Independence of Random Variables

3.1 Different Notions of Independence

In the following chapters, we will discuss two important theorems in the lecture of this semester: the law
of large numbers (Theorem 4.3.1) and the central limit theorem (Theorem 4.5.3). Before stating these two
theorems, we will need to define the notion of independence for different objects: events (Definition 3.1.1),
o-algebras (Definition 3.1.5) and random variables (Definition 3.1.6).

3.1.1 Independent Events

In this chapter, we consider a probability space (2, A, P).
Let A, B € A. We say that A and B are independent events (JILEH) if

P(A|B)“) W —P(A). (3.1)

In other words, “knowing that the event B holds does not change the probability that the event A occurs”.
However, in order to write Eq. (3.1), we need P(B) > 0; additionally, this formula is not symmetric. This is
the reason why we would rather define the notion of two independent events using the following condition,

P(ANB)=P(A)P(B). (3.2)
From Eq. (3.2) we may also notice that, if A and B are independent events, then the following computation

P(A°N B) = P(B) — P(AN B) = P(B) — P(A)P(B)
— (1—P(4))P(B) = P(A°) P(B), (33)

leads to the property that A° and B are also independent events.

In general, when we deal with more than two events, even infinitely many events, we give the following
definition.

Definition 3.1.1: Given any set [ and fix A; € A for any ¢ € I. We say that the family of events
(A;)ier indexed by I are independent if

P ( N Aj> =[] P4,), (3.4)

jedJ jeJ

for all finite subset J C I. And we call (A;);c; independent events (JEHILZEM) .
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Question 3.1.2: Given n events Ay,..., A, € A. Are Ay,..., A, independent events if only one of the
following conditions holds?

. ]P)(Al ﬂ-“ﬂAn) :P(Al)P<An),
« for any pair 1 <i < j < n, we have, P(A4; N A;) =P(4;)P(4;).

The following proposition gives an equivalent definition to Definition 3.1.1 when we only have finitely
many events to consider.

Proposition 3.1.3: Given events Ay, ..., A, € A, then the following two properties are equivalent.
(i) The events Ay, ..., A, are independent.
(ii) For each1 < i < n, choose B; among events in the set {@, A;, AS,Q}, then we have,

P(B1N...NBy) =P(By)...P(B,). (3.5)

Proof : First, let us prove (ii) = (i). We notice that the condition imposed by Eq. (3.5) is stronger than
the condition imposed by Eq. (3.4) in Definition 3.1.1. Hence, when Eq. (3.5) holds, Eq. (3.4) also holds.
More precisely, we may take B; = A; if¢ € J and B; = () otherwise in Eq. (3.5) so as to obtain Eq. (3.4).

Now, we want to prove (i) = (ii). If there exists B; such that B; = &, then we get 0 on both sides
of Eq. (3.5). If there exists B; such that B; = (2, then on the left side of Eq. (3.5), we can remove B;
without changing the intersection; on the right side, P(B;) = 1 does not change the product either.
Therefore, it is enough to prove that, for any subset {ji,...,j,} of {1,...,n}, when B;, = A;, or
A;k we have,

[P(le N---N ij) = IP)(B] ) .. P(B] )

To show this, it is enough to show that, if C, ..., C), are independent events, then Cf, C», ..., C), are
also independent events. This can be obtained in the same way as the computation in Eq. (3.3). O

Corollary 3.1.4: Let (A;);cr be a family of independent events. Fix a subset J C I, and define

AS ifie J,

Vicl, B;=
{Az‘ ifi & J,

then (B;);cr is also a family of independent events.

Proof : It is a direct consequence of Proposition 3.1.3. (]

3.1.2 Independent o-algebras and Independent Random Variables

We discussed the independence of measurable events above, in what follows, we are going to discuss the
independence of o-algebras and independence of random variables.
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Definition 3.1.5:Let By, ..., B, be n sub-o algebras of A. We say that By, ..., B, are independent
o-algebras (J&II o REN) if

P(Alﬂ-“ﬂAn) :P<A1)]P>(An), VA, € By,...,VA, € B,.

Definition 3.1.6 : Let X, ..., X, be random variables with values in (E1, &), ..., (E,, &,) respec-
tively. We say that X1, ..., X,, are independent random variables (Y&ILFEREEEEY) if the o-algebras
o(X1),...,0(X,) are independent.

Remark 3.1.7:: By the second point from Proposition 3.1.3, we know that the random variables 1 4,,..., 14,
are independent if and only if the events A1, ..., A, are independent.

Remark 3.1.8 : The fact that Xy, ..., X, are independent random variables is equivalent to the following
property,

VFy e &,...,VF, € &,, P{Xie Ai}n..n{X, e F,})=P(X; € F1)...P(X, € F,) (3.6

If Xy,...,X, are random variables with values in (E1,&1), ..., (En, &), then the n-tuple (X1, ..., X,)
is arandom variable with values in E; X . .., I, and is measurable with respect to the o-algebra £; ®- - - ®&,,.
Below we provide another criterion to check the independence between random variables.

Theorem 3.1.9 : Given random variables X1, . .., X,,, the following three properties are equivalent.
(i) The random variables X, ..., X,, are independent.

(ii) The distribution of the n-tuple random variable (Xi,...,X,) is the product distribution of
X17 A 7Xn, i.e.,
Px,..x,) =Px; ®...0Px,.

(iii) Foralli € {1,...,n} and any non-negative measurable function f; defined on (E;, E;), we have,

E [ﬁ fi(Xi)} — T[E [5(X)- (37)
=1 =1

Remark 3.1.10 : If the measurable functions f; are not non-negative, then under the assumption that
E [|fi(X;)]] < oo foralli € {1,---,n}, Eq. (3.7) still holds.

Remark 3.1.11: We can observe that, if X1, ..., X, are integrable and independent random variables, then
their product X7 ... X, is still integrable. However, in general, a product of integrable random variables is
not necessarily integrable.
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Proof : To show the equivalence between (i) and (ii), we proceed as below. For all i € {1,...,n}, let
F; € &;. We have the following formulas,

P(Xl ..... X,L)(Fl X oo X Fn) = ]P)({Xl c Fl} n...N {Xn € Fn}),
Px, ®... ®IP)XD(F1 X oo X Fn) = HPXZ(FZ) = HP(Xz € Fz)
i=1 i=1
From the above formulas and Eq. (3.6), X1, ..., X, are independent random variables if and only if

Pix,,..x,) and Px, ® ... ® Px, take the same values on all measurable sets of the form Fy x --- x
F,,. Thanks to the monotone class theorem (Theorem 1.4.1), we know that a measure on a product
measurable space is characterized by its values on all F} x - - - x F},. This concludes the proof since we
deduce that independence is equivalent to Py, . x,) =Px, ®... ® Px,,.

Then, we show the equivalence between (ii) and (iii). Fix, for each 1 < ¢ < n, a non-negative
measurable function f; defined on (E;, ;). We write

E Lﬁlfi(Xi)} = /E ﬁ fi(zi)Pix, . x,) (doy .. day,),

1X.. X En i—1

and write, using the Fubini’s theorem,

n n

[TE [fi(x)] = H/ fi(wi) Px, (dz;)
=1 i=1 i

_ /E ﬁfi(xi)Ile(dxl)...IP’Xn(dxn)

1 X.. X En i—1

= Hfi(wi)PXl®...®]P’Xn(dx1...dxn),
Ei1x..xFE, i—1

giving us the equivalence. U

Remark 3.1.12 (Construction of finitely many independent random variables) : As a consequence of the
above theorem, we can construct independent random variables. Consider the case of real-valued random
variables and assume that p1, ..., u, are probability measures on R. Using Theorem 1.4.1 (construction
of product measures) and Remark 2.1.11 (canonical construction of random variables), we can construct a
random variable Y = (Y7,...,Y},) with values in R™ whose distribution is given by 1 ® -+ ® p,. The
above theorem tells use that the components Y7, ..., Y, of the random variable Y are independent random
variables and their distributions are respectively p1, . . ., tin.

Corollary 3.1.13 : If X; and Xy are independent real random variables in L2, then we have
COV(Xl,XQ) =0.

Remark 3.1.14 : The converse of this corollary is false. When the variance between two random variables
is zero, we say that they are uncorrelated, but it does not imply their independence.
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Question 3.1.15: Construct two random variables X and Y such that Cov(X,Y) = 0 without X and Y
being independent. In Exercise 3.20, we will see a specific condition under which Cov(X,Y’) = 0 implies
the independence between X and Y.

Corollary 3.1.16 : Let X1, ..., X,, ben random variables.

(1) Assume that, for alli € {1,...,n}, X; has a density, denoted p;. If X1, ..., X,, are independent
random variables, then (X1, ..., X,,) also has a density, given by,

p(T1,. .., xn) = le(xl)
i=1

(2) Conversely, if (X1, ...,X,) has a probability density which writes,

n

p(z1,...,Tn) = H qi(zi),

i=1
where functions q; are non-negative measurable functions on R, then X1, ..., X,, are independent
random variables. Moreover, for alli € {1,...,n}, the random variable X; also has a probability

density and there exists a constant C; > 0 such that its density function p; writes p; = C;q;.

Proof : (1) is an application of Theorem 3.1.9 and Fubini’s theorem. Since Px, (dz;) = p;(z;) dz;, we
can write the product measure as,

n

Px, ®...0Px, (dz;...dzy,) = (le(i'l)) dzy...dz,.
i=1

Next, we prove (2). Let K; = [ ¢;(x)dx € (0,00) foralli € {1,...,n}. We first note that, Fubini’s
theorem gives,

n n
HKZ- = H (/ql(x)dx) :/ p(z1,...,xn)dzr ... da, = 1.
i=1 i=1 R™
Then, from Proposition 2.1.18, we can compute the marginal distributions of X = (X1,..., X,), ie.,

the marginal distribution of X; writes,

1
pi(x;) = / p(x1, ... ,xp)dey .. .do—1deiyy .. doy, = (H Kj)qi(xi) = —qi(z;).
SR j#i Ki

From above we know that P(x, . x,) =Px, ®...®Px,, which means that the random variables are

independent. O
Question 3.1.17: Let X, ..., X,, be real-valued random variables. The following properties are equivalent.
(i) Xi,...,X, are independent random variables.

(ii) Forany ay,...,a, € R,wehave P(X; < ay,..., X, <a,) =1l P(X; < a;) .
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(iii) If f1,..., f, are continuous and compactly supported (EifB5z#8) functions from R to R, then
n n
B | T[40 =TT [£(0)
i=1 i=1
(iv) The characteristic function of X writes,

Ox (&1, 56n) = [] Pxi (&)
i=1

The following proposition is an application of the monotone class theorem. It is slightly technical but will
be very useful later.

Proposition 3.1.18: Let By, ..., B, be sub-o-algebras of A. Foralli € {1,...,n}, letC; C B, be a
subset that is closed under finite intersections, containing ) and such that o(C;) = B;. If

YOy €Cy,...,¥Cp €Cn, P(C1N---NCy) =P(CY)...P(Cy),

then By, ..., B, are independent o-algebras.

Proof : First, we fix C5 € Co,...,C, € C,, and let
My ={B1 B :P(BiNCyN---NCy) =P(B1)P(Cy)...P(Cyp)}.

We can easily check that C; C M and that M is a monotone class. Thus, from the monotone class
lemma, M contains ¢(C;) = Bj. Now, we have shown that if Cy, . .., C, are independent o-algebras,
then o(Cy),Ca,...,C, are also independent o-algebras. By induction, we apply the same proof to
Co,...,Cp,0(Cy) to show that 0(C2),Cs,...,Cpn,0(Cy) are independent o-algebras. This copmletes
the proof. O

Question 3.1.19: Let By, ..., B, be independent o-algebras and nop = 0 < ny < --- < n, = n. Then, the
following o-algebras are independent,

Di=BiV---V By, L o(Br,.... Bu),

Dy =DBp41 V-V By,

Dy =B, 111V -V By,

3.1.3 Independence for Infinitely Many Random Variables

We are going to define the notion of independence when we have an infinite family of random variables.
This can be reduced to the independence condition on all the finite subsets.

Definition 3.1.20:

(1) Let (Bj)ier be a collection of sub-c-algebras of A indexed by I. If for any finite subset
{i1,...,1p} of I, the o-algebras B;,, ..., B; are independent, then we say that (B;);cs is a

ip
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collection of independent o -algebras.

(2) Similarly, for any collection of random variables (X;);er, if (0(X;))ier is a collection of inde-
pendent o-algebras, then we say that (X;);cr is a collection of independent random variables.

Proposition 3.1.21: Let (X,,),,>1 be a sequence of independent random variables. Then for any positive
integer p > 1 and subsets of integers I, ..., I, C N that are pairwise disjoint, the subsets (B )1<k<p

defined by,
VE=1,...,p, Bk:U(XZ'IZ'GIk)

are independent o-algebras.

Proof : For 1 < k < p, let

Cr = U U(Xj:jEJ)QBk.

JCI

J is finite
From Question 3.1.19, for any finite subsets J; C Ii,...,J, C I, the o-algebras o(X; : j €
J1),...,0(X; : j € Jp) are independent. Then from Proposition 3.1.18, we know that B; =
o(C1),...,B, = 0(Cp) are also independent o-algebras. O

Corollary 3.1.22: Let (X,,),>1 be a sequence of independent random variables, where X, takes values
in a measurable space (E,,,Ey,) forn > 1. Let (I,)n>1 be a sequence of pairwise disjoint subsets of N
and (fn)n>1 be a sequence of measurable functions, where fy, is defined on F, := [[;c; E; forn > 1.
Then, the following random variables are independent

Vn>1, Z,=fu(X;:i€ly).

In Remark 3.1.12, we explained how to construct finitely many independent random variables. Below, we
explain how to achieve this for countably infinitely many independent random variables.

Lemma 3.1.23 : Let Y ~ Unif([0, 1]) be a random variable with uniform distribution on [0, 1]. Then,
the dyadical expansion of Y, denoted

Y =01Ys--- =) 27", Y,€{0,1}, Vn>1 (3.8)

n=>1
satisfies the following properties.
(1) The expansion in Eq. (3.8) is almost surely unique.

(2) The random variables (Y,,),>1 are independent and each of them follows the distribution Ber(%).
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Proof : We recall that a dyadical expansion can be obtained by

Y, = [2Y], X; =2Y — |2Y] =2V - Y1,
vn 2 1, Yn+1 = \_ZXTLJa Xn+1 = 2Xn — Yp41-

By a direct induction, we may also rewrite,

n—1

Vn>1, Y, = {2"1/ = 2"‘kYkJ. (3.9)
k=1

(1) For z € [0, 1), it has two distinct dyadical expansion if and only if it is a dyadical rational & for
some integers n > 1 and 0 < 1 < 2™ — 1. This can be checked by the following fact,
1
k>n+1

To conclude, we note that the subset consisting of all the dyadical rationals has measure zero,

P(U U {2))=0

n=1 m=0

(2) First, let us check the distribution of Y7 and X;. Y7 follows Ber(%),

B(Y; = 0) = P(Y € [0,})) = &

For 0 < a < b <1, we have
P(X; € [a,b]) =P(X; € [a,b],Y1 =0) +P(X; € [a,b],Y1 =1)
P(Y €3, )HP)(YG[%,I’? )

b—

y o
A

Therefore, X follows the uniform distribution on [0, 1]. We conclude by induction that Y;, ~
Ber(3) foralln > 1.

Let n > 1 be an integer. We want to check that (Y})1<k<, are independent random variables.

Let mq,...,m, € {0,1} and compute
-1
P(Y; =me,Ve=1,...n) =P (WY - ZQE’kka = my, VI = 1n>
k=1

/—1
P(m£<2zy—22z_kmk<mg+l,V€=1,...n>

k=1
= (22 my, < Y<Z2 mk+2fw_1...n>
k=1
n
=P (Z 27 me <Y <) 27 my + 2”> =27"
k=1 k=1

This allows us to conclude the independence.
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Remark 3.1.24 : Let us consider Y ~ Unif([0, 1]) and its dyadical expansion Y = 0.Y1Y5 ... as in Eq. (3.8).
Since N2 and N are equipotent, we may find a bijective function f : N> — N. For every i € N, the random
variables (Y(; j))j>1 are independent, and by defining

VieN, Zi=0YpunYrae =2 "Yiin,

n=1

it follows from Definition 3.1.20 and Proposition 3.1.21 that (Z;);>1 are independent random variables.
Moreover, every Z; follows the uniform distribution on [0, 1]. If we are given distributions (y;);>1 on R,
we may denote their cumulative distribution function by (F; = F},,);>1, then the random variables (X;);>1
defined by

Vi>1l, X,=inf{yeR:Fi(y)=>2Z}

are independent random variables with X; ~ p; for ¢ > 1, see Proposition 2.1.23.

If we want to construct uncountably many independent random variables, we need to use the following
Kolmogorov’s extension theorem (Kolmogorov ¥A#EE IE).

Theorem 3.1.25 (Kolmogorov’s extension theorem) : Given the measurable space (R, B(R?)) and
any set T'. Assume that the two following conditions hold.

(a) For any finite subset S of T, we can construct a probability measure Pg on ((R?)®9 B(RY)®5).

(b) For any finite subsets S and Sy such that S; C So, the probability measures Pg, and Pg, are
compatible (%), meaning that Pg, = Pg, o m~!, where 7 denotes the projection from Ss to Si.

Then there exists a unique measure P on ((RY)®T B(RY)®T) such that for any finite subset S, we have
Ps =P on~!, wherer is the projection from T to S.

Proof : We define
C:= U B(R%H)®S,

SCT
S is finite

which is the set consisting of the elements in finite-dimensional product o-algebras. Moreover, we
know that B(R?)®T' can be generated by C, that is,
B(RHY®T = 4(C).

The proof of the existence can be achieved using the outer measure, as for the construction of
the Lebesgue measure. For the uniqueness, it is a direct consequence of the monotone class lemma,
see Corollary 1.1.19. O

3.2 Borel-Cantelli Lemma

Previously, we defined different notions of independence. In this section, we will use the independence to
deduce some asymptotic results.
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3.2.1 Statement and Proof

Definition 3.2.1: Given a sequence (A4, ),>1 of events, we define the following notions.

(1) The following set is called the upper limit (_EH#R[R) ,

limsup A, := A ).
(2) The following set is called the lower limit (TFHRER),
liminf A4, := A ).
minf A= U (0 4)

(3) If the upper limit and the lower limit of (A4,,) coincide, then we call this common value its limit
(#BBR) , denoted lim,, 00 Ay, := liminf, o A, = limsup,_, . A, .

(4) If the upper limit and the lower limit of (A,,) differ, then we say that the limit of (A,,) does not
exist.

Proposition 3.2.2: Let (A,,) be a sequence of events. Then,

(1) limsup A, = {w | w € A, i.0.}, where i.o. stands for “infinitely often”, meaning that there exists
an infinity of n such thatw € A,,.

(2) liminf A, = {w | w € A, a.a.}, where a.a. stands for “almost all’, meaning that except for a
finite number of n, we have w € A,,.

(3) liminf A,, C lim sup A,.

Proof : See Exercise 1.12. O

Example 3.2.3 : Let (X,,)n>1 be a sequence of random variables and a € R.
(1) w € liminf{X, <a} = limsup X, (w) < a.
(2) w e liminf{X,, > a} = liminf X,,(w) > a.
(3) w € limsup{X,, <a} = liminf X, (w) < a.

(4) w € limsup{X,, > a} = limsup X, (w) > a.

Lemma 3.2.4: Let (A,,)n>1 be a sequence of events.

(D) IfY 51 P(An)n>1 < 00, then
P (lim sup An) =0.

n—oo
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In other words, the set {n € N | w € A, } is a.s. finite.

2) If 3,51 P(An) = o0 and (Apn)n>1 is a sequence of independent events, then

P (hmsup An) = 1.

n—00

In other words, the set {n € N | w € A, } is a.s. infinite.

Question 3.2.5: Explain why it is necessary to assume that (A4,,),>1 is an independent sequence of events
in (2) of Lemma 3.2.4.

Proof :

(1) From the assumption, we have,

meaning that - 14, < oo almost surely.
(2) Given ng € N, for all n > ng, we have,
P( (N 45)= [T P45 = I (1 - P(4y)).
k=ng k=ng k=ng
Since the series ;- P(Ay) diverges, we get,
(A a) - 2 ( A ) o
=ngo =Nng

Since the above formula holds for all ng, we have,

o0 o
PLU (N A7) =0
no=1 k=ng
We take its complement and we obtain what needs to be proved,

P(N (U a)=1

no =1 k;:no

3.2.2 Applications

In this subsection, we will apply Borel-Cantelli lemma to prove the following result. Other applications
are treated in exercises.
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Proposition 3.2.6 : There does not exist any probability measure on N, such that for any positive integer
n > 1, the set of its multiples nN has measure %

Proof : Assume that such a measure exists and is denoted IP. Let P be the set of prime numbers and let
A, = pNfor all p € P. We know that (A,),cp are independent events. Indeed, for any distinct prime
numbers p1,...,pr € P, we have,

1 k
P(ApN...NA,)=PmNN...0p,N) =P ((p1...pn)N) :m:HP(Apj).
b

Moreover, due to the fact that Zpep}l; = 00, we get, from (2) of Borel-Cantelli lemma, that
P(limsup A,) = 1, meaning that under the measure P, almost every integer n appears in an infi-
nite number of A, This is impossible, since a positive integer cannot be a multiple of infinitely many
prime numbers. (]

Proposition 3.2.7 : Let Y ~ Unif([0, 1]) with dyadical expansionY = 0.Y1Y> ... as in Eq. (3.8). For

any integerp > 1 and mq, ..., my, € {0,1}, almost surely there exist infinitely many k € N such that
Kit1 =ma, .oy Xptp = myp.
Proof : For any positive integer n > 1, define the random vector Z,, = (Yy,p41,..., Ynp4p). From

Corollary 3.1.22, the random variables (Z,,),,>1 are independent. They are also identically distributed
thanks to Lemma 3.1.23. For every n > 1, we have

P(Z, = (m1,...,mp)) =277

Since the events ({Z,, = (m1,...,myp)})n>1 are independent and 3~ -1 277 = +o0, Lemma 3.2.4 (2)
implies that
P (limsup{Z = (ma,... ,mp)}) =1.

n—o0

O

Proposition 3.2.8 : Let (X,,),>1 be a sequence of i.i.d. random variables with distribution Ber(3). Let
L, :=max{k > 1: thereexists0 <i <n —ksuchthat X;y; == X, =1}.

Then we have

L L
limsup —— < 1 < liminf ——, a.s.
n—oo Ing(n) n—oo lng(n)
that is
Ly,

— 1l S.
]nz(n) n—oco a.s
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Proof : We want to show that the following hold for all £ > 0,

L, Ly,
1) li <1l+e, as., 2) lim inf
RSP gy ST 2 2% @I G

>1—¢, as.

First, let us introduce a few more notations,
Vm>1, lyp=suplk>0:X, = =Xp1k-1 =1}
which is the maximal number of occurrences of consecutive 1’s. Therefore, we have

Lp= sup {fmA(n—m~+1)}< sup {ln}=:Ly,.

1<m<n 1<m<n

Let us start with proving (1). Given € > 0, we have,

—(1+e¢)

1 ) [(1+¢) logy(m)] <m

P (b = (1+¢)logy(m)) =P (b = [(1+¢)logy(m)]) = (5

Since 3. m~1%%) < 50, so from Lemma 3.2.4 (1), we find,
P (lim sup{w : p(w) = (1 +¢) logQ(m)}) =0,

— P (liminf{w: fn(w) < (1+¢)logy(m)}) = 1.

This implies
lim sup <1l+4+e, as.
m—o0 logy(m)
As a consequence,
lim sup < lim sup <l+4+e, as
n—00 log2 (n) n—00 IOgQ (n)

Next, let us show (2). Given € > 0, we divide the n experiments into intervals of length a,, :=
[(1 —¢)logy(n)] + 1, where the last one can be shorter than a,,. So the total number of intervals is

n n n

e (=) logy(n) ~ logy(n)’ (310)

|

We denote these intervals as follow,

Vk=1,....Ny—1, Iy={(k—LDan+1,..., kan},
In, ={(Np—Da,+1,...,n}.

Forall 1 < j < N,, — 1, let A; be the event that {X; = 1,Vi € I;}. We have,

Py = ()" Q) G
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Next, we look at the probability of an event related to L,

P (L, < (1 —¢)logy(n)) < P (there exists at leastan ¢ € [j suchthat X; #1:1< j < N, — 1)

Np—1 o
1211 (1-P(4;) < (1- inll—s)N 3

J

Using Eq. (3.10), for large enough n, we have,

1 nf

1 1 \n/logs(n)
) i ZlOgQ(n))

P (Ln < (1—¢)logy(n) < (1-

If we sum up the right side of the above formula in n, we obtain a finite sum. Using Lemma 3.2.4 (1),
we find,

liminf —— >1—¢, as.
n—oo logy(n)

3.3 Sum of Independent Random Variables
3.3.1 Definition and Properties

If 11 and v are both probability measures on R?, we write v for the image measure of 1 ® v under the
function (z,y) + = +y. This means that the measure y * v has the following property: for any non-negative
measurable function ¢ on R we have,

Le@usv = [ ] o+ yuanpa). 6.1

Proposition 3.3.1: Let X and Y be two independent random variables on R%.

(1) The distribution of the random variable X +Y isPx x Py. In the case that both X andY have a
density, denoted respectively px and py, then X +Y also has a density which writes px * py .

(2) The characteristic function of the random variable X +Y writes ®x 1y (§) = @ x (§) Py (£). Equiv-
alently, Px x Py = @X@y.

(3) If X and Y are both square integrable, then Kx,yv = Kx + Ky. In the one-dimensional case
d =1, we have Var(X +Y') = Var(X) + Var(Y).

Proof :

(1) Since X andY are independent, we have P x y) = Px ®Py. So for any non-negative measurable
function ¢ on R?, from the definition of the operator * in Eq. (3.11), we have,

Elp(X+Y)] = [e(e+y)Prey)(dedy) = [ [ platyPx(d)Py(dy) = [o(:Bxy (d:)
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Next, if X and Y have a density,

Elp(X +Y)] //soerypx z)py (y dwdy—/so / )py(z—w)dﬂf)d

px *py (2)

so px * py is the density function of X + Y. We notice that since px and py are functions in
L' (R4, )\), so px * py is well defined almost everywhere, see Proposition 1.4.3.

(2) From Definition 2.4.12 and the independence between X and Y, we have,
Px1y(€) =El[exp(i& - (X +Y))] = Elexp(i¢ - X)]E[exp(i¢ - Y)] = ©x (§) Py (€)

(3) We write X and Y as X = (X1,...,Xy) and Y = (Y1, ...,Yy). Using their independence, for
alli,j € {1,...,d}, we have Cov(X;,Y;) = 0 and Cov(X; +Y;, X; +Y;) = Cov(X;, X;) +

Cov(Y;,Y}), meaning that Kx 1y = Kx + Ky. -

3.3.2 Examples

If all the terms in a sequence of independent random variables (X,),>1 have the same distribution, we
call it an i.i.d. sequence of random variables, standing for independent and identically distributed. It is not
hard to find the distribution of a sum of i.i.d. random variables, one may proceed using the characteristic
function or directly the definition in Eq. (3.11). Below we give a few examples, more examples being available
in Exercise 3.13, Exercise 3.14, and Exercise 3.15.

Proposition 3.3.2 : If (Xj)i1<k<n is a sequence of i.i.d. random variables where each term follows
the Poisson distribution of parameter A\, then X; + --- + X, is a Poisson distribution of parameter n\.
More generally, if (Xi)1<k<n is a sequence of independent Poisson random variables with parameters
Aly.-y An, then X1 + - - - + X, is a Poisson distribution of parameter A\; + - - - + A,,.

Proof : Let X; ~ Pois();) be independent random variables with Poisson distribution. We may com-
pute their characteristic functions,

=Y e Nt =% e (/\if)k =MD,

k>0 k>0

Therefore, the characteristic function of X := X7 + - - - + X, writes,

H(I)X A1+ A ) (elé— 1)

which we recognize as the characteristic function of Pois(A1 4 - -+ ;). By Theorem 2.4.15, we deduce
that X ~ Pois(A; + -+ + A\p). O
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Proposition 3.3.3 : If (X1 )1<k<n is a sequence of independent random variables such that for all 1 <
k < n, Xy has the Gaussian distribution of parameter (0, a,%), then X1 + --- + X,, has the Gaussian
distribution of parameter (0,02 + - - - + 02).

Proof : See Exercise 3.12. O

3.3.3 Law of Large Numbers

We will only discuss formally different notions of convergence of random variables in the next chapter.
However, with what we have learned so far, we can motivate and state some eaiser versions of this law.

Theorem 3.3.4 (Law of large numbers in L?) : Let (X,,),>1 be a sequence of uncorrelated real-valued
random variables with the same distribution. Suppose that E[X?] < co. Then we have,

|
(X4 Xn) —ES Elx).
n n—00

Proof : Using the linearity of the expectation, we have E[1(X; + ... X,,)] = E[X;]. Then from (3)
of Proposition 3.3.1, we have,

E [(%(X1 ot X)) — E[Xl]ﬂ - %Var(Xl Fo Xy, = %Var(Xl),

So when n — o0, the above formula goes to 0. |

Remark 3.3.5 : There are several different notions of convergence in a probability space that we will discuss
further in detail in Chapter 4. What we need to notice here is that, Theorem 3.3.4 is a weak version of the
law of large numbers. We note that the above convergence takes place only in L? space, but it is not a simple
convergence (G EEYEN)! up to a set of measure zero.

Proposition 3.3.6 : Let (X,,),>1 be an i.i.d. sequence of random variables with E[|X1|*] < cc. Then,

n—oo

1
~(Xi 4+ X) 22, B[X,].

Proof : If we replace X; with X; — E[X;] forall i € {1,...,n}, we notice that the new convergence
result that needs to be shown is equivalent to the original one. Thus, without loss of generality, we can
assume that all the random variables X; satisfy E[X;] = 0. First, we compute the fourth-order moment

'Or almost sure convergence, meaning that the convergence takes place with probability 1.
We also note that there is not any implication between L? convergence and a.s. convergence, so technically speaking one is not
stronger or weaker than the other.
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on the left-hand side,

E [(i(Xl +o +Xn))4} =1 Y E[X Xip Xy Xy,

1<iy,...,2a<n

Since (X}) is a sequence of independent random variables with zero expectation, in the above summa-
tion, most of the terms are zero. Indeed, when the quadruplet (i1, 2, i3, 4) is such that all the indices
are equal or 1 = i, i3 = i4 along with its permuations, the corresponding summation is not zero. The
former case appears n times and the latter case 3n(n — 1) times. Hence, we obtain,

1 4 1 4 22
E [<n(X1 ot X)) ] = F(nﬂ«: [X{] +3n(n - 1) E [X7X3]) < =
where C' < oo is a constant. Then, we have,

o5 (Gon )] - Safon s s )] <

n=1

where in the above formula, we inverted the expectation and series since all the terms in the series are
non-negative. This implies that the following series converges and is almost surely finite (4B FR),

> q 4
Z (H(Xl 4+ Xn)) < 00, a.s.,

n=1

so the terms in the series converges almost surely to zero. D

Corollary 3.3.7 : If (A,)n>1 are independent events of the same probability, then we have,

Remark 3.3.8 : Before the development of the modern probability, the probability that an event occurs used
to be interpreted as the frequency of its occurence in a series of independent random experiments. This
corollary shows that this interpretation does make sense using the modern approach.

Alternatively, if we want to determine the probability that a result A holds, we can conduct this experiment
repeatedly in an independent manner and compute the proportion of times where A holds. Then, with
probability one (almost sure convergence, strong law of large numbers), this quantity tends to P(A).

3.3.4 Convolution Semigroups

When we discuss Markov chains in Chapter 7 or continuous-time stochastic processes in the next semester,
the notion of convolution semigroup will be important. We introduce this notion and elementary properties
in this section.
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Assume that I = Z>g or I = Ry.

Definition 3.3.9 : Let (1 );cs be a family of probability measures on R or R? and indexed by I. We
call (¢)ses a convolution semigroup (VETEH-B¥) if

vt,t' e, t+t €l and ju* py = ppyp-

Lemma 3.3.10 : If there exists a function ¢ : R — C such that one of the following conditions holds,
() IfT =20, @(§) = (€)', Vtel,
(i) If I = Rxo , fi(§) = exp(—tp(§)), Vtel,

then, (u¢)ier is a convolution semigroup.

Proof : If /i is as described in the above lemma, then we have i,y = [ii/iy = fit * jip. We can use
the injectivity of the Fourier transform to deduce ;¢ = e * . O

Example 3.3.11:

(1) Suppose I = Z. Given p € [0, 1]. For all n > 1, let u,, be the Binomial distribution B(n, p).
From the interpretation of the Binomial distribution as a sum of i.i.d. Bernoulli random variables,
we clearly have i +m = pn * . Otherwise, we can also compute its characteristic function
and apply the above lemma, 3,,(¢) = (pe'¢ +1 — p)™.

(2) Suppose I = Rxg. Forallt > 0, let y; be the Poisson distribution of parameter ¢. We have,

%) tk ) )
VE>0, VEER, @) =) gelkfe_t = exp(—t(1 — €'%)).
k=0 """

(3) Suppose I = Rx. Forallt > 0, let u; be the Gaussian distribution N/ (0, ¢). From Lemma 2.4.14,
we have, )
t€

V>0, VEER, [u(§) =exp (-3

3.4 Some More Complicated Random Variables
Here we will use independence to construct some interesting tools in probability: multivariate normal

distribution and Poisson process.

3.4.1 Multivariate Normal Distribution
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The goal of this subsection is to extend the notion of Gaussian distribution to higher dimensions. The
following proposition defines the notion of multivariate normal distribution, gives its important properties,
and the canonical way to construct it.

Proposition 3.4.1:Let X = (Xi,...,X ) be a d-dimensional real-valuded random variable. We
want to show that the following three conditions are equivalent. Moreover, when one of the conditions is
satisfied, we say that X has a multivariate normal distribution (% 7G5 RE53 #h).

(i) There exist a d-dimensional real-valued random variable Z = (Z,...,Zy) such that the como-
nents are i.i.d. standard normal distributions, a square matrix A of size d x d and a vector B € R?

such that X @ AZ + B.

(ii) For any a € R?, the random variable o™ X also has a normal distribution.

(iii) There exist a semi-definite symmetric matrix ¥ of size d x d and a vector B € R? such that the
characteristic function of X writes,

Dy (&) =E [€4%] =exp (1TB — L1¢Tx¢).

Moreover, the vector B = E[X] is the expectation of X, the matrix ¥ = AAT = Kx is the covariance
matrix of X.

Proof : Show that (i) = (ii). We can show that the expecatation of X is given by B and the covariance
matrix by AAT . Then, take o € RY, the distribution of a7 X = S o; X; will be N (()zTB7 aTAATa).

Show that (ii) == (iii). Given ¢ € R%. Since ¢7 X is still a normal distribution, write m = ¢7 E[X]
and 02 = ¢T K x¢ for its expecatation and variance. We know that

©x(€) = exp(i¢” E[X] — 56T Kx).

Hence, we can take B =E[X]| and ¥ = K.

Show that (iii) = (i). Since X is a semi-definite symmetric matrix, there exists an orthogonal matrix
P and a diagonal matrix D such that ¥ = PDP”. Given iid. random variables Z1, ..., Z; with the
standard normal distribution. Consider A = P+/D, then we can compute the characteristic function
of AZ + B and show that it is equal to P x. 0

Proposition 3.4.2: Let X = (X1,...,X,) be a d-dimensional multivariate normal distribution with
expectation B and covariance matrix X. If ¥ is invertible, then the density function of X writes,

exp(—(x—B,X ' (x— B
Px(dz) = P (22<7r)d/2det(A()\ )>)d:171...d1;n.

Proof : Since ¥ is a semi-definite matrix, we may find an orthogonal matrix P and a diagonal matrix

D such that ¥ = PDPT, then we define A = P+v/D. By the definition, the properties, and the

d
construction in Proposition 3.4.1, we know that X @ AZ + B where Z = (Zy,...,7Zy) are iid.
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standard normal random variables. The density function of Z writes

(2) = exp (=5 l2ll3) _ exp (= 50+ +27))
PrA = " omar (2m)i? '

Vz € RY,

Given a non-negative measurable function f : R? — R, we have

E[f(X)] = E[f(AZ + B)] = /

R
= /Rd f(@)pz(A™ (z — B))|det(A)| "' dzy ... da,,

) f(Az+ B)pz(z)dz ...dz,

where in the second equality, we apply the change of variables x = Az + B, and the fact that under the
map z — Az + B, the set R? is diffeomorphic with itself, since A is invertible. Since the above identity
holds for all non-negative measurable functions, we deduce the density function of X by Remark 2.1.16,

pz(A~'(z - B))
| det(A)]
exp (— %(m - B, (AHYTA (2 — B)))
@) 2] det(A)]
exp (— bl — B2 o~ B)
(2m)4/2| det(A)]

Vz € RY, px(z) =

3.4.2 Poisson Process

We want to describe the behavior of random events occurring in time. We may want to know, for instance,
when these events occur; or at a given fixed time, how many random events have already occured. This can
be formulated as below. Given a sequence of random variable (X;);>; where each X; describes the waiting
time between two successive events ¢ — 1 and ¢; .5), gives the total waiting time for the n-th event to happen;
N; gives the total number of events that have occured by time ¢ (including time ). We give a mathematical
formulation below.

Let (X;);>1 be i.i.d. random variables with exponential distribution Exp(1) defined on a probability space
(Q, A, P). Define Sp = 0 and
Vn e N, Sp=X1++ X,.

We know from Exercise 3.14 that S,, follows the Gamma distribution I'(n, 1). In this subsection, we will
discuss the following stochastic process (FE#:812),

Vi >0, Ny:=max{n>0:S5, <t} =max{n>0:X;+ -+ X, <t} e NU{0}, (3.12)

called Poisson process (TH¥X3@F2). It is not hard to see that ¢ — IV, is a (random) non-decreasing function.

Proposition 3.4.3 : We have the following properties.
(1) (Sn)n>o is almost surely a strictly increasing sequence, and diverges to 0o almost surely.

(2) The law of large numbers holds, % 25 1.
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Proof :
(1) First, due to
Vi>1, P(X; >0) =1,

and the fact that there are countably many events, we find
P(Vi20,5i<8i+1):1 < OZSQ<51<SQ<...,a.S.

Then, by the second part of the Borel-Cantelli lemma, we know that for any fixed o > 0, we
have

ZIP’(XZ- > a) = oo,

i>1
using the independence of (X,,),>1, we deduce that there exist infinitely many n > 1 such that
X, > a, implying S,, > oo.

(2) We use the law of large numbers in L* as stated in Proposition 3.3.6 to conclude

Sn as, E[X;] = 1.
n

Proposition 3.4.4 : Fixt > 0, then N; ~ Pois(t) follows the Poisson distribution of parametert.

Remark 3.4.5: As a direct consequence of Example 3.3.11 (2), the family of distributions (P, )¢>0 forms a

convolution semigroup.

Proof : Fix a positive real number ¢ > 0 and a non-negative integer n > 0, we have

. n—1_—x
T e _
= / L e ey dady
R>0 R>0

I'(n)
xn—le—x
= —1 / e Y1y dydx
xnflefx n
— 1 —(t—x) dr = —ti’
ey D(n) <€ T

where in the second equality, we use the property that S, 11 = S, +X,,11 is the sum of two independent
random variables with S,, ~ I'(n, 1); in the third equality, we use the Fubini’s theorem. O

Proposition 3.4.6 : The stochastic process t — Ny is almost surely a cadlag (continue a droite, limite a
gauche) function on R>, which means right-continuous with left limits.
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Remark 3.4.7 : We note that the two following properties on the right continuity are different,

(Vs >0, limN; = Ns) as. & P (Vs >0, limN; = Ns> =1,
t—s t—s
t>s t>s

Vs > 0, (lim N; exists a.s.) & Vs> 0, P (lim Ny = NS) =1.
t—s t—s

t<s t>s

In general, the first one is stronger than the second one due to the fact that R is uncountable. We need to
bear in mind the way we put the parentheses can change the meaning of a statement.

Proof : We need to prove the following two properties,

(Vs >0, limN;= N8> a.s.,
t—s

t>s

<V5>0, lim Vy exists) a.s.
t—s
t<s

For T' > 0, let us show that ¢ — N is almost surely a cadlag function on [0, T']. Proposition 3.4.4 tells
us that Ny follows Pois(7"), which is finite almost surely. Let Q7 € A with P(Q7) = 1 such that

Yw € Qp, Np < .

For w € Qrp, the function ¢ — N is non-decreasing and bounded on [0, 7], so the left limit exists
everywhere. For w € Qr and s € [0,7), let n := n(w) such that Ny = n, which is equivalent to
Sp < sand Sp4+1 > s. This means that for u € [s, Sy,+1) # &, we need to have N,, = n as well, which
implies the right-continuity.

We conclude by noting that P(Q') = 1 with @' := N7, Qr, and on ', the function ¢ — Ny is
cadlag on [0, T'] for every integer 7' > 1. In consequence, the function ¢ — V; is cadlag on R>( almost
surely. O

Lemma 3.4.8 : Let (Ns)s>0 be a Poisson process and t > 0. Define the shifted process (Ns(t))sgo as
below,

Vs>0, N®:=Ny,—N.

Then, (N, gt))@o is a Poisson process that is independent from N.

Proof : We fix ¢ > 0 and consider the Poisson process from time ¢. Starting from time ¢, we need to

wait Sy, +1 — t for the following event to occur, then we need to wait Xy, 42, Xn,+3, .. .. Thus, let us
define

XY) = SNy+1 — 1,

vn>2, XU = Xnin.

n
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For any s > 0, we have
N® = Npyy— Ny =max{m >0: X\ + ... 4+ X0 < s},

We may note that this definition is very similar to that of Eq. (3.12). If we can prove that for all non-
negative integer n > 0, the following hold:

(a) the event {N; = n} and the sequence (ant))m% of random variables are independent, and

(b) under the event { N; = n}, the sequence (X;,ﬁ))m% is also an i.i.d. sequence of random variables
with exponential distribution of parameter 1,

then not only we will have proven the independence between N(*) = (N, S(t))s>0 and Ny, but also the
equality in distribution between (N&(t) = Nits — N¢)s>0 and the original process (Ny)>o.

Fix a non-negative integer n > 0. First, due to the equality {V; = n} = {5, <t < Sp+1}, we know
that {/V; = n} only depends on (X;)1<i<n+1, so is independent from (X;);>p+2. Then, we discuss the
independence between {N; = n} and Sp+1 —t = X141 + Sp, — t. Fix y > 0, we have

]P’(Nt:n,Sn+1—t>y):IF’(Sngt,Xn_H >t+y—Sn)

:/R V() Lot P( Xy > t+y—2x)de
>0

= ()Lt P(Xpp1 >t — 2) P( X1 > y)do

R0
= e YP(Sy < t, X1 >t — Sp)
= e YP(S, <t < Spat),

where in the first line, we use the inclusion {S,11 > t + y} C {Sp+1 > t}; in the second line,
we write v, (x) for the density function of S;, ~ I'(n,1); in the third line, we use the memoryless
property of exponential random variables. Therefore, the above computation implies that {N; = n}
and Sp,11 —t = X,,11 + S, — t are independent, and that S,,y; — ¢t ~ Exp(1). Since S, 1 — ¢ only
depends on (X;)1<i<n+1, 0 is also independent from (X;);>pn+2- O

Proposition 3.4.9 : The Poisson process (N¢):>0 has the two following properties.

(1) Fix time points 0 = tg < t; < --- < ty, the increments (Ny, ., — Ny, )o<i<k—1 of the stochastic
process is an independent sequence.

(2) The increments of the Poisson process follow a Poisson distribution. More precisely, fix 0 < s < t,
we have

Vn > 0, P(N; — Ns =n) = e_(t_s)@.
n!

Proof :
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(1) In consequence, for any sequence (1m;)1<;<k of non-negative integers, by Lemma 3.4.8, we find

P (N = Niy =mig1,0<i <k —1)
=P (Noy = ma, N1 = N =iy, 1< < kb - 1)
—P (Nt1 — ml) P (N“l) ~ N = mi,1<i <k - 1),

tiy1

Finally, by induction, we find
k—1
P (Niypy = Ny =mint,0<i <k —1) = [T P (Nipyy = Ny = miga).
i=0

which is exactly what we need to show for the property (1).

(2) We use the property (1) and Proposition 3.4.4 to deduce the result.
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