω, A,P).
Let A, B ∈ A. We say that A and B are independent events (獨立事件) if

P(A | B) (def)= P(A ∩ B)
P(B)

= P(A). (3.1)

In other words, “knowing that the event B holds does not change the probability that the event A occurs”.
However, in order to write Eq. (3.1), we need P(B) > 0; additionally, this formula is not symmetric. This is
the reason why we would rather define the notion of two independent events using the following condition,

P(A ∩ B) = P(A)P(B). (3.2)

From Eq. (3.2) we may also notice that, if A and B are independent events, then the following computation

P(Ac ∩ B) = P(B) − P(A ∩ B) = P(B) − P(A)P(B)
= (1 − P(A))P(B) = P(Ac)P(B), (3.3)

leads to the property that Ac and B are also independent events.
In general, when we deal with more than two events, even infinitely many events, we give the following

definition.

Definition 3.1.1 : Given any set I and fix Ai ∈ A for any i ∈ I . We say that the family of events
(Ai)i∈I indexed by I are independent if

P
( ⋂

j∈J

Aj

)
=
∏
j∈J

P(Aj), (3.4)

for all finite subset J ⊆ I . And we call (Ai)i∈I independent events (獨立事件) .
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Question 3.1.2: Given n events A1, . . . , An ∈ A. Are A1, . . . , An independent events if only one of the
following conditions holds?

• P(A1 ∩ · · · ∩ An) = P(A1) . . .P(An) ;
• for any pair 1 ⩽ i < j ⩽ n, we have, P(Ai ∩ Aj) = P(Ai)P(Aj) .

The following proposition gives an equivalent definition to Definition 3.1.1 when we only have finitely
many events to consider.

Proposition 3.1.3 : Given events A1, . . . , An ∈ A, then the following two properties are equivalent.

(i) The events A1, . . . , An are independent.

(ii) For each 1 ⩽ i ⩽ n, choose Bi among events in the set {∅, Ai, Ac
i , Ω}, then we have,

P(B1 ∩ . . . ∩ Bn) = P(B1) . . .P(Bn). (3.5)

Proof : First, let us prove (ii) =⇒ (i). We notice that the condition imposed by Eq. (3.5) is stronger than
the condition imposed by Eq. (3.4) in Definition 3.1.1. Hence, when Eq. (3.5) holds, Eq. (3.4) also holds.
More precisely, we may take Bi = Ai if i ∈ J and Bi = Ω otherwise in Eq. (3.5) so as to obtain Eq. (3.4).

Now, we want to prove (i) =⇒ (ii). If there exists Bi such that Bi = ∅, then we get 0 on both sides
of Eq. (3.5). If there exists Bi such that Bi = Ω, then on the left side of Eq. (3.5), we can remove Bi

without changing the intersection; on the right side, P(Bi) = 1 does not change the product either.
Therefore, it is enough to prove that, for any subset {j1, . . . , jp} of {1, . . . , n}, when Bjk

= Ajk
or

Ac
jk
, we have,

P(Bj1 ∩ · · · ∩ Bjp) = P(Bj1) . . .P(Bjp).

To show this, it is enough to show that, if C1, . . . , Cp are independent events, then Cc
1, C2, . . . , Cp are

also independent events. This can be obtained in the same way as the computation in Eq. (3.3). □

Corollary 3.1.4 : Let (Ai)i∈I be a family of independent events. Fix a subset J ⊆ I , and define

∀i ∈ I, Bi =
{

Ac
i if i ∈ J,

Ai if i /∈ J,

then (Bi)i∈I is also a family of independent events.

Proof : It is a direct consequence of Proposition 3.1.3. □

3.1.2 Independent σ-algebras and Independent Random Variables
We discussed the independence of measurable events above, in what follows, we are going to discuss the

independence of σ-algebras and independence of random variables.
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Definition 3.1.5 : Let B1, . . . , Bn be n sub-σ algebras of A. We say that B1, . . . , Bn are independent
σ-algebras (獨立 σ代數) if

P(A1 ∩ · · · ∩ An) = P(A1) . . .P(An), ∀A1 ∈ B1, . . . , ∀An ∈ Bn.

Definition 3.1.6 : Let X1, . . . , Xn be random variables with values in (E1, E1), . . . , (En, En) respec-
tively. We say that X1, . . . , Xn are independent random variables (獨立隨機變數) if the σ-algebras
σ(X1), . . . , σ(Xn) are independent.

Remark 3.1.7 : By the second point fromProposition 3.1.3, we know that the randomvariables1A1 , . . . ,1An

are independent if and only if the events A1, . . . , An are independent.

Remark 3.1.8 : The fact that X1, . . . , Xn are independent random variables is equivalent to the following
property,

∀F1 ∈ E1, . . . , ∀Fn ∈ En, P({X1 ∈ F1} ∩ . . . ∩ {Xn ∈ Fn}) = P(X1 ∈ F1) . . .P(Xn ∈ Fn) (3.6)

If X1, . . . , Xn are random variables with values in (E1, E1), . . . , (En, En), then the n-tuple (X1, . . . , Xn)
is a random variable with values in E1×. . . , En and is measurable with respect to the σ-algebra E1⊗· · ·⊗En.
Below we provide another criterion to check the independence between random variables.

Theorem 3.1.9 : Given random variables X1, . . . , Xn, the following three properties are equivalent.

(i) The random variables X1, . . . , Xn are independent.

(ii) The distribution of the n-tuple random variable (X1, . . . , Xn) is the product distribution of
X1, . . . , Xn, i.e.,

P(X1,...,Xn) = PX1 ⊗ . . . ⊗ PXn .

(iii) For all i ∈ {1, . . . , n} and any non-negative measurable function fi defined on (Ei, Ei), we have,

E
[ n∏

i=1
fi(Xi)

]
=

n∏
i=1

E
[
fi(Xi)

]
. (3.7)

Remark 3.1.10 : If the measurable functions fi are not non-negative, then under the assumption that
E
[
|fi(Xi)|

]
< ∞ for all i ∈ {1, · · · , n}, Eq. (3.7) still holds.

Remark 3.1.11 : We can observe that, if X1, . . . , Xn are integrable and independent random variables, then
their product X1 . . . Xn is still integrable. However, in general, a product of integrable random variables is
not necessarily integrable.
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Proof : To show the equivalence between (i) and (ii), we proceed as below. For all i ∈ {1, . . . , n}, let
Fi ∈ Ei. We have the following formulas,

P(X1,...,Xn)(F1 × · · · × Fn) = P({X1 ∈ F1} ∩ . . . ∩ {Xn ∈ Fn}),

PX1 ⊗ . . . ⊗ PXn (F1 × · · · × Fn) =
n∏

i=1
PXi(Fi) =

n∏
i=1

P(Xi ∈ Fi).

From the above formulas and Eq. (3.6), X1, . . . , Xn are independent random variables if and only if
P(X1,...,Xn) and PX1 ⊗ . . . ⊗ PXn take the same values on all measurable sets of the form F1 × · · · ×
Fn. Thanks to the monotone class theorem (Theorem 1.4.1), we know that a measure on a product
measurable space is characterized by its values on all F1 × · · · × Fn. This concludes the proof since we
deduce that independence is equivalent to P(X1,...,Xn) = PX1 ⊗ . . . ⊗ PXn .

Then, we show the equivalence between (ii) and (iii). Fix, for each 1 ⩽ i ⩽ n, a non-negative
measurable function fi defined on (Ei, Ei). We write

E
[ n∏

i=1
fi(Xi)

]
=
∫

E1×...×En

n∏
i=1

fi(xi)P(X1,...,Xn)(dx1 . . . dxn),

and write, using the Fubini’s theorem,

n∏
i=1

E
[
fi(Xi)

]
=

n∏
i=1

∫
Ei

fi(xi)PXi(dxi)

=
∫

E1×...×En

n∏
i=1

fi(xi)PX1(dx1) . . .PXn(dxn)

=
∫

E1×...×En

n∏
i=1

fi(xi)PX1 ⊗ . . . ⊗ PXn (dx1 . . . dxn),

giving us the equivalence. □

Remark 3.1.12 (Construction of finitely many independent random variables) : As a consequence of the
above theorem, we can construct independent random variables. Consider the case of real-valued random
variables and assume that µ1, . . . , µn are probability measures on R. Using Theorem 1.4.1 (construction
of product measures) and Remark 2.1.11 (canonical construction of random variables), we can construct a
random variable Y = (Y1, . . . , Yn) with values in Rn whose distribution is given by µ1 ⊗ · · · ⊗ µn. The
above theorem tells use that the components Y1, . . . , Yn of the random variable Y are independent random
variables and their distributions are respectively µ1, . . . , µn.

Corollary 3.1.13 : If X1 and X2 are independent real random variables in L2, then we have
Cov(X1, X2) = 0.

Remark 3.1.14 : The converse of this corollary is false. When the variance between two random variables
is zero, we say that they are uncorrelated, but it does not imply their independence.
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Question 3.1.15: Construct two random variables X and Y such that Cov(X, Y ) = 0 without X and Y
being independent. In Exercise 3.20, we will see a specific condition under which Cov(X, Y ) = 0 implies
the independence between X and Y .

Corollary 3.1.16 : Let X1, . . . , Xn be n random variables.

(1) Assume that, for all i ∈ {1, . . . , n}, Xi has a density, denoted pi. If X1, . . . , Xn are independent
random variables, then (X1, . . . , Xn) also has a density, given by,

p(x1, . . . , xn) =
n∏

i=1
pi(xi).

(2) Conversely, if (X1, . . . , Xn) has a probability density which writes,

p(x1, . . . , xn) =
n∏

i=1
qi(xi),

where functions qi are non-negative measurable functions on R, then X1, . . . , Xn are independent
random variables. Moreover, for all i ∈ {1, . . . , n}, the random variable Xi also has a probability
density and there exists a constant Ci > 0 such that its density function pi writes pi = Ciqi.

Proof : (1) is an application of Theorem 3.1.9 and Fubini’s theorem. Since PXi(dxi) = pi(xi) dxi, we
can write the product measure as,

PX1 ⊗ . . . ⊗ PXn(dx1 . . . dxn) =
( n∏

i=1
pi(xi)

)
dx1 . . . dxn.

Next, we prove (2). Let Ki =
∫

qi(x) dx ∈ (0, ∞) for all i ∈ {1, . . . , n}. We first note that, Fubini’s
theorem gives,

n∏
i=1

Ki =
n∏

i=1

( ∫
qi(x) dx

)
=
∫
Rn

p(x1, . . . , xn) dx1 . . . dxn = 1.

Then, from Proposition 2.1.18, we can compute the marginal distributions of X = (X1, . . . , Xn), i.e.,
the marginal distribution of Xi writes,

pi(xi) =
∫
Rn−1

p(x1, . . . , xn) dx1 . . . dxi−1 dxi+1 . . . dxn =
(∏

j 6=i

Kj

)
qi(xi) = 1

Ki
qi(xi).

From above we know that P(X1,...,Xn) = PX1 ⊗ . . . ⊗ PXn , which means that the random variables are
independent. □

Question 3.1.17: Let X1, . . . , Xn be real-valued random variables. The following properties are equivalent.
(i) X1, . . . , Xn are independent random variables.
(ii) For any a1, . . . , an ∈ R, we have P(X1 ⩽ a1, . . . , Xn ⩽ an) =

∏n
i=1 P(Xi ⩽ ai) .
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(iii) If f1, . . . , fn are continuous and compactly supported (緊緻支撐) functions from R to R⩾0, then

E
[ n∏

i=1
fi(Xi)

]
=

n∏
i=1

E
[
fi(Xi)

]
.

(iv) The characteristic function of X writes,

ΦX(ξ1, . . . , ξn) =
n∏

i=1
ΦXi(ξi).

The following proposition is an application of the monotone class theorem. It is slightly technical but will
be very useful later.

Proposition 3.1.18 : Let B1, . . . , Bn be sub-σ-algebras of A. For all i ∈ {1, . . . , n}, let Ci ⊆ Bi be a
subset that is closed under finite intersections, containing Ω and such that σ(Ci) = Bi. If

∀C1 ∈ C1, . . . , ∀Cn ∈ Cn, P(C1 ∩ · · · ∩ Cn) = P(C1) . . .P(Cn),

then B1, . . . , Bn are independent σ-algebras.

Proof : First, we fix C2 ∈ C2, . . . , Cn ∈ Cn and let

M1 = {B1 ∈ B1 : P(B1 ∩ C2 ∩ · · · ∩ Cn) = P(B1)P(C2) . . .P(Cn)}.

We can easily check that C1 ⊆ M1 and that M1 is a monotone class. Thus, from the monotone class
lemma, M1 contains σ(C1) = B1. Now, we have shown that if C1, . . . , Cn are independent σ-algebras,
then σ(C1), C2, . . . , Cn are also independent σ-algebras. By induction, we apply the same proof to
C2, . . . , Cn, σ(C1) to show that σ(C2), C3, . . . , Cn, σ(C1) are independent σ-algebras. This copmletes
the proof. □

Question 3.1.19: Let B1, . . . , Bn be independent σ-algebras and n0 = 0 < n1 < · · · < np = n. Then, the
following σ-algebras are independent,

D1 = B1 ∨ · · · ∨ Bn1
(def)= σ(B1, . . . , Bn1),

D2 = Bn1+1 ∨ · · · ∨ Bn2 ,

...
Dp = Bnp−1+1 ∨ · · · ∨ Bnp .

3.1.3 Independence for Infinitely Many Random Variables
We are going to define the notion of independence when we have an infinite family of random variables.

This can be reduced to the independence condition on all the finite subsets.

Definition 3.1.20 :

(1) Let (Bi)i∈I be a collection of sub-σ-algebras of A indexed by I . If for any finite subset
{i1, . . . , ip} of I , the σ-algebras Bi1 , . . . , Bip are independent, then we say that (Bi)i∈I is a
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collection of independent σ-algebras.

(2) Similarly, for any collection of random variables (Xi)i∈I , if (σ(Xi))i∈I is a collection of inde-
pendent σ-algebras, then we say that (Xi)i∈I is a collection of independent random variables.

Proposition 3.1.21 : Let (Xn)n⩾1 be a sequence of independent random variables. Then for any positive
integer p ⩾ 1 and subsets of integers I1, . . . , Ip ⊆ N that are pairwise disjoint, the subsets (Bk)1⩽k⩽p

defined by,
∀k = 1, . . . , p, Bk = σ(Xi : i ∈ Ik)

are independent σ-algebras.

Proof : For 1 ⩽ k ⩽ p, let

Ck =
⋃

J⊆Ik
J is finite

σ(Xj : j ∈ J) ⊆ Bk.

From Question 3.1.19, for any finite subsets J1 ⊆ I1, . . . , Jp ⊆ Ip, the σ-algebras σ(Xj : j ∈
J1), . . . , σ(Xj : j ∈ Jp) are independent. Then from Proposition 3.1.18, we know that B1 =
σ(C1), . . . , Bp = σ(Cp) are also independent σ-algebras. □

Corollary 3.1.22 : Let (Xn)n⩾1 be a sequence of independent random variables, where Xn takes values
in a measurable space (En, En) for n ⩾ 1. Let (In)n⩾1 be a sequence of pairwise disjoint subsets of N
and (fn)n⩾1 be a sequence of measurable functions, where fn is defined on Fn :=

∏
i∈In

Ei for n ⩾ 1.
Then, the following random variables are independent

∀n ⩾ 1, Zn = fn(Xi : i ∈ In).

In Remark 3.1.12, we explained how to construct finitely many independent random variables. Below, we
explain how to achieve this for countably infinitely many independent random variables.

Lemma 3.1.23 : Let Y ∼ Unif([0, 1]) be a random variable with uniform distribution on [0, 1]. Then,
the dyadical expansion of Y , denoted

Y = 0.Y1Y2 · · · =
∑
n⩾1

2−nYn, Yn ∈ {0, 1}, ∀n ⩾ 1 (3.8)

satisfies the following properties.

(1) The expansion in Eq. (3.8) is almost surely unique.

(2) The random variables (Yn)n⩾1 are independent and each of them follows the distribution Ber(1
2).
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Proof : We recall that a dyadical expansion can be obtained by

Y1 = b2Y c, X1 = 2Y − b2Y c = 2Y − Y1,

∀n ⩾ 1, Yn+1 = b2Xnc, Xn+1 = 2Xn − Yn+1.

By a direct induction, we may also rewrite,

∀n ⩾ 1, Yn =
⌊
2nY −

n−1∑
k=1

2n−kYk

⌋
. (3.9)

(1) For x ∈ [0, 1), it has two distinct dyadical expansion if and only if it is a dyadical rational m
2n for

some integers n ⩾ 1 and 0 ⩽ 1 ⩽ 2n − 1. This can be checked by the following fact,

∀n ∈ N,
1
2n

=
∑

k⩾n+1

1
2k

.

To conclude, we note that the subset consisting of all the dyadical rationals has measure zero,

P
( ⋃

n⩾1

2n−1⋃
m=0

{m

2n

})
= 0.

(2) First, let us check the distribution of Y1 and X1. Y1 follows Ber(1
2),

P(Y1 = 0) = P(Y ∈ [0, 1
2)) = 1

2 .

For 0 ⩽ a < b < 1, we have

P(X1 ∈ [a, b]) = P(X1 ∈ [a, b], Y1 = 0) + P(X1 ∈ [a, b], Y1 = 1)
= P(Y ∈ [a

2 , b
2 ]) + P(Y ∈ [a+1

2 , b+1
2 ])

= ( b
2 − a

2 ) + ( b+1
2 − a+1

2 ) = b − a.

Therefore, X1 follows the uniform distribution on [0, 1]. We conclude by induction that Yn ∼
Ber(1

2) for all n ⩾ 1.
Let n ⩾ 1 be an integer. We want to check that (Yk)1⩽k⩽n are independent random variables.
Let m1, . . . , mn ∈ {0, 1} and compute

P(Yℓ = mℓ, ∀ℓ = 1, . . . n) = P
(⌊

2ℓY −
ℓ−1∑
k=1

2ℓ−kmk

⌋
= mℓ, ∀ℓ = 1, . . . n

)

= P
(

mℓ ⩽ 2ℓY −
ℓ−1∑
k=1

2ℓ−kmk < mℓ + 1, ∀ℓ = 1, . . . n

)

= P
( ℓ∑

k=1
2−kmk ⩽ Y <

ℓ∑
k=1

2−kmk + 2−ℓ, ∀ℓ = 1, . . . n

)

= P
( n∑

k=1
2−kmk ⩽ Y <

n∑
k=1

2−kmk + 2−n
)

= 2−n.

This allows us to conclude the independence. □
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Remark 3.1.24 : Let us consider Y ∼ Unif([0, 1]) and its dyadical expansion Y = 0.Y1Y2 . . . as in Eq. (3.8).
Since N2 and N are equipotent, we may find a bijective function f : N2 → N. For every i ∈ N, the random
variables (Yf(i,j))j⩾1 are independent, and by defining

∀i ∈ N, Zi = 0.Yf(i,1)Yf(i,2) · · · =
∑
n⩾1

2−nYf(i,n),

it follows from Definition 3.1.20 and Proposition 3.1.21 that (Zi)i⩾1 are independent random variables.
Moreover, every Zi follows the uniform distribution on [0, 1]. If we are given distributions (µi)i⩾1 on R,
we may denote their cumulative distribution function by (Fi = Fµi)i⩾1, then the random variables (Xi)i⩾1
defined by

∀i ⩾ 1, Xi = inf{y ∈ R : Fi(y) ⩾ Zi}

are independent random variables with Xi ∼ µi for i ⩾ 1, see Proposition 2.1.23.

If we want to construct uncountably many independent random variables, we need to use the following
Kolmogorov’s extension theorem (Kolmogorov拓延定理).

Theorem 3.1.25 (Kolmogorov’s extension theorem) : Given the measurable space (Rd, B(Rd)) and
any set T . Assume that the two following conditions hold.

(a) For any finite subset S of T , we can construct a probability measure PS on ((Rd)⊗S , B(Rd)⊗S).

(b) For any finite subsets S1 and S2 such that S1 ⊆ S2, the probability measures PS1 and PS2 are
compatible (相容), meaning that PS1 = PS2 ◦ π−1, where π denotes the projection from S2 to S1.

Then there exists a unique measure P on ((Rd)⊗T , B(Rd)⊗T ) such that for any finite subset S, we have
PS = P ◦ π−1, where π is the projection from T to S.

Proof : We define
C :=

⋃
S⊆T

S is finite

B(Rd)⊗S ,

which is the set consisting of the elements in finite-dimensional product σ-algebras. Moreover, we
know that B(Rd)⊗T can be generated by C, that is,

B(Rd)⊗T = σ(C).

The proof of the existence can be achieved using the outer measure, as for the construction of
the Lebesgue measure. For the uniqueness, it is a direct consequence of the monotone class lemma,
see Corollary 1.1.19. □

3.2 Borel–Cantelli Lemma
Previously, we defined different notions of independence. In this section, we will use the independence to

deduce some asymptotic results.
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3.2.1 Statement and Proof

Definition 3.2.1 : Given a sequence (An)n⩾1 of events, we define the following notions.

(1) The following set is called the upper limit (上極限) ,

lim sup
n→∞

An :=
∞⋂

n=1

( ∞⋃
k=n

Ak

)
.

(2) The following set is called the lower limit (下極限) ,

lim inf
n→∞

An :=
∞⋃

n=1

( ∞⋂
k=n

Ak

)
.

(3) If the upper limit and the lower limit of (An) coincide, then we call this common value its limit
(極限) , denoted limn→∞ An := lim infn→∞ An = lim supn→∞ An .

(4) If the upper limit and the lower limit of (An) differ, then we say that the limit of (An) does not
exist.

Proposition 3.2.2 : Let (An) be a sequence of events. Then,

(1) lim sup An = {ω | ω ∈ An i.o.}, where i.o. stands for “infinitely often”, meaning that there exists
an infinity of n such that ω ∈ An.

(2) lim inf An = {ω | ω ∈ An a.a.}, where a.a. stands for “almost all”, meaning that except for a
finite number of n, we have ω ∈ An.

(3) lim inf An ⊆ lim sup An.

Proof : See Exercise 1.12. □

Example 3.2.3 : Let (Xn)n⩾1 be a sequence of random variables and a ∈ R.

(1) ω ∈ lim inf{Xn ⩽ a} ⇒ lim sup Xn(ω) ⩽ a.

(2) ω ∈ lim inf{Xn ⩾ a} ⇒ lim inf Xn(ω) ⩾ a.

(3) ω ∈ lim sup{Xn ⩽ a} ⇒ lim inf Xn(ω) ⩽ a.

(4) ω ∈ lim sup{Xn ⩾ a} ⇒ lim sup Xn(ω) ⩾ a.

Lemma 3.2.4 : Let (An)n⩾1 be a sequence of events.

(1) If
∑

n⩾1 P(An)n⩾1 < ∞, then

P
(

lim sup
n→∞

An

)
= 0.
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In other words, the set {n ∈ N | ω ∈ An} is a.s. finite.

(2) If
∑

n⩾1 P(An) = ∞ and (An)n⩾1 is a sequence of independent events, then

P
(

lim sup
n→∞

An

)
= 1.

In other words, the set {n ∈ N | ω ∈ An} is a.s. infinite.

Question 3.2.5: Explain why it is necessary to assume that (An)n⩾1 is an independent sequence of events
in (2) of Lemma 3.2.4.

Proof :

(1) From the assumption, we have,

E
[∑

n⩾1
1An

]
=
∑
n⩾1

P(An) < ∞,

meaning that
∑

n⩾1 1An < ∞ almost surely.

(2) Given n0 ∈ N, for all n ⩾ n0, we have,

P
( n⋂

k=n0

Ac
k

)
=

n∏
k=n0

P(Ac
k) =

n∏
k=n0

(1 − P(Ak)).

Since the series
∑

k⩾1 P(Ak) diverges, we get,

P
( ∞⋂

k=n0

Ac
k

)
= lim

n→∞
↓ P

( n⋂
k=n0

Ac
k

)
= 0.

Since the above formula holds for all n0, we have,

P
( ∞⋃

n0=1

( ∞⋂
k=n0

Ac
k

))
= 0.

We take its complement and we obtain what needs to be proved,

P
( ∞⋂

n0=1

( ∞⋃
k=n0

Ak

))
= 1.

□

3.2.2 Applications
In this subsection, we will apply Borel–Cantelli lemma to prove the following result. Other applications

are treated in exercises.
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Proposition 3.2.6 : There does not exist any probability measure onN, such that for any positive integer
n ⩾ 1, the set of its multiples nN has measure 1

n .

Proof : Assume that such a measure exists and is denoted P. Let P be the set of prime numbers and let
Ap = pN for all p ∈ P . We know that (Ap)p∈P are independent events. Indeed, for any distinct prime
numbers p1, . . . , pk ∈ P , we have,

P
(
Ap1 ∩ . . . ∩ Apn

)
= P

(
p1N ∩ . . . ∩ pnN

)
= P

(
(p1 . . . pn)N

)
= 1

p1 . . . pk
=

k∏
j=1

P(Apj ).

Moreover, due to the fact that
∑

p∈P
1
p = ∞, we get, from (2) of Borel–Cantelli lemma, that

P(lim sup Ap) = 1, meaning that under the measure P, almost every integer n appears in an infi-
nite number of Ap This is impossible, since a positive integer cannot be a multiple of infinitely many
prime numbers. □

Proposition 3.2.7 : Let Y ∼ Unif([0, 1]) with dyadical expansion Y = 0.Y1Y2 . . . as in Eq. (3.8). For
any integer p ⩾ 1 and m1, . . . , mp ∈ {0, 1}, almost surely there exist infinitely many k ∈ N such that

Xk+1 = m1, . . . , Xk+p = mp.

Proof : For any positive integer n ⩾ 1, define the random vector Zn = (Ynp+1, . . . , Ynp+p). From
Corollary 3.1.22, the random variables (Zn)n⩾1 are independent. They are also identically distributed
thanks to Lemma 3.1.23. For every n ⩾ 1, we have

P(Zn = (m1, . . . , mp)) = 2−p.

Since the events ({Zn = (m1, . . . , mp)})n⩾1 are independent and
∑

n⩾1 2−p = +∞, Lemma 3.2.4 (2)
implies that

P
(

lim sup
n→∞

{Zn = (m1, . . . , mp)}
)

= 1.
□

Proposition 3.2.8 : Let (Xn)n⩾1 be a sequence of i.i.d. random variables with distribution Ber(1
2). Let

Ln := max{k ⩾ 1 : there exists 0 ⩽ i ⩽ n − k such that Xi+1 = · · · = Xi+k = 1}.

Then we have

lim sup
n→∞

Ln

ln2(n)
⩽ 1 ⩽ lim inf

n→∞
Ln

ln2(n)
, a.s.

that is
Ln

ln2(n)
−−−→
n→∞

1, a.s.
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Proof : We want to show that the following hold for all ε > 0,

(1) lim sup
n→∞

Ln

ln2(n)
⩽ 1 + ε, a.s., (2) lim inf

n→∞
Ln

ln2(n)
⩾ 1 − ε, a.s.

First, let us introduce a few more notations,

∀m ⩾ 1, ℓm = sup{k ⩾ 0 : Xm = · · · = Xm+k−1 = 1},

which is the maximal number of occurrences of consecutive 1’s. Therefore, we have

Ln = sup
1⩽m⩽n

{ℓm ∧ (n − m + 1)} ⩽ sup
1⩽m⩽n

{ℓm} =: L̃n.

Let us start with proving (1). Given ε > 0, we have,

P
(
ℓm ⩾ (1 + ε) log2(m)

)
= P

(
ℓm ⩾ d(1 + ε) log2(m)e

)
=
(1

2

)d(1+ε) log2(m)e
⩽ m−(1+ε).

Since
∑

m−(1+ε) < ∞, so from Lemma 3.2.4 (1), we find,

P
(

lim sup{ω : ℓm(ω) ⩾ (1 + ε) log2(m)}
)

= 0,

=⇒ P
(

lim inf{ω : ℓm(ω) < (1 + ε) log2(m)}
)

= 1.

This implies
lim sup

m→∞

ℓm

log2(m)
⩽ 1 + ε, a.s.

As a consequence,

lim sup
n→∞

Ln

log2(n)
⩽ lim sup

n→∞

L̃n

log2(n)
⩽ 1 + ε, a.s.

Next, let us show (2). Given ε > 0, we divide the n experiments into intervals of length an :=
d(1 − ε) log2(n)e + 1, where the last one can be shorter than an. So the total number of intervals is

Nn :=
⌈

n

an

⌉
−−−→
n→∞

n

(1 − ε) log2(n)
>

n

log2(n)
. (3.10)

We denote these intervals as follow,

∀k = 1, . . . , Nn − 1, Ik = {(k − 1)an + 1, . . . , kan},

INn = {(Nn − 1)an + 1, . . . , n}.

For all 1 ⩽ j ⩽ Nn − 1, let Aj be the event that {Xi = 1, ∀i ∈ Ij}. We have,

P(Aj) =
(1

2

)an

⩾
(1

2

)(1−ε) log2(n)+2
= 1

4
1

n1−ε
.
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Next, we look at the probability of an event related to Ln,

P
(
Ln ⩽ (1 − ε) log2(n)

)
⩽ P

(
there exists at least an i ∈ Ij such that Xi 6= 1 : 1 ⩽ j ⩽ Nn − 1

)
=

Nn−1∏
j=1

(1 − P(Aj)) ⩽
(
1 − 1

4
1

n1−ε

)Nn−1
.

Using Eq. (3.10), for large enough n, we have,

P
(
Ln ⩽ (1 − ε) log2(n)

)
⩽
(
1 − 1

4
1

n1−ε

)n/ log2(n)
∼ exp

(
− 1

4
nε

log2(n)

)
.

If we sum up the right side of the above formula in n, we obtain a finite sum. Using Lemma 3.2.4 (1),
we find,

lim inf
n→∞

Ln

log2(n)
⩾ 1 − ε, a.s.

□

3.3 Sum of Independent Random Variables
3.3.1 Definition and Properties

If µ and ν are both probability measures on Rd, we write µ ∗ ν for the image measure of µ ⊗ ν under the
function (x, y) 7→ x+y. This means that the measure µ∗ν has the following property: for any non-negative
measurable function φ on Rd, we have,∫

Rd
φ(z)µ ∗ ν(dz) =

∫
Rd

∫
Rd

φ(x + y)µ(dx)ν(dy). (3.11)

Proposition 3.3.1 : Let X and Y be two independent random variables on Rd.

(1) The distribution of the random variable X + Y is PX ∗ PY . In the case that both X and Y have a
density, denoted respectively pX and pY , then X + Y also has a density which writes pX ∗ pY .

(2) The characteristic function of the random variableX+Y writesΦX+Y (ξ) = ΦX(ξ)ΦY (ξ). Equiv-
alently, ̂PX ∗ PY = P̂X P̂Y .

(3) If X and Y are both square integrable, then KX+Y = KX + KY . In the one-dimensional case
d = 1, we have Var(X + Y ) = Var(X) + Var(Y ).

Proof :

(1) Since X and Y are independent, we haveP(X,Y ) = PX ⊗PY . So for any non-negativemeasurable
function φ on Rd, from the definition of the operator ∗ in Eq. (3.11), we have,

E[φ(X+Y )] =
∫

φ(x+y)P(X,Y )(dx dy) =
∫ ∫

φ(x+y)PX(dx)PY (dy) =
∫

φ(z)PX∗PY (dz)
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Next, if X and Y have a density,

E[φ(X + Y )] =
∫ ∫

φ(x + y)pX(x)pY (y) dx dy =
∫

φ(z)
∫ (

pX(x)pY (z − x) dx
)

︸ ︷︷ ︸
pX∗pY (z)

dz,

so pX ∗ pY is the density function of X + Y . We notice that since pX and pY are functions in
L1(Rd, λ), so pX ∗ pY is well defined almost everywhere, see Proposition 1.4.3.

(2) From Definition 2.4.12 and the independence between X and Y , we have,

ΦX+Y (ξ) = E[exp(i ξ · (X + Y ))] = E[exp(i ξ · X)]E[exp(i ξ · Y )] = ΦX(ξ)ΦY (ξ)

(3) We write X and Y as X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd). Using their independence, for
all i, j ∈ {1, . . . , d}, we have Cov(Xi, Yj) = 0 and Cov(Xi + Yi, Xj + Yj) = Cov(Xi, Xj) +
Cov(Yi, Yj), meaning that KX+Y = KX + KY .

□

3.3.2 Examples
If all the terms in a sequence of independent random variables (Xn)n⩾1 have the same distribution, we

call it an i.i.d. sequence of random variables, standing for independent and identically distributed. It is not
hard to find the distribution of a sum of i.i.d. random variables, one may proceed using the characteristic
function or directly the definition in Eq. (3.11). Belowwe give a few examples, more examples being available
in Exercise 3.13, Exercise 3.14, and Exercise 3.15.

Proposition 3.3.2 : If (Xk)1⩽k⩽n is a sequence of i.i.d. random variables where each term follows
the Poisson distribution of parameter λ, then X1 + · · · + Xn is a Poisson distribution of parameter nλ.
More generally, if (Xk)1⩽k⩽n is a sequence of independent Poisson random variables with parameters
λ1, . . . , λn, then X1 + · · · + Xn is a Poisson distribution of parameter λ1 + · · · + λn.

Proof : Let Xi ∼ Pois(λi) be independent random variables with Poisson distribution. We may com-
pute their characteristic functions,

ΦXi(ξ) =
∑
k⩾0

e−λi
λk

k!
ei ξk =

∑
k⩾0

e−λi
(λei ξ)k

k!
= eλi(ei ξ−1).

Therefore, the characteristic function of X := X1 + · · · + Xn writes,

ΦX(ξ) =
n∏

i=1
ΦXi(ξ) = e(λ1+···+λn)(ei ξ−1),

which we recognize as the characteristic function of Pois(λ1+· · ·+λn). By Theorem 2.4.15, we deduce
that X ∼ Pois(λ1 + · · · + λn). □
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Proposition 3.3.3 : If (Xk)1⩽k⩽n is a sequence of independent random variables such that for all 1 ⩽
k ⩽ n, Xk has the Gaussian distribution of parameter (0, σ2

k), then X1 + · · · + Xn has the Gaussian
distribution of parameter (0, σ2

1 + · · · + σ2
n).

Proof : See Exercise 3.12. □

3.3.3 Law of Large Numbers
We will only discuss formally different notions of convergence of random variables in the next chapter.

However, with what we have learned so far, we can motivate and state some eaiser versions of this law.

Theorem 3.3.4 (Law of large numbers in L2) : Let (Xn)n⩾1 be a sequence of uncorrelated real-valued
random variables with the same distribution. Suppose that E[X2

1 ] < ∞. Then we have,

1
n

(X1 + . . . Xn) L2
−−−→
n→∞

E[X1].

Proof : Using the linearity of the expectation, we have E[ 1
n(X1 + . . . Xn)] = E[X1]. Then from (3)

of Proposition 3.3.1, we have,

E
[( 1

n
(X1 + · · · + Xn) − E[X1]

)2]
= 1

n2 Var(X1 + · · · + Xn) = 1
n

Var(X1),

So when n → ∞, the above formula goes to 0. □

Remark 3.3.5 : There are several different notions of convergence in a probability space that we will discuss
further in detail in Chapter 4. What we need to notice here is that, Theorem 3.3.4 is a weak version of the
law of large numbers. We note that the above convergence takes place only in L2 space, but it is not a simple
convergence (簡單收斂)1 up to a set of measure zero. 2

Proposition 3.3.6 : Let (Xn)n⩾1 be an i.i.d. sequence of random variables with E[|X1|4] < ∞. Then,

1
n

(X1 + · · · + Xn) a.s.−−−→
n→∞

E[X1].

Proof : If we replace Xi with Xi − E[Xi] for all i ∈ {1, . . . , n}, we notice that the new convergence
result that needs to be shown is equivalent to the original one. Thus, without loss of generality, we can
assume that all the random variables Xi satisfy E[Xi] = 0. First, we compute the fourth-order moment

1Or almost sure convergence, meaning that the convergence takes place with probability 1.
2We also note that there is not any implication between L2 convergence and a.s. convergence, so technically speaking one is not
stronger or weaker than the other.
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on the left-hand side,

E
[( 1

n
(X1 + · · · + Xn)

)4]
= 1

n4

∑
1⩽i1,...,i4⩽n

E[Xi1Xi2Xi3Xi4 ].

Since (Xk) is a sequence of independent random variables with zero expectation, in the above summa-
tion, most of the terms are zero. Indeed, when the quadruplet (i1, i2, i3, i4) is such that all the indices
are equal or i1 = i2, i3 = i4 along with its permuations, the corresponding summation is not zero. The
former case appears n times and the latter case 3n(n − 1) times. Hence, we obtain,

E
[( 1

n
(X1 + · · · + Xn)

)4]
= 1

n4

(
nE

[
X4

1
]

+ 3n(n − 1)E
[
X2

1 X2
2
])

⩽ C

n2 ,

where C < ∞ is a constant. Then, we have,

E
[ ∞∑

n=1

( 1
n

(X1 + · · · + Xn)
)4]

=
∞∑

n=1
E
[( 1

n
(X1 + · · · + Xn)

)4]
< ∞,

where in the above formula, we inverted the expectation and series since all the terms in the series are
non-negative. This implies that the following series converges and is almost surely finite (殆必有限),

∞∑
n=1

( 1
n

(X1 + · · · + Xn)
)4

< ∞, a.s.,

so the terms in the series converges almost surely to zero. □

Corollary 3.3.7 : If (An)n⩾1 are independent events of the same probability, then we have,

1
n

n∑
i=1

1Ai

a.s.−−−→
n→∞

P(Ai).

Remark 3.3.8 : Before the development of the modern probability, the probability that an event occurs used
to be interpreted as the frequency of its occurence in a series of independent random experiments. This
corollary shows that this interpretation does make sense using the modern approach.

Alternatively, if we want to determine the probability that a result A holds, we can conduct this experiment
repeatedly in an independent manner and compute the proportion of times where A holds. Then, with
probability one (almost sure convergence, strong law of large numbers), this quantity tends to P(A).

3.3.4 Convolution Semigroups
Whenwe discussMarkov chains in Chapter 7 or continuous-time stochastic processes in the next semester,

the notion of convolution semigroup will be important. We introduce this notion and elementary properties
in this section.
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Assume that I = Z⩾0 or I = R⩾0.

Definition 3.3.9 : Let (µt)t∈I be a family of probability measures on R or Rd and indexed by I . We
call (µt)t∈I a convolution semigroup (捲積半群) if

∀t, t′ ∈ I, t + t′ ∈ I and µt ∗ µt′ = µt+t′ .

Lemma 3.3.10 : If there exists a function φ : R −→ C such that one of the following conditions holds,

(i) If I = Z⩾0 , µ̂t(ξ) = φ(ξ)t, ∀t ∈ I ,

(ii) If I = R⩾0 , µ̂t(ξ) = exp(−tφ(ξ)), ∀t ∈ I ,

then, (µt)t∈I is a convolution semigroup.

Proof : If µ̂t is as described in the above lemma, then we have µ̂t+t′ = µ̂tµ̂t′ = µ̂t ∗ µt′ . We can use
the injectivity of the Fourier transform to deduce µt+t′ = µt ∗ µt′ . □

Example 3.3.11 :

(1) Suppose I = Z⩾0. Given p ∈ [0, 1]. For all n ⩾ 1, let µn be the Binomial distribution B(n, p).
From the interpretation of the Binomial distribution as a sum of i.i.d. Bernoulli random variables,
we clearly have µn+m = µn ∗ µm. Otherwise, we can also compute its characteristic function
and apply the above lemma, µ̂n(ξ) = (pei ξ + 1 − p)n.

(2) Suppose I = R⩾0. For all t ⩾ 0, let µt be the Poisson distribution of parameter t. We have,

∀t ⩾ 0, ∀ξ ∈ R, µ̂t(ξ) =
∞∑

k=0

tk

k!
ei kξe−t = exp(−t(1 − ei ξ)).

(3) Suppose I = R⩾0. For all t ⩾ 0, let µt be the Gaussian distribution N (0, t). From Lemma 2.4.14,
we have,

∀t ⩾ 0, ∀ξ ∈ R, µ̂t(ξ) = exp
(

− tξ2

2
)
.

3.4 Some More Complicated Random Variables
Here we will use independence to construct some interesting tools in probability: multivariate normal

distribution and Poisson process.

3.4.1 Multivariate Normal Distribution
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The goal of this subsection is to extend the notion of Gaussian distribution to higher dimensions. The
following proposition defines the notion of multivariate normal distribution, gives its important properties,
and the canonical way to construct it.

Proposition 3.4.1 : Let X = (X1, . . . , Xd) be a d-dimensional real-valuded random variable. We
want to show that the following three conditions are equivalent. Moreover, when one of the conditions is
satisfied, we say that X has a multivariate normal distribution (多元常態分佈).

(i) There exist a d-dimensional real-valued random variable Z = (Z1, . . . , Zd) such that the como-
nents are i.i.d. standard normal distributions, a square matrix A of size d × d and a vector B ∈ Rd

such that X
(d)= AZ + B.

(ii) For any α ∈ Rd, the random variable αT X also has a normal distribution.

(iii) There exist a semi-definite symmetric matrix Σ of size d × d and a vector B ∈ Rd such that the
characteristic function of X writes,

ΦX(ξ) = E
[
ei ξ·X] = exp

(
i ξT B − 1

2ξT Σξ
)
.

Moreover, the vector B = E[X] is the expectation of X , the matrix Σ = AAT = KX is the covariance
matrix of X .

Proof : Show that (i) =⇒ (ii). We can show that the expecatation of X is given by B and the covariance
matrix by AAT . Then, take α ∈ Rd, the distribution of αT X =

∑
αiXi will be N (αT B, αT AAT α).

Show that (ii) =⇒ (iii). Given ξ ∈ Rd. Since ξT X is still a normal distribution, write m = ξT E[X]
and σ2 = ξT KXξ for its expecatation and variance. We know that

ΦX(ξ) = exp(i ξT E[X] − 1
2ξT KXξ).

Hence, we can take B = E[X] and Σ = KX .
Show that (iii) =⇒ (i). Since Σ is a semi-definite symmetric matrix, there exists an orthogonal matrix

P and a diagonal matrix D such that Σ = PDP T . Given i.i.d. random variables Z1, . . . , Zd with the
standard normal distribution. Consider A = P

√
D, then we can compute the characteristic function

of AZ + B and show that it is equal to ΦX . □

Proposition 3.4.2 : Let X = (X1, . . . , Xd) be a d-dimensional multivariate normal distribution with
expectation B and covariance matrix Σ. If Σ is invertible, then the density function of X writes,

PX(dx) =
exp

(
− 1

2〈x − B, Σ−1(x − B)〉
)

(2π)d/2| det(A)|
dx1 . . . dxn.

Proof : Since Σ is a semi-definite matrix, we may find an orthogonal matrix P and a diagonal matrix
D such that Σ = PDP T , then we define A = P

√
D. By the definition, the properties, and the

construction in Proposition 3.4.1, we know that X
(d)= AZ + B where Z = (Z1, . . . , Zd) are i.i.d.
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standard normal random variables. The density function of Z writes

∀z ∈ Rd, pZ(z) =
exp

(
− 1

2 ‖z‖2
2
)

(2π)d/2 =
exp

(
− 1

2(z2
1 + · · · + z2

n)
)

(2π)d/2 .

Given a non-negative measurable function f : Rd −→ R+, we have

E[f(X)] = E[f(AZ + B)] =
∫
Rd

f(Az + B)pZ(z) dz1 . . . dzn

=
∫
Rd

f(x)pZ(A−1(x − B))| det(A)|−1 dx1 . . . dxn,

where in the second equality, we apply the change of variables x = Az +B, and the fact that under the
map z 7→ Az + B, the set Rd is diffeomorphic with itself, since A is invertible. Since the above identity
holds for all non-negativemeasurable functions, we deduce the density function ofX by Remark 2.1.16,

∀x ∈ Rd, pX(x) = pZ(A−1(x − B))
| det(A)|

=
exp

(
− 1

2〈x − B, (A−1)T A−1(x − B)〉
)

(2π)d/2| det(A)|

=
exp

(
− 1

2〈x − B, Σ−1(x − B)〉
)

(2π)d/2| det(A)|
.

□

3.4.2 Poisson Process
Wewant to describe the behavior of random events occurring in time. We may want to know, for instance,

when these events occur; or at a given fixed time, how many random events have already occured. This can
be formulated as below. Given a sequence of random variable (Xi)i⩾1 where each Xi describes the waiting
time between two successive events i − 1 and i; Sn gives the total waiting time for the n-th event to happen;
Nt gives the total number of events that have occured by time t (including time t). We give a mathematical
formulation below.

Let (Xi)i⩾1 be i.i.d. random variables with exponential distribution Exp(1) defined on a probability space
(Ω, A,P). Define S0 = 0 and

∀n ∈ N, Sn := X1 + · · · + Xn.

We know from Exercise 3.14 that Sn follows the Gamma distribution Γ(n, 1). In this subsection, we will
discuss the following stochastic process (隨機過程),

∀t ⩾ 0, Nt := max{n ⩾ 0 : Sn ⩽ t} = max{n ⩾ 0 : X1 + · · · + Xn ⩽ t} ∈ N ∪ {0}, (3.12)

called Poisson process (帕松過程). It is not hard to see that t 7→ Nt is a (random) non-decreasing function.

Proposition 3.4.3 : We have the following properties.

(1) (Sn)n⩾0 is almost surely a strictly increasing sequence, and diverges to ∞ almost surely.

(2) The law of large numbers holds, Sn
n

a.s.−→ 1.
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Proof :

(1) First, due to
∀i ⩾ 1, P(Xi > 0) = 1,

and the fact that there are countably many events, we find

P(∀i ⩾ 0, Si < Si+1) = 1 ⇐⇒ 0 = S0 < S1 < S2 < . . . , a.s.

Then, by the second part of the Borel–Cantelli lemma, we know that for any fixed α > 0, we
have ∑

i⩾1
P(Xi ⩾ α) = ∞,

using the independence of (Xn)n⩾1, we deduce that there exist infinitely many n ⩾ 1 such that
Xn ⩾ α, implying Sn

a.s.−→ ∞.

(2) We use the law of large numbers in L4 as stated in Proposition 3.3.6 to conclude

Sn

n
a.s.−→ E[X1] = 1.

□

Proposition 3.4.4 : Fix t > 0, then Nt ∼ Pois(t) follows the Poisson distribution of parameter t.

Remark 3.4.5 : As a direct consequence of Example 3.3.11 (2), the family of distributions (PNt)t⩾0 forms a
convolution semigroup.

Proof : Fix a positive real number t > 0 and a non-negative integer n ⩾ 0, we have

P(Nt = n) = P(Sn ⩽ t < Sn+1)

=
∫
R⩾0

∫
R⩾0

xn−1e−x

Γ(n)
e−y1x⩽t<x+y dx dy

=
∫
R⩾0

xn−1e−x

Γ(n)
1x⩽t

∫
R⩾0

e−y1y>t−x dy dx

=
∫
R⩾0

xn−1e−x

Γ(n)
1x⩽te

−(t−x) dx = e−t tn

n!
,

where in the second equality, we use the property thatSn+1 = Sn+Xn+1 is the sumof two independent
random variables with Sn ∼ Γ(n, 1); in the third equality, we use the Fubini’s theorem. □

Proposition 3.4.6 : The stochastic process t 7→ Nt is almost surely a càdlàg (continue à droite, limite à
gauche) function on R⩾0, which means right-continuous with left limits.
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Remark 3.4.7 : We note that the two following properties on the right continuity are different,(
∀s ⩾ 0, lim

t→s
t>s

Nt = Ns

)
a.s. ⇔ P

(
∀s ⩾ 0, lim

t→s
t>s

Nt = Ns

)
= 1,

∀s > 0,

(
lim
t→s
t<s

Nt exists a.s.
)

⇔ ∀s ⩾ 0, P
(

lim
t→s
t>s

Nt = Ns

)
= 1.

In general, the first one is stronger than the second one due to the fact that R>0 is uncountable. We need to
bear in mind the way we put the parentheses can change the meaning of a statement.

Proof : We need to prove the following two properties,(
∀s ⩾ 0, lim

t→s
t>s

Nt = Ns

)
a.s.,

(
∀s > 0, lim

t→s
t<s

Nt exists
)

a.s.

For T > 0, let us show that t 7→ Nt is almost surely a càdlàg function on [0, T ]. Proposition 3.4.4 tells
us that NT follows Pois(T ), which is finite almost surely. Let ΩT ∈ A with P(ΩT ) = 1 such that

∀ω ∈ ΩT , NT < ∞.

For ω ∈ ΩT , the function t 7→ Nt is non-decreasing and bounded on [0, T ], so the left limit exists
everywhere. For ω ∈ ΩT and s ∈ [0, T ), let n := n(ω) such that Ns = n, which is equivalent to
Sn ⩽ s and Sn+1 > s. This means that for u ∈ [s, Sn+1) 6= ∅, we need to have Nu = n as well, which
implies the right-continuity.

We conclude by noting that P(Ω′) = 1 with Ω′ :=
⋂

T⩾1 ΩT , and on Ω′, the function t 7→ Nt is
càdlàg on [0, T ] for every integer T ⩾ 1. In consequence, the function t 7→ Nt is càdlàg on R⩾0 almost
surely. □

Lemma 3.4.8 : Let (Ns)s⩾0 be a Poisson process and t > 0. Define the shifted process (N (t)
s )s⩾0 as

below,
∀s ⩾ 0, N (t)

s := Nt+s − Nt.

Then, (N (t)
s )s⩾0 is a Poisson process that is independent from Nt.

Proof : We fix t > 0 and consider the Poisson process from time t. Starting from time t, we need to
wait SNt+1 − t for the following event to occur, then we need to wait XNt+2, XNt+3, . . . . Thus, let us
define

X
(t)
1 = SNt+1 − t,

∀n ⩾ 2, X(t)
n = XNt+n.
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For any s > 0, we have

N (t)
s := Nt+s − Nt = max{m ⩾ 0 : X

(t)
1 + · · · + X(t)

m ⩽ s},

We may note that this definition is very similar to that of Eq. (3.12). If we can prove that for all non-
negative integer n ⩾ 0, the following hold:

(a) the event {Nt = n} and the sequence (X(t)
m )m⩾1 of random variables are independent, and

(b) under the event {Nt = n}, the sequence (X(t)
m )m⩾1 is also an i.i.d. sequence of random variables

with exponential distribution of parameter 1,

then not only we will have proven the independence between N (t) = (N (t)
s )s⩾0 and Nt, but also the

equality in distribution between (N (t)
s = Nt+s − Nt)s⩾0 and the original process (Nt)t⩾0.

Fix a non-negative integer n ⩾ 0. First, due to the equality {Nt = n} = {Sn ⩽ t < Sn+1}, we know
that {Nt = n} only depends on (Xi)1⩽i⩽n+1, so is independent from (Xi)i⩾n+2. Then, we discuss the
independence between {Nt = n} and Sn+1 − t = Xn+1 + Sn − t. Fix y ⩾ 0, we have

P(Nt = n, Sn+1 − t > y) = P(Sn ⩽ t, Xn+1 > t + y − Sn)

=
∫
R⩾0

γn(x)1x⩽t P(Xn+1 > t + y − x) dx

=
∫
R⩾0

γn(x)1x⩽t P(Xn+1 > t − x)P(Xn+1 > y) dx

= e−y P(Sn ⩽ t, Xn+1 > t − Sn)
= e−y P(Sn ⩽ t < Sn+1),

where in the first line, we use the inclusion {Sn+1 > t + y} ⊆ {Sn+1 > t}; in the second line,
we write γn(x) for the density function of Sn ∼ Γ(n, 1); in the third line, we use the memoryless
property of exponential random variables. Therefore, the above computation implies that {Nt = n}
and Sn+1 − t = Xn+1 + Sn − t are independent, and that Sn+1 − t ∼ Exp(1). Since Sn+1 − t only
depends on (Xi)1⩽i⩽n+1, so is also independent from (Xi)i⩾n+2. □

Proposition 3.4.9 : The Poisson process (Nt)t⩾0 has the two following properties.

(1) Fix time points 0 = t0 < t1 < · · · < tk, the increments (Nti+1 − Nti)0⩽i⩽k−1 of the stochastic
process is an independent sequence.

(2) The increments of the Poisson process follow a Poisson distribution. More precisely, fix 0 ⩽ s < t,
we have

∀n ⩾ 0, P(Nt − Ns = n) = e−(t−s) (t − s)n

n!
.

Proof :
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(1) In consequence, for any sequence (mi)1⩽i⩽k of non-negative integers, by Lemma 3.4.8, we find

P
(
Nti+1 − Nti = mi+1, 0 ⩽ i ⩽ k − 1

)
= P

(
Nt1 = m1, N

(t1)
ti+1 − N

(t1)
ti

= mi+1, 1 ⩽ i ⩽ k − 1
)

= P
(
Nt1 = m1

)
P
(
N

(t1)
ti+1 − N

(t1)
ti

= mi+1, 1 ⩽ i ⩽ k − 1
)
,

Finally, by induction, we find

P
(
Nti+1 − Nti = mi+1, 0 ⩽ i ⩽ k − 1

)
=

k−1∏
i=0

P
(
Nti+1 − Nti = mi+1

)
.

which is exactly what we need to show for the property (1).

(2) We use the property (1) and Proposition 3.4.4 to deduce the result.

□
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