隨機變數的獨立性

第一節 不同的獨立概念

在後面的章節中,我們將討論這學期課程中,最重要的兩個定理:大數定理(定理 4.3.1)及中央極限定理(定理 4.5.3)。要討論並且敘述這兩個定理前,我們要先定義不同的獨立的概念,其中包含獨立事件(定義 3.1.1)、獨立 σ 代數(定義 3.1.5)以及獨立隨機變數(定義 3.1.6)。

第一小節 獨立事件

在這章節,我們考慮一機率空間 $(\Omega, \mathcal{A}, \mathbb{P})$ 。

設 $A, B \in \mathcal{A}$,若

$$\mathbb{P}(A \mid B) \stackrel{\text{(def)}}{=} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A). \tag{3.1}$$

則我們稱 A 與 B 為獨立事件 (independent events) 獨立概念,換句話說,「知道事件 B 為真,並不影響 A 事件發生的機率」。但要能夠寫出式 (3.1),我們需要要求 $\mathbb{P}(B)>0$,且此式子中的條件並不滿足對稱性,因此我們可以改用下列方式來定義兩個獨立事件的概念:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B). \tag{3.2}$$

從式 (3.2) 我們也可以注意到,若 A 與 B 為獨立事件,則不難驗證

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(B) - \mathbb{P}(A) \,\mathbb{P}(B)$$
$$= (1 - \mathbb{P}(A)) \,\mathbb{P}(B) = \mathbb{P}(A^c) \,\mathbb{P}(B), \tag{3.3}$$

所以 A^c 與 B 也是獨立事件。

更一般的情況,當我們有多於兩事件,甚至是無窮多個事件的情況下,我們給出下列定義。

定義 3.1.1 : 給定任意集合 I ,對於所有 $i \in I$,固定 $A_i \in A$ 。若對於所有有限的子集合 $J \subseteq I$,我們有

$$\mathbb{P}\left(\bigcap_{j\in J} A_j\right) = \prod_{j\in J} \mathbb{P}(A_j),\tag{3.4}$$

則我們說由 I 所標記的事件組 $(A_i)_{i\in I}$ 是獨立的。此外,我們也稱 $(A_i)_{i\in I}$ 為<u>獨立事件</u> (independent events) 。

問題 3.1.2:給定 n 個事件 $A_1,\ldots,A_n\in\mathcal{A}$,試問若只有下列其中一個條件成立,則 A_1,\ldots,A_n 是否 會是獨立事件?

- $\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \dots \mathbb{P}(A_n)$;
- 對於任何數對 $1 \leqslant i < j \leqslant n$, 我們有 $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \mathbb{P}(A_j)$ 。

在當我們只有有限多個事件的情況下,下列命題給了另一個等價於定義定義 3.1.1 的條件。

命題 3.1.3 : 給定事件 $A_1, \ldots, A_n \in \mathcal{A}$,則下列兩個敘述等價:

- (i) 事件 A_1, \ldots, A_n 為獨立事件;
- (ii) 對於每個 $1 \leq i \leq n$,選擇 B_i 為集合 $\{\emptyset, A_i, A_i^c, \Omega\}$ 中的任意事件,我們有

$$\mathbb{P}(B_1 \cap \ldots \cap B_n) = \mathbb{P}(B_1) \ldots \mathbb{P}(B_n). \tag{3.5}$$

證明:首先我們證明 (ii) \Longrightarrow (i)。我們可以注意到,命題中式 (3.5) 所要求的條件,比定義 3.1.1 中式 (3.4) 所要求的條件還要強;所以當式 (3.5) 成立時,式 (3.4) 也會成立。更確切的說,在式 (3.5) 中,若 $i \in J$,取 $B_i = A_i$;反之則取 $B_i = \Omega$,即可以得到式 (3.4)。

再來我們要證明 (i) \Longrightarrow (ii)。若存在 B_i 使得 $B_i=\varnothing$,則式 (3.5) 左右兩側皆為 0,得證。若存在 B_i 使得 $B_i=\Omega$,則在式 (3.5) 的左側,我們可以移除 B_i 而不影響交集;在其右側, $\mathbb{P}(B_i)=1$ 並不影響乘積的結果,因此只需要證明:對於 $\{1,\ldots,n\}$ 的任何子集合 $\{j_1,\ldots,j_p\}$,當 $B_{j_k}=A_{j_k}$ 或是 $A_{j_k}^c$ 時,我們有

$$\mathbb{P}(B_{i_1} \cap \cdots \cap B_{i_n}) = \mathbb{P}(B_{i_1}) \dots \mathbb{P}(B_{i_n}).$$

要證明這項結果,只需要證明:若 C_1,\ldots,C_p 為獨立事件,則 C_1^c,C_2,\ldots,C_p 也是獨立事件,這可以透過與式(3.3)中相似的計算而得到。

$$\forall i \in I, \qquad B_i = \begin{cases} A_i^c & \text{ if } i \in J, \\ A_i & \text{ if } i \notin J, \end{cases}$$

則 $(B_i)_{i\in I}$ 也是獨立事件組。

證明:這是使用命題 3.1.3 可以得到的直接結果。

第二小節 獨立 σ 代數及獨立隨機變數

前面探討的是可測事件的獨立性,接下來我們要討論 σ 代數的獨立性以及隨機變數的獨立性。

定義 3.1.5 : 令 $\mathcal{B}_1, \ldots, \mathcal{B}_n$ 為 n 個 A 的子 σ 代數。若

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \dots \mathbb{P}(A_n), \qquad \forall A_1 \in \mathcal{B}_1, \dots, \forall A_n \in \mathcal{B}_n,$$

則說 $\mathcal{B}_1, \ldots, \mathcal{B}_n$ 為獨立 σ 代數 (independent σ -algebras) 。

定義 3.1.6 : 令 X_1, \ldots, X_n 分別為取值在 $(E_1, \mathcal{E}_1), \ldots, (E_n, \mathcal{E}_n)$ 中的隨機變數。若 $\sigma(X_1), \ldots, \sigma(X_n)$ 為獨立 σ 代數,我們說 X_1, \ldots, X_n 為獨立隨機變數 (independent random variables)。

註解 3.1.7 : 透過命題 3.1.3 中的 (2),我們得知若且唯若事件 A_1,\ldots,A_n 獨立,則隨機變數 $\mathbb{1}_{A_1},\ldots,\mathbb{1}_{A_n}$ 也是獨立的。

註解 3.1.8 : X_1, \ldots, X_n 為獨立隨機變數與下列性質等價:

$$\forall F_1 \in \mathcal{E}_1, \dots, \forall F_n \in \mathcal{E}_n, \qquad \mathbb{P}(\{X_1 \in F_1\} \cap \dots \cap \{X_n \in F_n\}) = \mathbb{P}(X_1 \in F_1) \dots \mathbb{P}(X_n \in F_n)$$
 (3.6)

若 X_1, \ldots, X_n 分別是值域為 $(E_1, \mathcal{E}_1), \ldots, (E_n, \mathcal{E}_n)$ 的隨機變數,則 n 元組 (X_1, \ldots, X_n) 是個值域 為 $E_1 \times \ldots, E_n$ 且對 σ 代數 $\mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_n$ 可測的隨機變數。下面我們有另一種描述獨立隨機變數的方式。

定理 3.1.9 : 給定隨機變數 X_1, \ldots, X_n ,則下列三個性質等價。

- (i) 隨機變數 X_1, \ldots, X_n 為獨立隨機變數。
- (ii) n 元組隨機變數 (X_1, \ldots, X_n) 的分佈為隨機變數 X_1, \ldots, X_n 分佈的乘積,也就是說

$$\mathbb{P}_{(X_1,\ldots,X_n)} = \mathbb{P}_{X_1} \otimes \ldots \otimes \mathbb{P}_{X_n}.$$

(iii) 對於所有 $i \in \{1, ..., n\}$ 以及任意在 (E_i, \mathcal{E}_i) 之上的非負可測函數 f_i ,我們有

$$\mathbb{E}\left[\prod_{i=1}^{n} f_i(X_i)\right] = \prod_{i=1}^{n} \mathbb{E}\left[f_i(X_i)\right]. \tag{3.7}$$

註解 3.1.10 : 若可測函數 f_i 未必非負,若對於所有的 $i \in \{1, \dots, n\}$,我們有 $\mathbb{E}\left[|f_i(X_i)|\right] < \infty$,在此假設情況下,式 (3.7) 仍然為真。

註解 3.1.11 : 我們可以觀察到,若 X_1, \ldots, X_n 為在可積的獨立隨機變數,則他們的乘積 $X_1 \ldots X_n$ 仍然可積;但在一般情況下,可積變數的乘積未必是可積的。

證明:我們以下列方式來證明 (i) 與 (ii) 是等價的。對於所有 $i \in \{1, ..., n\}$,令 $F_i \in \mathcal{E}_i$ 。我們有下列兩個式子:

$$\mathbb{P}_{(X_1,\dots,X_n)}(F_1\times\dots\times F_n) = \mathbb{P}(\{X_1\in F_1\}\cap\dots\cap\{X_n\in F_n\}),$$

$$\mathbb{P}_{X_1}\otimes\dots\otimes\mathbb{P}_{X_n}(F_1\times\dots\times F_n) = \prod_{i=1}^n \mathbb{P}_{X_i}(F_i) = \prod_{i=1}^n \mathbb{P}(X_i\in F_i).$$

從上式與式 (3.6) 可以得知,若且唯若 X_1,\ldots,X_n 為獨立隨機變數,則 $\mathbb{P}_{(X_1,\ldots,X_n)}$ 與 $\mathbb{P}_{X_1}\otimes\ldots\otimes\mathbb{P}_{X_n}$ 在所有的 $F_1\times\cdots\times F_n$ 上有相同的值。單調類引理告訴我們(定理 1.4.1),在積可測空間上的測度,是被所有 $F_1\times\cdots\times F_n$ 所決定,也就是說,獨立性質 $\mathbb{P}_{(X_1,\ldots,X_n)}=\mathbb{P}_{X_1}\otimes\ldots\otimes\mathbb{P}_{X_n}$ 等價。

接著,我們證明 (ii) 與 (iii) 是等價的。對於所有 $1 \le i \le n$,我們固定取值在 (E_i, \mathcal{E}_i) 上的非負可測函數 f_i 。我們有

$$\mathbb{E}\left[\prod_{i=1}^n f_i(X_i)\right] = \int_{E_1 \times ... \times E_n} \prod_{i=1}^n f_i(x_i) \mathbb{P}_{(X_1, ..., X_n)}(\mathrm{d}x_1 ... \mathrm{d}x_n),$$

並透過富比尼定理,我們有

$$\prod_{i=1}^{n} \mathbb{E}\left[f_{i}(X_{i})\right] = \prod_{i=1}^{n} \int_{E_{i}} f_{i}(x_{i}) \,\mathbb{P}_{X_{i}}(\mathrm{d}x_{i})$$

$$= \int_{E_{1} \times \ldots \times E_{n}} \prod_{i=1}^{n} f_{i}(x_{i}) \,\mathbb{P}_{X_{1}}(\mathrm{d}x_{1}) \ldots \,\mathbb{P}_{X_{n}}(\mathrm{d}x_{n})$$

$$= \int_{E_{1} \times \ldots \times E_{n}} \prod_{i=1}^{n} f_{i}(x_{i}) \,\mathbb{P}_{X_{1}} \otimes \ldots \otimes \mathbb{P}_{X_{n}}(\mathrm{d}x_{1} \ldots \mathrm{d}x_{n}).$$

因此我們可以得到等價關係。

註解 3.1.12 【有限多個獨立隨機變數的構造】: 此定理也間接告訴我們如何構造獨立的隨機變數。 考慮實變數的情況,並假設 μ_1,\ldots,μ_n 為 $\mathbb R$ 上的機率測度,定理 1.4.1 (積測度的構造)以及註解 2.1.11 (隨機變數的正則構造),讓我們可以構造值域為 $\mathbb R^n$ 的隨機變數 $Y=(Y_1,\ldots,Y_n)$ 使得他的分佈為 $\mu_1\otimes\cdots\otimes\mu_n$ 。上述定理告訴我們,這樣構造出來的隨機變數 Y 其中的分量 Y_1,\ldots,Y_n 是分佈分別為 μ_1,\ldots,μ_n 的獨立隨機變數。

最後修改: 2025年 10月 21日 15:48

系理 3.1.13 : 若 X_1 及 X_2 為在 L^2 中且互為獨立的實隨機變數,則我們有 $Cov(X_1, X_2) = 0$ 。

註解 3.1.14 : 此系理的逆命題是錯的。當兩個隨機變數的變異數為零,我們稱他們<u>互不相關</u>,但這並不代表他們是獨立的。

問題 3.1.15:構造兩個隨機變數 X 及 Y 使得 $\mathrm{Cov}(X,Y)=0$ 但 X 與 Y 並不獨立。在習題 3.20 中,我們會看到在某特定的條件下, $\mathrm{Cov}(X,Y)=0$ 蘊含 X 與 Y 獨立。

(1) 假設對於所有 $i \in \{1,\ldots,n\}$, X_i 是有密度的分佈,將其密度函數記作 p_i ,並假設 X_1,\ldots,X_n 為獨立隨機變數。這樣的情況下, (X_1,\ldots,X_n) 是個有密度的分佈,而且其 密度函數可以寫作

$$p(x_1,\ldots,x_n)=\prod_{i=1}^n p_i(x_i).$$

(2) 反之,假設 (X_1,\ldots,X_n) 是個有密度的分佈,而且其密度函數可以寫作

$$p(x_1,\ldots,x_n) = \prod_{i=1}^n q_i(x_i),$$

其中函數 q_i 為 $\mathbb R$ 上的非負可測函數,則 X_1,\dots,X_n 為獨立隨機變數,而且對於所有的 $i\in\{1,\dots,n\}$, X_i 是個有密度的分佈,且存在常數 $C_i>0$,使得其密度函數 p_i 滿足 $p_i=C_iq_i$ 。

證明:(1) 為定理 3.1.9 及富比尼定理的應用,因為若 $\mathbb{P}_{X_i}(\mathrm{d}x_i)=p_i(x_i)\,\mathrm{d}x_i$,則我們可以將積測度寫作

$$\mathbb{P}_{X_1} \otimes \ldots \otimes \mathbb{P}_{X_n} (\mathrm{d} x_1 \ldots \mathrm{d} x_n) = \left(\prod_{i=1}^n p_i(x_i) \right) \mathrm{d} x_1 \ldots \mathrm{d} x_n.$$

接著證明 (2)。對於所有 $i\in\{1,\ldots,n\}$,令 $K_i=\int q_i(x)\,\mathrm{d}x\in(0,\infty)$ 。我們首先注意到,富比尼定理給出

$$\prod_{i=1}^{n} K_i = \prod_{i=1}^{n} \left(\int q_i(x) \, \mathrm{d}x \right) = \int_{\mathbb{R}^n} p(x_1, \dots, x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n = 1.$$

接著,根據命題 ${f 2.1.18}$,我們可以計算 $X=(X_1,\ldots,X_n)$ 的邊緣分佈,也就是說 X_i 的分佈可以寫作

$$p_i(x_i) = \int_{\mathbb{R}^{n-1}} p(x_1, \dots, x_n) \, dx_1 \dots dx_{i-1} \, dx_{i+1} \dots dx_n = \Big(\prod_{i \neq i} K_i \Big) q_i(x_i) = \frac{1}{K_i} q_i(x_i).$$

從上式我們可以得到 $\mathbb{P}_{(X_1,\ldots,X_n)}=\mathbb{P}_{X_1}\otimes\ldots\otimes\mathbb{P}_{X_n}$,也就是隨機變數的獨立性。

問題 3.1.17:令 X_1, \ldots, X_n 為實隨機變數,我們有下列等價關係:

- (i) X_1, \ldots, X_n 為獨立隨機變數。
- (ii) 對於任意 $a_1, \ldots, a_n \in \mathbb{R}$,我們有 $\mathbb{P}(X_1 \leqslant a_1, \ldots, X_n \leqslant a_n) = \prod_{i=1}^n \mathbb{P}(X_i \leqslant a_i)$ 。
- (iii) 若 f_1, \ldots, f_n 為緊緻支撐 (compactly supported),由 \mathbb{R} 映射到 $\mathbb{R}_{\geq 0}$ 上的連續函數,則

$$\mathbb{E}\left[\prod_{i=1}^{n} f_i(X_i)\right] = \prod_{i=1}^{n} \mathbb{E}\left[f_i(X_i)\right].$$

(iv) X 的特徵函數可以寫作

$$\Phi_X(\xi_1, \dots, \xi_n) = \prod_{i=1}^n \Phi_{X_i}(\xi_i).$$

下列命題是單調類引理的應用,需要點技巧性,但在後續非常實用。

命題 3.1.18 : 令 $\mathcal{B}_1,\ldots,\mathcal{B}_n$ 為 \mathcal{A} 的子 σ 代數。對於所有 $i\in\{1,\ldots,n\}$,設 $\mathcal{C}_i\subseteq\mathcal{B}_i$ 為一在有限 交集下封閉的子集合,包含元素 Ω 且 $\sigma(\mathcal{C}_i)=\mathcal{B}_i$ 。若

$$\forall C_1 \in \mathcal{C}_1, \dots, \forall C_n \in \mathcal{C}_n, \quad \mathbb{P}(C_1 \cap \dots \cap C_n) = \mathbb{P}(C_1) \dots \mathbb{P}(C_n),$$

則 $\mathcal{B}_1, \ldots, \mathcal{B}_n$ 為獨立 σ 代數。

證明:首先,讓我們固定 $C_2 \in C_2, \ldots, C_n \in C_n$ 並設

$$\mathcal{M}_1 = \{B_1 \in \mathcal{B}_1 : \mathbb{P}(B_1 \cap C_2 \cap \cdots \cap C_n) = \mathbb{P}(B_1) \, \mathbb{P}(C_2) \dots \mathbb{P}(C_n) \}.$$

我們有 $\mathcal{C}_1\subseteq\mathcal{M}_1$ 且我們可以檢查, \mathcal{M}_1 為單調類,因此根據單調類引理, \mathcal{M}_1 包含 $\sigma(\mathcal{C}_1)=\mathcal{B}_1$ 。因此我們證明了,如果 $\mathcal{C}_1,\dots,\mathcal{C}_n$ 為獨立 σ 代數,則 $\sigma(\mathcal{C}_1),\mathcal{C}_2,\dots,\mathcal{C}_n$ 也是獨立的 σ 代數。接著根據歸納法,將上述證明應用在 $\mathcal{C}_2,\dots,\mathcal{C}_n,\sigma(\mathcal{C}_1)$ 以證明 $\sigma(\mathcal{C}_2),\mathcal{C}_3,\dots,\mathcal{C}_n,\sigma(\mathcal{C}_1)$ 為獨立的 σ 代數,依此類推。

問題 3.1.19:令 $\mathcal{B}_1, \ldots, \mathcal{B}_n$ 為獨立 σ 代數。對於 $n_0 = 0 < n_1 < \cdots < n_p = n$,下列 σ 代數是獨立的:

$$\mathcal{D}_{1} = \mathcal{B}_{1} \vee \cdots \vee \mathcal{B}_{n_{1}} \stackrel{\text{(def)}}{=} \sigma(\mathcal{B}_{1}, \dots, \mathcal{B}_{n_{1}}),$$

$$\mathcal{D}_{2} = \mathcal{B}_{n_{1}+1} \vee \cdots \vee \mathcal{B}_{n_{2}},$$

$$\vdots$$

$$\mathcal{D}_{p} = \mathcal{B}_{n_{p-1}+1} \vee \cdots \vee \mathcal{B}_{n_{p}}.$$

第三小節 無窮多個隨機變數的獨立性

接下來,我們要在有無窮多個隨機變數的情況下,定義獨立性的概念。這可以被簡化為在所有有限子集合上的獨立性。

定義 3.1.20 :

- (1) 令 $(B_i)_{i\in I}$ 為由 I 所標記、且由 A 的子 σ 代數所構成的序列。若對於 I 的任意有限集合 $\{i_1,\ldots,i_p\}$, $\mathcal{B}_{i_1},\ldots,\mathcal{B}_{i_p}$ 為獨立的 σ 代數,則我們說 $(B_i)_{i\in I}$ 是由獨立 σ 代數構成的集合。
- (2) 同樣的,若 $(X_i)_{i\in I}$ 為由任意隨機變數構成的集合,若 $(\sigma(X_i))_{i\in I}$ 由獨立 σ 代數,我們稱 $(X_i)_{i\in I}$ 為由獨立隨機變數構成的集合。

命題 3.1.21 : 令 $(X_n)_{n\geqslant 1}$ 為獨立隨機變數序列。對於任意正整數 $p\geqslant 1$,以及兩兩互斥的正整數子集合 $I_1,\ldots,I_p\subseteq\mathbb{N}$,由下列式子定義的

$$\forall k = 1, \dots, p, \quad \mathcal{B}_k = \sigma(X_i : i \in I_k)$$

為獨立 σ 代數。

證明:對 $1 \leq k \leq p$,令

$$C_k = \bigcup_{\substack{J \subseteq I_k \\ I \text{ Table}}} \sigma(X_j : j \in J) \subseteq \mathcal{B}_k.$$

根據問題 3.1.19 ,對於任意有限子集合 $J_1\subseteq I_1,\ldots,J_p\subseteq I_p$, σ 代數 $\sigma(X_j:j\in J_1),\ldots,\sigma(X_j:j\in J_p)$ 是獨立的。接著,根據命題 3.1.18 ,我們得到 $\mathcal{B}_1=\sigma(\mathcal{C}_1),\ldots,\mathcal{B}_p=\sigma(\mathcal{C}_p)$ 也是獨立 σ 代數。

系理 3.1.22 : 令 $(X_n)_{n\geqslant 1}$ 為獨立隨機變數序列,其中對於 $n\geqslant 1$, X_n 取值在可測空間 (E_n,\mathcal{E}_n) 中。令 $(I_n)_{n\geqslant 1}$ 是個由兩兩互斥 $\mathbb N$ 的子集合所構成的序列,且 $(f_n)_{n\geqslant 1}$ 為可測函數序列,其中對於 $n\geqslant 1$, f_n 定義在 $F_n:=\prod_{i\in I_n}E_i$ 上。那麼下列隨機變數是獨立的:

$$\forall n \geqslant 1, \quad Z_n = f_n(X_i : i \in I_n).$$

在註解 3.1.12 中,我們解釋了如何構造有限多個獨立隨機變數。再來,我們要解釋當我們有無窮可數多個獨立隨機變數時,如何達成這樣的構造。

引理 3.1.23 : 令 $Y \sim \mathrm{Unif}([0,1])$ 為 [0,1] 上均匀分佈的隨機變數。那麼 Y 的二元展開式,記作

$$Y = 0.Y_1 Y_2 \dots = \sum_{n \ge 1} 2^{-n} Y_n, \quad Y_n \in \{0, 1\}, \ \forall n \ge 1$$
(3.8)

會滿足下列性質。

- (1) 式 (3.8) 中的展開式殆必唯一。
- (2) 隨機變數 $(Y_n)_{n\geqslant 1}$ 獨立,且每項的分佈都是 $\mathrm{Ber}(\frac{1}{2})$ 。

證明:不要忘記,二元展開可以藉由下列方式得到:

$$Y_1 = \lfloor 2Y \rfloor,$$
 $X_1 = 2Y - \lfloor 2Y \rfloor = 2Y - Y_1,$ $\forall n \geqslant 1, \quad Y_{n+1} = \lfloor 2X_n \rfloor,$ $X_{n+1} = 2X_n - Y_{n+1}.$

直接使用歸納法,我們也可以改寫:

$$\forall n \geqslant 1, \quad Y_n = \left[2^n Y - \sum_{k=1}^{n-1} 2^{n-k} Y_k \right].$$
 (3.9)

(1) 對於 $x \in [0,1)$,他會有兩個不同的二元展開式,若且唯若他是個二元有理數 $\frac{m}{2^n}$,其中 $n \ge 1$ 以及 $0 \le 1 \le 2^n - 1$ 為整數。這可以藉由下列關係式來得到:

$$\forall n \in \mathbb{N}, \qquad \frac{1}{2^n} = \sum_{k \geqslant n+1} \frac{1}{2^k}.$$

最後,我們注意到,由二元有理數構成的子集合,測度為零:

$$\mathbb{P}\left(\bigcup_{n\geq 1}\bigcup_{m=0}^{2^n-1}\left\{\frac{m}{2^n}\right\}\right)=0.$$

(2) 首先,讓我們檢查 Y_1 和 X_1 的分佈。 Y_1 跟從 $Ber(\frac{1}{2})$ 的分佈:

$$\mathbb{P}(Y_1 = 0) = \mathbb{P}(Y \in [0, \frac{1}{2})) = \frac{1}{2}.$$

對於 $0 \le a < b < 1$,我們有

$$\mathbb{P}(X_1 \in [a, b]) = \mathbb{P}(X_1 \in [a, b], Y_1 = 0) + \mathbb{P}(X_1 \in [a, b], Y_1 = 1)$$

$$= \mathbb{P}(Y \in [\frac{a}{2}, \frac{b}{2}]) + \mathbb{P}(Y \in [\frac{a+1}{2}, \frac{b+1}{2}])$$

$$= (\frac{b}{2} - \frac{a}{2}) + (\frac{b+1}{2} - \frac{a+1}{2}) = b - a.$$

因此, X_1 跟從 [0,1] 上的均匀分佈。使用數學歸納法,我們得知對於所有 $n\geqslant 1$,我們有 $Y_n\sim \mathrm{Ber}(\frac{1}{2})$ 。

令 $n\geqslant 1$ 為整數。我們想要檢查 $(Y_k)_{1\leqslant k\leqslant n}$ 是獨立的隨機變數。令 $m_1,\ldots,m_n\in\{0,1\}$ 並計算

$$\mathbb{P}(Y_{\ell} = m_{\ell}, \forall \ell = 1, \dots n) = \mathbb{P}\left(\left[2^{\ell}Y - \sum_{k=1}^{\ell-1} 2^{\ell-k} m_{k}\right] = m_{\ell}, \forall \ell = 1, \dots n\right)$$

$$= \mathbb{P}\left(m_{\ell} \leqslant 2^{\ell}Y - \sum_{k=1}^{\ell-1} 2^{\ell-k} m_{k} < m_{\ell} + 1, \forall \ell = 1, \dots n\right)$$

$$= \mathbb{P}\left(\sum_{k=1}^{\ell} 2^{-k} m_{k} \leqslant Y < \sum_{k=1}^{\ell} 2^{-k} m_{k} + 2^{-\ell}, \forall \ell = 1, \dots n\right)$$

$$= \mathbb{P}\left(\sum_{k=1}^{n} 2^{-k} m_{k} \leqslant Y < \sum_{k=1}^{n} 2^{-k} m_{k} + 2^{-n}\right) = 2^{-n}.$$

我們得以總結。

註解 3.1.24 : 如同在式 (3.8) 中,讓我們考慮 $Y \sim \text{Unif}([0,1])$ 以及他的二元展開 $Y = 0.Y_1Y_2...$ 。由 於 \mathbb{N}^2 是 \mathbb{N} 等勢的,我們可以找到雙射函數 $f: \mathbb{N}^2 \to \mathbb{N}$ 。對於每個 $i \in \mathbb{N}$,隨機變數 $(Y_{f(i,j)})_{j \geq 1}$ 是獨立的,而且如果我們定義,

$$\forall i \in \mathbb{N}, \quad Z_i = 0.Y_{f(i,1)}Y_{f(i,2)}\dots = \sum_{n \ge 1} 2^{-n}Y_{f(i,n)},$$

從定義 3.1.20 以及命題 3.1.21 ,我們得知 $(Z_i)_{i\geqslant 1}$ 是獨立隨機變數;此外,每一項都是 [0,1] 上的均匀分佈。如果我們給定在 $\mathbb R$ 上的分佈 $(\mu_i)_{i\geqslant 1}$,我們可以把他們的累積分佈函數記作 $(F_i=F_{\mu_i})_{i\geqslant 1}$,那麼我們可以定義隨機變數 $(X_i)_{i\geqslant 1}$ 如下:

$$\forall i \geqslant 1, \quad X_i = \inf\{y \in \mathbb{R} : F_i(y) \geqslant Z_i\}$$

他們會是獨立隨機變數,而且對於每個 $i \ge 1$,我們有 $X_i \sim \mu_i$,見命題 2.1.23 。

若我們需要構造不可數多個獨立隨機變數,則需要用到下列的 Kolmogorov 拓延定理 (Kolmogorov's extension theorem)。

定理 3.1.25 【Kolmogorov 拓延定理】: 給定可測空間 $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ 以及任意集合 T 。假設下列兩條件成立:

- (a) 對於任意 T 的有限子集合 S,我們可以構造在 $((\mathbb{R}^d)^{\otimes S},\mathcal{B}(\mathbb{R}^d)^{\otimes S})$ 上的機率測度 \mathbb{P}_S 。
- (b) 對於任意有限的子集合 S_1 及 S_2 且 $S_1 \subseteq S_2$,機率測度 \mathbb{P}_{S_1} 以及 \mathbb{P}_{S_2} 是相容 (compatible) 的,也就是說若我們將 S_2 至 S_1 的投影記作 π ,則 $\mathbb{P}_{S_1} = \mathbb{P}_{S_2} \circ \pi^{-1}$ 。

則在 $((\mathbb{R}^d)^{\otimes T},\mathcal{B}(\mathbb{R}^d)^{\otimes T})$ 上,存在唯一的機率測度 \mathbb{P} 使得對於任意有限子集合 S,將 $T \cong S$ 的投影記作 π ,我們有 $\mathbb{P}_S = \mathbb{P} \circ \pi^{-1}$ 。

證明: 我們定義

$$\mathcal{C} := \bigcup_{\substack{S \subseteq T \\ S \not = \text{ARR}}} \mathcal{B}(\mathbb{R}^d)^{\otimes S},$$

為所有有限維度積 σ 代數中元素構成的集合,且我們知道 $\mathcal{B}(\mathbb{R}^d)^{\otimes T}$ 是由 \mathcal{C} 生成,也就是說

$$\mathcal{B}(\mathbb{R}^d)^{\otimes T} = \sigma(\mathcal{C}).$$

存在性的部份,與在 $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ 上構造勒貝格測度相似,可以使用外側度來完成。唯一性的話,可以透過單調類引理而得到,請見系理 1.1.19 。

第二節 Borel-Cantelli 引理

前面定義了不同的獨立概念,這個章節中,我們要給出第一個利用獨立概念得到的漸進結果。

第一小節 敘述及證明

定義 3.2.1 : 給定一個事件序列 $(A_n)_{n\geqslant 1}$, 我們定義下列概念

(1) 我們稱下列集合為上極限 (upper limit):

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \Big(\bigcup_{k=n}^{\infty} A_k \Big).$$

(2) 我們稱下列集合為下極限 (lower limit):

$$\liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \Big(\bigcap_{k=n}^{\infty} A_k \Big).$$

- (3) 若 (A_n) 的上下極限相等,則其上下極限亦可被稱做極限 (limit) ,並記作 $\lim_{n\to\infty}A_n:=\lim\inf_{n\to\infty}A_n=\lim\sup_{n\to\infty}A_n$ 。
- (4) 若 (A_n) 的上下極限不相等,則稱 (A_n) 之極限不存在。

命題 3.2.2 : 令 (A_n) 為一事件序列,則

- (1) $\limsup A_n = \{\omega \mid \omega \in A_n \text{ i.o.}\}$,其中 i.o. 意為 infinitely often,表示存在無限多個 n 使得 $\omega \in A_n$ 。
- (2) $\liminf A_n = \{\omega \mid \omega \in A_n \text{ a.a.}\}$,其中 a.a. 意為 almost all,表示除了有限多個 n 之外,我們皆有 $\omega \in A_n$ 。

(3) $\liminf A_n \subseteq \limsup A_n \circ$

證明:參照習題 1.12。

範例 3.2.3 : 令 $(X_n)_{n \geq 1}$ 為隨機變數序列以及 $a \in \mathbb{R}$ 。

- (1) $\omega \in \liminf \{X_n \leqslant a\} \Rightarrow \limsup X_n(\omega) \leqslant a$.
- (2) $\omega \in \liminf \{X_n \geqslant a\} \Rightarrow \liminf X_n(\omega) \geqslant a$.
- (3) $\omega \in \limsup \{X_n \leqslant a\} \Rightarrow \liminf X_n(\omega) \leqslant a$.
- (4) $\omega \in \limsup \{X_n \geqslant a\} \Rightarrow \limsup X_n(\omega) \geqslant a$.

引理 3.2.4 : $\Diamond (A_n)_{n\geqslant 1}$ 為一事件序列。

(1) 若 $\sum_{n\geqslant 1}\mathbb{P}(A_n)<\infty$,則

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 0.$$

換句話說,集合 $\{n \in \mathbb{N} \mid \omega \in A_n\}$ 為 a.s. 有限。

(2) 若 $\sum_{n\geqslant 1}\mathbb{P}(A_n)=\infty$ 且 $(A_n)_{n\geqslant 1}$ 為獨立事件序列,則

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 1.$$

換句話說,集合 $\{n \in \mathbb{N} \mid \omega \in A_n\}$ 為 a.s. 無限。

問題 3.2.5:解釋為什麼在引理 3.2.4 的 (2) 中,我們必須假設 $(A_n)_{n\geqslant 1}$ 為獨立事件。

證明:

(1) 根據假設,我們有

$$\mathbb{E}\left[\sum_{n\geqslant 1}\mathbb{1}_{A_n}\right] = \sum_{n\geqslant 1}\mathbb{P}(A_n) < \infty,$$

也就是說 $\sum_{n\geqslant 1}\mathbbm{1}_{A_n}<\infty$ 殆必為真。

(2) 給定 $n_0 \in \mathbb{N}$,對於所有 $n \geqslant n_0$,我們有

$$\mathbb{P}\left(\bigcap_{k=n_0}^n A_k^c\right) = \prod_{k=n_0}^n \mathbb{P}(A_k^c) = \prod_{k=n_0}^n (1 - \mathbb{P}(A_k)).$$

由於級數 $\sum_{k>1} \mathbb{P}(A_k)$ 發散,我們可以得到

$$\mathbb{P}\left(\bigcap_{k=n_0}^{\infty} A_k^c\right) = \lim_{n \to \infty} \downarrow \mathbb{P}\left(\bigcap_{k=n_0}^n A_k^c\right) = 0.$$

由於上述式子對於所有 n_0 皆為真,我們有

$$\mathbb{P}\left(\bigcup_{n_0=1}^{\infty}\left(\bigcap_{k=n_0}^{\infty}A_k^c\right)\right)=0.$$

接著取其補集,我們就得到該證明的結果:

$$\mathbb{P}\left(\bigcap_{n_0=1}^{\infty}\Big(\bigcup_{k=n_0}^{\infty}A_k\Big)\right)=1.$$

第二小節 應用

在這小節,我們要利用 Borel-Cantelli 引理證明下列結果,其他更多應用請參見習題。

命題 3.2.6 : 在 \mathbb{N} 上,不存在任何機率測度,使得對於任意整數 $n\geqslant 1$,由其倍數構成的正整數集 $n\mathbb{N}$ 測度為 $\frac{1}{n}$ 。

證明:假設這樣的測度存在,並記作 \mathbb{P} 。設 \mathcal{P} 為質數集,且對於所有 $p \in \mathcal{P}$,令 $A_p = p\mathbb{N}$ 。我們可以得知 $(A_p)_{p \in \mathcal{P}}$ 為獨立事件,因為對於任意互異質數 $p_1, \ldots, p_k \in \mathcal{P}$,我們有

$$\mathbb{P}\left(A_{p_1}\cap\ldots\cap A_{p_n}\right)=\mathbb{P}\left(p_1\mathbb{N}\cap\ldots\cap p_n\mathbb{N}\right)=\mathbb{P}\left((p_1\ldots p_n)\mathbb{N}\right)=\frac{1}{p_1\ldots p_k}=\prod_{j=1}^k\mathbb{P}(A_{p_j}).$$

此外,我們也知道 $\sum_{p\in\mathcal{P}}\frac{1}{p}=\infty$,所以根據 Borel–Cantelli 引理中的 (2),我們有 $\mathbb{P}(\limsup A_p)=1$;也就是說,在 \mathbb{P} 測度之下,幾乎所有正整數 n 都在無限多個 A_p 集合中,但這是不可能的,因為任意正整數不可能同時為無限多個質數的倍數。

命題 3.2.7 : 令 $Y \sim \text{Unif}([0,1])$ 以及如同在式 (3.8) 中的二元展開式 $Y = 0.Y_1Y_2...$ 。對於任意整數 $p \geqslant 1$ 以及 $m_1, \ldots, m_p \in \{0,1\}$,則殆必存在無窮多個 $k \in \mathbb{N}$ 使得

$$X_{k+1} = m_1, \dots, X_{k+p} = m_p.$$

證明:對於任意正整數 $n \ge 1$,定義隨機向量 $Z_n = (Y_{np+1}, \ldots, Y_{np+p})$ 。根據系理 3.1.22 ,我們知道隨機變數 $(Z_n)_{n \ge 1}$ 是獨立的。根據引理 3.1.23 ,我們還知道他們有相同的分佈。對於每個

最後修改: 2025年 10月 21日 15:48

 $n \geqslant 1$,我們有

$$\mathbb{P}(Z_n = (m_1, \dots, m_p)) = 2^{-p}.$$

由於事件 $(\{Z_n=(m_1,\ldots,m_p)\})_{n\geqslant 1}$ 是獨立的,且 $\sum_{n\geqslant 1}2^{-p}=+\infty$,引理 3.2.4 中的 (2) 蘊含

$$\mathbb{P}\left(\limsup_{n\to\infty}\{Z_n=(m_1,\ldots,m_p)\}\right)=1.$$

$$L_n := \max\{k \geqslant 1 : \text{ 存在 } 0 \leqslant i \leqslant n - k \text{ 使得 } X_{i+1} = \dots = X_{i+k} = 1\}.$$

則我們有

$$\limsup_{n\to\infty}\frac{L_n}{\ln_2(n)}\leqslant 1\leqslant \liminf_{n\to\infty}\frac{L_n}{\ln_2(n)}, \qquad \text{a.s.}$$

也就是

$$\frac{L_n}{\ln_2(n)} \xrightarrow[n \to \infty]{} 1,$$
 a.s.

證明:我們想要證明,對於所有 $\varepsilon > 0$,

$$\text{(1)}\ \limsup_{n\to\infty}\frac{L_n}{\ln_2(n)}\leqslant 1+\varepsilon,\ \text{a.s.},\qquad \text{(2)}\ \liminf_{n\to\infty}\frac{L_n}{\ln_2(n)}\geqslant 1-\varepsilon,\ \text{a.s.}.$$

首先,讓我們先引入幾個新的記號:

$$\forall m \ge 1, \quad \ell_m = \sup\{k \ge 0 : X_m = \dots = X_{m+k-1} = 1\},$$

也就是從 X_m 開始,最多連續出現 1 的次數。因此我們有

$$L_n = \sup_{1 \le m \le n} \{\ell_m \wedge (n - m + 1)\} \leqslant \sup_{1 \le m \le n} \{\ell_m\} =: \widetilde{L}_n.$$

我們先證明 (1)。給定 $\varepsilon > 0$,我們有

$$\mathbb{P}\left(\ell_m \geqslant (1+\varepsilon)\log_2(m)\right) = \mathbb{P}\left(\ell_m \geqslant \lceil (1+\varepsilon)\log_2(m)\rceil\right) = \left(\frac{1}{2}\right)^{\lceil (1+\varepsilon)\log_2(m)\rceil} \leqslant m^{-(1+\varepsilon)}.$$

由於 $\sum m^{-(1+\varepsilon)} < \infty$,因此根據引理 3.2.4 中的 (1),我們得到

$$\mathbb{P}\left(\limsup\{\omega:\ell_m(\omega)\geqslant (1+\varepsilon)\log_2(m)\}\right)=0,$$

$$\Longrightarrow \mathbb{P}\left(\liminf\{\omega:\ell_m(\omega)<(1+\varepsilon)\log_2(m)\}\right)=1.$$

也就是說

$$\limsup_{m \to \infty} \frac{\ell_m}{\log_2(m)} \leqslant 1 + \varepsilon, \quad \text{a.s.}$$

因此,我們有

$$\limsup_{n\to\infty}\frac{L_n}{\log_2(n)}\leqslant \limsup_{n\to\infty}\frac{\widetilde{L}_n}{\log_2(n)}\leqslant 1+\varepsilon,\quad \text{a.s.}$$

接下來,讓我們證明 (2)。給定 $\varepsilon>0$,我們將 n 個試驗結果分割成長度為 $a_n:=\lceil(1-\varepsilon)\log_2(n)\rceil+1$ 的區間,其中最後一個區間有可能長度長度不滿 a_n 。因此,我們區間個數一共有

$$N_n := \left\lceil \frac{n}{a_n} \right\rceil \xrightarrow[n \to \infty]{} \frac{n}{(1 - \varepsilon) \log_2(n)} > \frac{n}{\log_2(n)}. \tag{3.10}$$

我們將這些區間記作

$$\forall k = 1, \dots, N_n - 1, \quad I_k = \{(k-1)a_n + 1, \dots, ka_n\},\$$

$$I_{N_n} = \{(N_n - 1)a_n + 1, \dots, n\}.$$

對於所有 $1 \leqslant j \leqslant N_n - 1$,令事件 A_j 為 $\{X_i = 1, \forall i \in I_j\}$,我們有

$$\mathbb{P}(A_j) = \left(\frac{1}{2}\right)^{a_n} \geqslant \left(\frac{1}{2}\right)^{(1-\varepsilon)\log_2(n)+2} = \frac{1}{4}\frac{1}{n^{1-\varepsilon}}.$$

接著,我們來看 L_n 相關的事件機率:

$$\mathbb{P}\left(L_n \leqslant (1-\varepsilon)\log_2(n)\right) \leqslant \mathbb{P}\left($$
存在至少一個 $i \in I_j$ 使得 $X_i \neq 1: 1 \leqslant j \leqslant N_n - 1\right)$
$$= \prod_{j=1}^{N_n-1} (1-\mathbb{P}(A_j)) \leqslant \left(1-\frac{1}{4}\frac{1}{n^{1-\varepsilon}}\right)^{N_n-1}.$$

利用式 (3.10), 對於夠大的 n, 我們有

$$\mathbb{P}\left(L_n \leqslant (1-\varepsilon)\log_2(n)\right) \leqslant \left(1 - \frac{1}{4} \frac{1}{n^{1-\varepsilon}}\right)^{n/\log_2(n)} \sim \exp\left(-\frac{1}{4} \frac{n^{\varepsilon}}{\log_2(n)}\right).$$

上述的右項對 n 取和的值為有限,因此根據引理 3.2.4 中的 (1),我們得到

$$\liminf_{n\to\infty}\frac{L_n}{\log_2(n)}\geqslant 1-\varepsilon,\quad \text{a.s.}$$

第三節 獨立隨機變數的和

第一小節 定義及性質

若 μ 及 ν 為兩個在 \mathbb{R}^d 上的機率測度,我們將 $\mu \otimes \nu$ 在映射 $(x,y) \mapsto x+y$ 之下的影像測度記作 $\mu * \nu$,換句話說, $\mu * \nu$ 具有下列性質:對於任意在 \mathbb{R}^d 上的非負可測函數 φ ,我們有

$$\int_{\mathbb{R}^d} \varphi(z)\mu * \nu(\mathrm{d}z) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \varphi(x+y)\mu(\mathrm{d}x)\nu(\mathrm{d}y). \tag{3.11}$$

- (1) 隨機變數 X+Y 的分佈為 $\mathbb{P}_X*\mathbb{P}_Y$ 。在 X 及 Y 皆有密度函數的情況下,將他們的密度函數記作 p_X 及 p_Y ,則 X+Y 也有密度函數,而且可以寫作 p_X*p_Y 。
- (2) 隨機變數 X+Y 的特徵函數為 $\Phi_{X+Y}(\xi)=\Phi_X(\xi)\Phi_Y(\xi)$,換句話說 $\widehat{\mathbb{P}_X*\mathbb{P}_Y}=\widehat{\mathbb{P}}_X\widehat{\mathbb{P}}_Y\circ$
- (3) 若 X 及 Y 為平方可積,則 $K_{X+Y}=K_X+K_Y$ 。在一維 d=1 的情況下,我們有 ${\rm Var}(X+Y)={\rm Var}(X)+{\rm Var}(Y)$ 。

證明:

(1) 由於 X 以及 Y 獨立,我們有 $\mathbb{P}_{(X,Y)}=\mathbb{P}_X\otimes\mathbb{P}_Y$,所以對任何在 \mathbb{R}^d 之上的非負可測函數 φ ,根據式 (3.11) 中 * 運算子的定義,我們有

$$\mathbb{E}[\varphi(X+Y)] = \int \varphi(x+y) \mathbb{P}_{(X,Y)}(\mathrm{d} x \, \mathrm{d} y) = \int \int \varphi(x+y) \mathbb{P}_X(\mathrm{d} x) \mathbb{P}_Y(\mathrm{d} y) = \int \varphi(z) \mathbb{P}_X * \mathbb{P}_Y(\mathrm{d} z)$$

接著,若 X 及 Y 有密度函數,

$$\mathbb{E}[\varphi(X+Y)] = \int \int \varphi(x+y)p_X(x)p_Y(y) \, \mathrm{d}x \, \mathrm{d}y = \int \varphi(z) \int \underbrace{\left(p_X(x)p_Y(z-x) \, \mathrm{d}x\right)}_{p_X * p_Y(z)} \, \mathrm{d}z,$$

所以 p_X*p_Y 是 X+Y 的密度函數。我們注意到由於 p_X 及 p_Y 是在 $L^1(\mathbb{R}^d,\lambda)$ 中的函數,所以 p_X*p_Y 幾乎到處定義良好,參見命題 1.4.3。

(2) 根據定義 2.4.12 以及 X 及 Y 的獨立性,我們有

$$\Phi_{X+Y}(\xi) = \mathbb{E}[\exp(\mathrm{i}\,\xi\cdot(X+Y))] = \mathbb{E}[\exp(\mathrm{i}\,\xi\cdot X)]\,\mathbb{E}[\exp(\mathrm{i}\,\xi\cdot Y)] = \Phi_X(\xi)\Phi_Y(\xi)$$

(3) 若將 X 及 Y 寫作 $X = (X_1, \dots, X_d)$ 及 $Y = (Y_1, \dots, Y_d)$,根據他們的獨立性,對於所有 $i, j \in \{1, \dots, d\}$,我們有 $\mathrm{Cov}(X_i, Y_j) = 0$,也會有 $\mathrm{Cov}(X_i + Y_i, X_j + Y_j) = \mathrm{Cov}(X_i, X_j) + \mathrm{Cov}(Y_i, Y_j)$,也就是 $K_{X+Y} = K_X + K_Y$ 。

第二小節 例子

若獨立隨機變數序列 $(X_n)_{n\geqslant 1}$ 中各項皆有相同的分佈,則我們稱之為 i.i.d. 隨機變數序列,意為 independent and identically distributed。對 i.i.d. 隨變數取和不是太困難的事,通常可以使用特徵函數來計算這種和的分佈,或是直接使用式 (3.11) 中的定義。下面我們給出幾個例子,在習題 3.13 、習題 3.14 及習題 3.15 中有更多其他例子。

命題 3.3.2 : 若 $(X_k)_{1\leqslant k\leqslant n}$ 為 i.i.d. 隨機變數序列,且各項皆為參數為 λ 的帕松分佈,則 $X_1+\cdots+X_n$ 為參數為 $n\lambda$ 的帕松分佈。更一般來說,如果 $(X_k)_{1\leqslant k\leqslant n}$ 是個獨立隨機變數序列,且各項分別為參數為 $\lambda_1,\ldots,\lambda_n$ 的帕松分佈,則 $X_1+\cdots+X_n$ 是個參數為 $\lambda_1+\cdots+\lambda_n$ 的帕松分佈。

證明:令 $X_i \sim \text{Pois}(\lambda_i)$ 為獨立的帕松分佈隨機變數,我們可以計算他們的特徵函數:

$$\Phi_{X_i}(\xi) = \sum_{k>0} e^{-\lambda_i} \frac{\lambda^k}{k!} e^{i\xi k} = \sum_{k>0} e^{-\lambda_i} \frac{(\lambda e^{i\xi})^k}{k!} = e^{\lambda_i (e^{i\xi} - 1)}.$$

因此, $X := X_1 + \cdots + X_n$ 的特徵函數寫作:

$$\Phi_X(\xi) = \prod_{i=1}^n \Phi_{X_i}(\xi) = e^{(\lambda_1 + \dots + \lambda_n)(e^{i\xi} - 1)},$$

我們可以認出來這個是 $Pois(\lambda_1+\cdots+\lambda_n)$ 的特徵函數。因此根據定理 2.4.15 ,我們能夠得知 $X\sim Pois(\lambda_1+\cdots+\lambda_n)$ 。

命題 3.3.3 : 若 $(X_k)_{1 \le k \le n}$ 為獨立隨機變數序列,且對於所有 $1 \le k \le n$, X_k 的分佈為參數為 $(0, \sigma_k^2)$ 的高斯分佈,則 $X_1 + \cdots + X_n$ 為參數為 $(0, \sigma_k^2 + \cdots + \sigma_n^2)$ 的高斯分佈。

證明:參照習題 3.12 。 □

第三小節 大數定理

下個章節我們才會正式的討論隨機變數的收斂概念,但用我們現在的工具,已經足夠先討論一些非常簡單的收斂例子,順便當作在後續章節討論收斂性質的開端。

定理 3.3.4 【 L^2 大數定理】: 設 $(X_n)_{n\geqslant 1}$ 為互無關連的實隨機變數序列,且假設他們有相同的機率分佈。假設 $\mathbb{E}[X_1^2]<\infty$,那麼我們有

$$\frac{1}{n}(X_1 + \dots X_n) \xrightarrow[n \to \infty]{L^2} \mathbb{E}[X_1].$$

證明:根據期望值的線性性質,我們有 $\mathbb{E}[\frac{1}{n}(X_1+\ldots X_n)]=\mathbb{E}[X_1]$ 。接著根據命題 3.3.1 的第三點,我們有

$$\mathbb{E}\left[\left(\frac{1}{n}(X_1+\cdots+X_n)-\mathbb{E}[X_1]\right)^2\right]=\frac{1}{n^2}\operatorname{Var}(X_1+\cdots+X_n)=\frac{1}{n}\operatorname{Var}(X_1),$$

所以當 $n \to \infty$,上式趨近於零。

註解 3.3.5 : 在在機率空間中,有不同的收斂概念,在<mark>第四章</mark>我們會做更仔細的探討。這裡要注意的是,定理 3.3.4 的收斂是在 L^2 空間,而不是在機率空間中的簡單收斂 (simple convergence) 1 。 2 。

下列命題在比較強的條件下,給我們殆必收斂的結果,我們稍後在定理 4.3.1 會證明其加強版。

命題 3.3.6 : 令 $(X_n)_{n\geqslant 1}$ 為 i.i.d. 隨機變數序列且滿足 $\mathbb{E}[|X_1|^4]<\infty$ 。則我們有

$$\frac{1}{n}(X_1 + \dots + X_n) \xrightarrow[n \to \infty]{a.s.} \mathbb{E}[X_1].$$

證明:若對於所有 $i \in \{1,\ldots,n\}$,我們將 X_i 用 $X_i - \mathbb{E}[X_i]$ 取代,我們可以觀察到該證明的收斂 式子和原本的是等價的,所以不失一般性,我們可以假設所有的隨機變數 X_i 皆滿足 $\mathbb{E}[X_i] = 0$ 的條件。首先,我們計算左側的四階動差,

$$\mathbb{E}\left[\left(\frac{1}{n}(X_1 + \dots + X_n)\right)^4\right] = \frac{1}{n^4} \sum_{1 \le i_1, \dots, i_k \le n} \mathbb{E}[X_{i_1} X_{i_2} X_{i_3} X_{i_4}].$$

由於 (X_k) 為獨立且期望值為零的隨機變數,在上式的和中,大部分的項皆為零,除了當四元組 (i_1,i_2,i_3,i_4) 中,四個變數皆相等,或是 $i_1=i_2,i_3=i_4$ 及其他排列組合的情況:前者共有 n 種可能,後者有 3n(n-1) 種可能。因此我們得到

$$\mathbb{E}\left[\left(\frac{1}{n}(X_1 + \dots + X_n)\right)^4\right] = \frac{1}{n^4}\left(n\,\mathbb{E}\left[X_1^4\right] + 3n(n-1)\,\mathbb{E}\left[X_1^2X_2^2\right]\right) \leqslant \frac{C}{n^2},$$

其中 $C < \infty$ 為一常數。接著我們有

$$\mathbb{E}\left[\sum_{n=1}^{\infty} \left(\frac{1}{n}(X_1 + \dots + X_n)\right)^4\right] = \sum_{n=1}^{\infty} \mathbb{E}\left[\left(\frac{1}{n}(X_1 + \dots + X_n)\right)^4\right] < \infty,$$

上式中我們可以交換期望值與級數和,因為級數中所有項皆非負。這蘊含下列級數和殆必有限 (almost surely finite),

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} (X_1 + \dots + X_n) \right)^4 < \infty, \quad \text{a.s.},$$

所以級數項殆必收斂至零。

最後修改: 2025年 10月 21日 15:48

¹也就是殆必收斂,機率為 1 會收斂。

 $^{^{2}}$ 注意: L^{2} 收斂和殆必收斂並沒有強弱之分,兩者互不蘊含。

系理 3.3.7 : 若 $(A_n)_{n\geq 1}$ 為機率相等的獨立事件序列,則我們有

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{A_i} \xrightarrow[n \to \infty]{\text{a.s.}} \mathbb{P}(A_i).$$

註解 3.3.8: 在現代機率發展之前,機率通常會被詮釋為在一連串的隨機試驗中,事件發生的<u>頻率</u>。 此系理解釋,用現代機率論的角度出發,可以證明此一事實。

用比較白話的說法來解釋,若我們想要知道某個結果 A 為真的機率,我們可以不斷以獨立的方式重複實驗,並去計算 A 為真的比例,則機率為一(處處收斂,強大數法則)的情況下,此數值會收斂至 $\mathbb{P}(A)$ 。

第四小節 捲積半群

在<mark>第七章</mark>探討馬可夫鍊,以及下學期討論連續時間的隨機過程時,我們會用到<u>捲積半群</u>的概念,因此在這裡我們先定義並且探討其基本性質。

假設 $I = \mathbb{Z}_{\geq 0}$ 或 $I = \mathbb{R}_{\geq 0}$ 。

定義 3.3.9 : $\Diamond (\mu_t)_{t \in I}$ 為在 \mathbb{R} 或 \mathbb{R}^d 上,由 I 標記的機率測度所構成的集合。若

$$\forall t, t' \in I, \qquad t + t' \in I \quad \mathsf{UD} \quad \mu_t * \mu_{t'} = \mu_{t+t'},$$

則我們稱 $(\mu_t)_{t\in I}$ 為捲積半群 (convolution semigroup) 。

引理 3.3.10 : 若存在函數 $\varphi: \mathbb{R} \longrightarrow \mathbb{C}$ 使得下列其中一個條件成立:

- (i) 若 $I = \mathbb{Z}_{\geq 0}$, $\widehat{\mu}_t(\xi) = \varphi(\xi)^t$, $\forall t \in I$,
- (ii) 若 $I = \mathbb{R}_{\geq 0}$, $\widehat{\mu}_t(\xi) = \exp(-t\varphi(\xi))$, $\forall t \in I$,

則 $(\mu_t)_{t\in I}$ 是個捲積半群。

證明:若 $\hat{\mu}_t$ 如引理中所敘述,則我們有 $\hat{\mu}_{t+t'} = \hat{\mu}_t \hat{\mu}_{t'} = \hat{\mu}_t \hat{\mu}_{t'}$,接著透過傅立葉變換的單射性質,我們可以得到 $\mu_{t+t'} = \mu_t * \mu_{t'}$ 。

範例 3.3.11:

(1) 當 $I=\mathbb{Z}_{\geqslant 0}$,給定 $p\in [0,1]$ 。對於所有 $n\geqslant 1$,令 μ_n 為二項式分佈 $\mathcal{B}(n,p)$ 。根據我們對

二項式分佈做的詮釋,他會是 i.i.d. 伯努力分佈的和,我們顯然有 $\mu_{n+m} = \mu_n * \mu_m$ 。不然,我們也可以計算其特徵函數並使用上述引理: $\hat{\mu_n}(\xi) = (pe^{\mathrm{i}\,\xi} + 1 - p)^n$ 。

(2) 當 $I = \mathbb{R}_{\geq 0}$,對於所有 $t \geq 0$,令 μ_t 為參數為 t 的帕松分佈。我們有

$$\forall t \geqslant 0, \quad \forall \xi \in \mathbb{R}, \quad \widehat{\mu}_t(\xi) = \sum_{k=0}^{\infty} \frac{t^k}{k!} e^{ik\xi} e^{-t} = \exp(-t(1 - e^{i\xi})).$$

(3) 當 $I = \mathbb{R}_{\geq 0}$,對於所有 $t \geq 0$,令 μ_t 為高斯分佈 $\mathcal{N}(0,t)$ 。根據引理 2.4.14 ,我們有

$$\forall t \geqslant 0, \quad \forall \xi \in \mathbb{R}, \quad \widehat{\mu}_t(\xi) = \exp\left(-\frac{t\xi^2}{2}\right).$$

第四節 複雜一點的隨機變數

這裡我們會使用獨立性來構造一些有趣的機率工具:多元常態分佈與帕松過程。

第一小節 多元常態分佈

這個小節的目的是要把高斯分佈的概念推廣至高維度。下列命題同時定義了<u>多元常態分佈</u>的概念,給出他的重要性質、以及最標準(正則)的構造方式。

命題 3.4.1 : 令 $X=(X_1,\ldots,X_d)$ 為 d 維實隨機變數。我們這裡要證明下列三個條件是等價的,而且當其中一個條件成立時,我們稱 X 為多元常態分佈 (multivariate normal distribution)。

- (i) 存在 d 維實隨機變數 $Z=(Z_1,\ldots,Z_d)$,其中分量為 i.i.d. 標準常態分佈;存在 $d\times d$ 的方形矩陣 A 以及向量 $B\in\mathbb{R}^d$,使得 $X\stackrel{(\mathrm{d})}{=}AZ+B$ 。
- (ii) 對於任意 $\alpha \in \mathbb{R}^d$, $\alpha^T X$ 仍然是常態分佈。
- (iii) 存在 $d \times d$ 的半正定對稱矩陣 Σ 以及向量 $B \in \mathbb{R}^d$ 使得我們可以將 X 的特徵函數寫作

$$\Phi_X(\xi) = \mathbb{E}\left[e^{\mathrm{i}\,\xi\cdot X}\right] = \exp\left(\mathrm{i}\,\xi^T B - \tfrac{1}{2}\xi^T \Sigma \xi\right).$$

此外,向量 $B = \mathbb{E}[X]$ 為 X 的期望值,矩陣 $\Sigma = AA^T = K_X$ 為向量 X 的共變異數矩陣。

證明:證明 (i) \Longrightarrow (ii)。我們可以計算 X 的期望值為 B,共變異數矩陣為 AA^T 。接著,取 $\alpha \in \mathbb{R}^d$, $\alpha^T X = \sum \alpha_i X_i$ 的分佈會是 $\mathcal{N}(\alpha^T B, \alpha^T AA^T \alpha)$ 。

證明 (ii) \Longrightarrow (iii)。給定 $\xi \in \mathbb{R}^d$,由於 $\xi^T X$ 仍是常態分佈,將其期望值以及變異數記作

 $m = \xi^T \mathbb{E}[X]$ 及 $\sigma^2 = \xi^T K_X \xi$,我們知道

$$\Phi_X(\xi) = \exp(i \xi^T \mathbb{E}[X] - \frac{1}{2} \xi^T K_X \xi).$$

因此我們可以取 $B = \mathbb{E}[X]$ 以及 $\Sigma = K_X$ 。

證明 (iii) \Longrightarrow (i)。由於 Σ 為半正定對稱矩陣,存在正交矩陣 P 以及對角矩陣 D 使得 $\Sigma=PDP^T$ 。給定 i.i.d. 標準常態分佈隨機變數 Z_1,\ldots,Z_d ,我們取 $A=P\sqrt{D}$,我們可以計算 AZ+B 的特徵方程式並證明其為 Φ_X 。

命題 3.4.2 : 令 $X=(X_1,\ldots,X_d)$ 為 d 維度、期望值為 B,共變異數矩陣為 Σ 的多元常態分佈。若 Σ 為可逆矩陣,則 X 的密度函數寫作

$$\mathbb{P}_X(\mathrm{d}x) = \frac{\exp\left(-\frac{1}{2}\langle x - B, \Sigma^{-1}(x - B)\rangle\right)}{(2\pi)^{d/2}|\det(A)|} \,\mathrm{d}x_1 \dots \,\mathrm{d}x_n.$$

證明:由於 Σ 是半正定對稱矩陣,我們取正交矩陣 P 及對角矩陣 D 使得 $\Sigma = PDP^T$ 並定義 $A = P\sqrt{D}$ 。根據命題 3.4.1 的定義、性質及構造,給定 i.i.d. 標準常態分佈 $Z = (Z_1, \ldots, Z_d)$,我們知道 $X \stackrel{\text{(d)}}{=} AZ + B$ 。我們將 Z 的密度函數記作

$$\forall z \in \mathbb{R}^d$$
, $p_Z(z) = \frac{\exp\left(-\frac{1}{2}\|z\|_2^2\right)}{(2\pi)^{d/2}} = \frac{\exp\left(-\frac{1}{2}(z_1^2 + \dots + z_n^2)\right)}{(2\pi)^{d/2}}$.

給定非負可測函數 $f: \mathbb{R}^d \longrightarrow \mathbb{R}_+$,我們有

$$\mathbb{E}[f(X)] = \mathbb{E}[f(AZ+B)] = \int_{\mathbb{R}^d} f(Az+B)p_Z(z) \, \mathrm{d}z_1 \dots \, \mathrm{d}z_n$$
$$= \int_{\mathbb{R}^d} f(x)p_Z(A^{-1}(x-B))|\det(A)|^{-1} \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n,$$

其中在第二行的等式中,我們利用變數變換 x = Az + B,且因為 A 是個可逆矩陣, \mathbb{R}^d 與自己在 $z \mapsto Az + B$ 之下是個微分同胚。由於上式對於所有非負可測函數皆成立,根據註解 2.1.16 ,我們可以得到 X 的密度函數:

$$\forall x \in \mathbb{R}^d, \qquad p_X(x) = \frac{p_Z(A^{-1}(x-B))}{|\det(A)|}$$

$$= \frac{\exp\left(-\frac{1}{2}\langle x - B, (A^{-1})^T A^{-1}(x-B)\rangle\right)}{(2\pi)^{d/2}|\det(A)|}$$

$$= \frac{\exp\left(-\frac{1}{2}\langle x - B, \Sigma^{-1}(x-B)\rangle\right)}{(2\pi)^{d/2}|\det(A)|}.$$

第二小節 帕松過程

我們想要去描述一些會在時間中發生的隨機事件。我們可能會想知道,例如:什麼時候這些事件會發生,或是在給定固定時間時,總共會有多少個隨機事件是已經發生的。我們可以使用下列的方式來討論這樣的現象。給定隨機變數序列 $(X_i)_{i\geqslant 1}$,其中 X_i 描述的是連續兩個事件 i-1 及 i 之間間隔的等待時間; S_n 描述的是等待的所有時間,才會讓第 n 個事件發生; N_t 描述的則是在時間 t 以前(包含時間 t),總共發生的事件數量。接著,讓我們用數學的方式來討論。

在機率空間 $(\Omega,\mathcal{A},\mathbb{P})$ 上,我們令 $(X_i)_{i\geqslant 1}$ 為 i.i.d. 分佈為 $\mathrm{Exp}(1)$ 的指數隨機變數,並且定義 $S_0=0$ 及

$$\forall n \in \mathbb{N}, \qquad S_n := X_1 + \dots + X_n.$$

根據習題 3.14 ,我們知道 S_n 是個伽瑪分佈 $\Gamma(n,1)$ 。在這個小節中,我們要討論的是下面這個隨機過程 (stochastic process):

$$\forall t \ge 0, \qquad N_t := \max\{n \ge 0 : S_n \le t\} = \max\{n \ge 0 : X_1 + \dots + X_n \le t\} \in \mathbb{N} \cup \{0\},$$
 (3.12)

稱作帕松過程 (Poisson process)。我們不難看出來, $t \mapsto N_t$ 是個(隨機)非遞減函數。

命題 3.4.3 : 我們有下列性質:

- (1) $(S_n)_{n\geq 0}$ 幾乎必然為嚴格遞增數列,並且幾乎必然發散至 ∞ 。
- (2) 我們有大數法則 $\frac{S_n}{n} \xrightarrow{\text{a.s.}} 1$ 。

證明:

(1) 首先,我們可以注意到,由於

$$\forall i \geqslant 1, \qquad \mathbb{P}(X_i > 0) = 1,$$

加上總共只有可數多個事件,我們可以得到

$$\mathbb{P}(\forall i \ge 0, S_i < S_{i+1}) = 1 \iff 0 = S_0 < S_1 < S_2 < \dots, \text{a.s.}$$

接著,透過 Borel-Cantelli 的第二部份,我們知道給定任何 $\alpha > 0$ 時,我們有

$$\sum_{i\geqslant 1} \mathbb{P}(X_i \geqslant \alpha) = \infty,$$

使用 $(X_n)_{n\geqslant 1}$ 的獨立性,我們得知存在無窮多個 $n\geqslant 1$ 使得 $X_n\geqslant \alpha$,因此 $S_n\stackrel{\mathrm{a.s.}}{\longrightarrow}\infty$ 。

(2) 我們使用命題 3.3.6 中 L^4 版本的大數法則,得到

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mathbb{E}[X_1] = 1.$$

命題 3.4.4 : 固定 t>0,則 $N_t\sim \operatorname{Pois}(t)$ 是個參數為 t 的帕松分佈。

註解 3.4.5 : 從範例 3.3.11 (2),我們直接得知由分佈 $(\mathbb{P}_{N_t})_{t\geq 0}$ 構成的序列是個捲積半群。

證明:固定正實數 t > 0 及非負整數 $n \ge 0$,我們有

$$\begin{split} \mathbb{P}(N_t = n) &= \mathbb{P}(S_n \leqslant t < S_{n+1}) \\ &= \int_{\mathbb{R}_{\geqslant 0}} \int_{\mathbb{R}_{\geqslant 0}} \frac{x^{n-1} e^{-x}}{\Gamma(n)} e^{-y} \mathbb{1}_{x \leqslant t < x+y} \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_{\mathbb{R}_{\geqslant 0}} \frac{x^{n-1} e^{-x}}{\Gamma(n)} \mathbb{1}_{x \leqslant t} \int_{\mathbb{R}_{\geqslant 0}} e^{-y} \mathbb{1}_{y > t-x} \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_{\mathbb{R}_{\geqslant 0}} \frac{x^{n-1} e^{-x}}{\Gamma(n)} \mathbb{1}_{x \leqslant t} e^{-(t-x)} \, \mathrm{d}x = e^{-t} \frac{t^n}{n!}, \end{split}$$

其中在第二個等式中,我們使用了 $S_{n+1}=S_n+X_{n+1}$ 為兩個獨立隨機變數的和,且我們有 $S_n\sim\Gamma(n,1)$;在第三個等式中,我們使用了富比尼定理。 \qed

命題 3.4.6 : 隨機過程 $t\mapsto N_t$ 在 $\mathbb{R}_{\geq 0}$ 上幾乎必然是個 càdlàg (continue à droite, limite à gauche) 函數,也就是右連續且左極限存在的函數。

註解 3.4.7 : 我們注意到,下面兩個關於右連續的敘述是不同的:

$$\begin{pmatrix} \forall s \geqslant 0, & \lim_{\substack{t \to s \\ t > s}} N_t = N_s \end{pmatrix} \quad \text{a.s.} \quad \Leftrightarrow \quad \mathbb{P} \left(\forall s \geqslant 0, & \lim_{\substack{t \to s \\ t > s}} N_t = N_s \right) = 1,$$

$$\forall s > 0, \quad \left(\lim_{\substack{t \to s \\ t < s}} N_t \quad \mbox{\textbf{\textit{FE}}} \quad \text{a.s.} \right) \quad \Leftrightarrow \quad \forall s \geqslant 0, \quad \mathbb{P} \left(\lim_{\substack{t \to s \\ t > s}} N_t = N_s \right) = 1.$$

一般來講,第一個敘述會比第二個來得強,因為 $\mathbb{R}_{>0}$ 是不可數的。我們必須記住,括號放的位置會影響敘述的意義。

證明:我們需要證明下列兩個性質:

$$\left(\forall s \geqslant 0, \quad \lim_{\substack{t \to s \\ t > s}} N_t = N_s \right) \quad \text{a.s.},$$

$$\left(\forall s > 0, \quad \lim_{\substack{t \to s \\ t < s}} N_t \quad 存在 \right) \quad \text{a.s.}.$$

對於 T>0,讓我們證明 $t\mapsto N_t$ 在 [0,T] 幾乎必然是個 càdlàg 函數。命題 3.4.4 告訴我們, N_T

$$\forall \omega \in \Omega_T, \quad N_T < \infty.$$

對於 $\omega\in\Omega_T$,函數 $t\mapsto N_t$ 在 [0,T] 上是非遞減且有界的,因此左極限處處存在。對於 $\omega\in\Omega_T$ 以及 $s\in[0,T)$,令 $n:=n(\omega)$ 使得 $N_s=n$,這與 $S_n\leqslant s$ 和 $S_{n+1}>s$ 等價。這代表著,對於 $u\in[s,S_{n+1})\neq\varnothing$,我們一定也會有 $N_u=n$,這蘊含右連續性。

最後,我們這樣總結:定義 $\Omega':=\bigcap_{T\geqslant 1}\Omega_T$ 並注意到 $\mathbb{P}(\Omega')=1$ 且在 Ω' 上,對於每個整數 $T\geqslant 1$,函數 $t\mapsto N_t$ 在 [0,T] 是 càdlàg 的。因此,函數 $t\mapsto N_t$ 幾乎必然在 $\mathbb{R}_{\geqslant 0}$ 上會是 càdlàg 的。

引理 3.4.8 : 令 $(N_s)_{s\geq 0}$ 為帕松過程以及 t>0。定義他的平移過程 $(N_s^{(t)})_{s\geq 0}$ 如下:

$$\forall s \geqslant 0, \qquad N_s^{(t)} := N_{t+s} - N_t.$$

那麼 $(N_s^{(t)})_{s\geqslant 0}$ 是個帕松過程,且會與 N_t 獨立。

證明:我們固定 t>0 並且考慮在時間 t 之後的帕松過程。從時間 t 開始計算,需要等待 $S_{N_t+1}-t$ 下一個事件才會發生,接著需要等待 $X_{N_t+2},X_{N_t+3},\ldots$ 。因此我們可以定義

$$X_1^{(t)} = S_{N_t+1} - t,$$

$$\forall n \geqslant 2, \qquad X_n^{(t)} = X_{N_t+n}.$$

對於任意 s > 0,我們有

$$N_s^{(t)} := N_{t+s} - N_t = \max\{m \ge 0 : X_1^{(t)} + \dots + X_m^{(t)} \le s\},\$$

我們可以注意到,此定義與式 (3.12) 非常相似。若我們能夠對於所有非負整數 $n \geqslant 0$ 證明:

- (a) 事件 $\{N_t=n\}$ 與隨機變數序列 $(X_m^{(t)})_{m\geqslant 1}$ 獨立,而且
- (b) 在 $\{N_t=n\}$ 成立之下, $(X_m^{(t)})_{m\geqslant 1}$ 也是 i.i.d. 參數為 1 的指數隨機變數序列,

那麼我們不僅證明了 $N^{(t)}=(N_s^{(t)})_{s\geqslant 0}$ 與 N_t 的獨立性,還證明了 $(N_s^{(t)}=N_{t+s}-N_t)_{s\geqslant 0}$ 與原本的 $(N_t)_{t\geqslant 0}$ 會有相同分佈。

固定非負整數 $n \ge 0$ 。首先,由於 $\{N_t = n\} = \{S_n \le t < S_{n+1}\}$,我們知道 $\{N_t = n\}$ 只取決於 $(X_i)_{1 \le i \le n+1}$,因此與 $(X_i)_{i \ge n+2}$ 是獨立的。我們需要先討論 $\{N_t = n\}$ 與 $S_{n+1} - t = n\}$

 $X_{n+1} + S_n - t$ 的獨立性。固定 $y \ge 0$,我們有

$$\mathbb{P}(N_{t} = n, S_{n+1} - t > y) = \mathbb{P}(S_{n} \leq t, X_{n+1} > t + y - S_{n})
= \int_{\mathbb{R}_{\geq 0}} \gamma_{n}(x) \mathbb{1}_{x \leq t} \mathbb{P}(X_{n+1} > t + y - x) dx
= \int_{\mathbb{R}_{\geq 0}} \gamma_{n}(x) \mathbb{1}_{x \leq t} \mathbb{P}(X_{n+1} > t - x) \mathbb{P}(X_{n+1} > y) dx
= e^{-y} \mathbb{P}(S_{n} \leq t, X_{n+1} > t - S_{n})
= e^{-y} \mathbb{P}(S_{n} \leq t < S_{n+1}),$$

其中在第一行中,我們使用 $\{S_{n+1}>t+y\}\subseteq\{S_{n+1}>t\}$;在第二行中,我們將 $S_n\sim\Gamma(n,1)$ 的密度函數記作 $\gamma_n(x)$;在第三行中,使用了指數隨機變數的無記憶性質。因此,上面計算告訴我們, $\{N_t=n\}$ 與 $S_{n+1}-t=X_{n+1}+S_n-t$ 是獨立的,且 $S_{n+1}-t\sim \operatorname{Exp}(1)$ 。由於 $S_{n+1}-t$ 只取決於 $(X_i)_{1\leqslant i\leqslant n+1}$,因此也會與 $(X_i)_{i\geqslant n+2}$ 獨立。

命題 3.4.9 : 帕松過程 $(N_t)_{t>0}$ 有下列兩個性質:

- (1) 給定時間點 $0 = t_0 < t_1 < \dots < t_k$,隨機過程的增量 $(N_{t_{i+1}} N_{t_i})_{0 \le i \le k-1}$ 為獨立序列。
- (2) 隨機過程的增量為帕松分佈:固定 $0 \le s < t$,我們有

$$\forall n \geqslant 0, \qquad \mathbb{P}(N_t - N_s = n) = e^{-(t-s)} \frac{(t-s)^n}{n!}.$$

證明:

(1) 因此,對任意非負整數序列 $(m_i)_{1\leqslant i\leqslant k}$,根據引理 3.4.8 ,我們有

$$\mathbb{P}\left(N_{t_{i+1}} - N_{t_i} = m_{i+1}, 0 \leqslant i \leqslant k - 1\right)
= \mathbb{P}\left(N_{t_1} = m_1, N_{t_{i+1}}^{(t_1)} - N_{t_i}^{(t_1)} = m_{i+1}, 1 \leqslant i \leqslant k - 1\right)
= \mathbb{P}\left(N_{t_1} = m_1\right) \mathbb{P}\left(N_{t_{i+1}}^{(t_1)} - N_{t_i}^{(t_1)} = m_{i+1}, 1 \leqslant i \leqslant k - 1\right),$$

最後透過遞迴,我們可以得到

$$\mathbb{P}\left(N_{t_{i+1}} - N_{t_i} = m_{i+1}, 0 \leqslant i \leqslant k - 1\right) = \prod_{i=0}^{k-1} \mathbb{P}\left(N_{t_{i+1}} - N_{t_i} = m_{i+1}\right).$$

也就是性質(1)。

(2) 使用性質(1)及命題3.4.4,我們可以直接得到此結果。

最後修改: 2025年 10月 21日 15:48