Convergence of Random Variables

Pa s 2 BRI

In topology, we know that the notion of convergence can differ depending on the topology that the space
is equipped with. Some notions of convergence can be compared but some other do not. In this chapter,
we will discuss different notions of convergence of random variables and see which notions are stronger or
weaker than the others.

4.1 Convergence in Probability

Given a sequence of random variables (X,,),,>1 with values in R? defined on the probability space (2, A, P).
In Measure Thoery, we have already discussed the following two notions of convergence,

. Almost sure convergence: if P({w € Q | X(w) = lim,, 00 X, (w)}) = 1, then we write X,, =5 X

« For p € [1,00), convergence in LP: if lim, . E[|X,, — X|P] = 0, then we write X, 2 x.

Definition 4.1.1: If the following holds for all € > 0,

lim P (|X, — X|>e) =0,

n—oo

then we say that (X,,),>1 converges in probability (REZRUHI) to X, denoted,
Yy > g p y

X, — X.

Then, we show that the notion of convergence in probability is metrizable.

Let L]%d (92, A, P) be the space consisting of random variables with values in RY. We define the following
equivalence relation on this space: X ~ Y if and only if X and Y are equal almost surely. We write
L?Rd (92, A, P) for its quotient space, on which we can define the following distance (EEEf),

dX,Y)=E[|[X -Y|A1]. (4.1)

Proposition 4.1.2 : The definition in Eq. (4.1) is indeed a distance characterizing the convergence in
probability, i.e., (X,)n>1 converges in probability to X if and only if d(X,,, X) tends to 0. Moreover, the
metric space (L9,(2, A, P), d) is complete.

EREET - FEKNER - EEEFEBENERT » ZABEFEEREELE - RS
BE - BERAUEMALR > MELRAZREFRERE - TEEFR - HfIASH RS SR E W
2 MRS A RBLURZ Y3855 L -

s

B—H BRKH
RE—HRZERT (0, A, P) A (X,)0e1 HEBEHSEZER | - 54 R OFHEHEFT) -
ERIERP - HPIEKEEREE T M EREEER
- PRSI B P({w € Q| X(w) = limy oo Xn(w)}) = 1 » BIRIE X, 25 X o
« R p e [1,00) » L7 WBH 1 B lim, o B[ X, — X7 =0 - BUEFE X, &5 X o

EFa1a  BEHRFAB: >0 EMB
Tim P (|X, — X| > ) =0,
BUFRAPITE (X)) 01 BRI (converges in probability) & X » EEE{E

(P)

X, — X.

EERMEFZARSRBEBIEEXZ R LBLEERY o
D LY, A P) BETUMEER R MIPEHSBERANZR  THZE[L - RAERFEMREEH
HX~Y R X8Y RUBE  WASEZEREEE L3.(Q, A P) o ERZRE LY. (Q, A, P) £ » FFIRTL
BT % EER# (distance) :
dX,Y)=E[|[X -Y|A1]. (4.1)

412 1 X (@) PHEESEERE - MATUZBIERKMELS ; Ra5ER - FAKSE
(Xn)n>1 BRIEEE X » Bl d(X,,, X) B 0 © tbS - BREEZER (L3, (2, A, P), d) Bl °




Chapter 4 Convergence of Random Variables

Proof : It is not hard to show that Eq. (4.1) defines a distance. One only needs to use the definition of
the quotient space and the definition of a distance. Next, we show that this distance is equivalent to
the convergence in probability. First, we assume that (X,,) converges in probability to X. Then, for
any given ¢ € (0, 1), we have,

E[|Xn = XA 1] SE[[X0 = X[T)x, —xj<e] + E[(1Xn = XIA DT x, - x|5e]
<e+P (X, — X|>e).

This implies that lim sup d(X,,, X) < €. Since ¢ > 0 can be arbitrarily small, we obtain lim d(X,,, X) =
0. Conversely, if lim d(X,,, X) = 0, then for any € € (0, 1), we have,

P(X,—X|>¢)<e 'E[|X, - X|A1] =1d(X,,X) — 0.

Now, we show the completeness of the metric space (L{,,d). Given a Cauchy sequence (Xy,) for

the distance d, we can extract a subsequence Y}, = X, such that forall & > 1,
d(Yi, Vipy1) <27°

Then, we have,
[e.e] o0
E[ Y (Vi = Vel A1)] = D" d(Yy, Yir) < oo,
k=0 k=0
Hence, > (|Yix+1 — Yx| A 1) < o0, a.s,, meaning that Y |Yi11 — Y| < o0, a.s. and the following
definition makes sense,
o0
X =Yo+ Y (Yir1 — Vi)
k=0
From the above construction, we know that (Y}) converges a.s. to X and using the dominated conver-
gence theorem, we reach at,

d(Y, X) =E [|Vy — X| A 1] — 0.

So (Y%) converges in probability to X. Finally, since (X}) is a Cauchy sequence, (X}) also converges
in probability to X. U
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Proposition 4.1.3 : Let (X,,)n>1 be a sequence of random variables. Then the following properties are
true.

(1) If (X,,) converges a.s. orin LP forp > 1 to X, then it also converges in probability to X .

(2) If (X,,) converges in probability to X, then there exists a subsequence (X, ) converging a.s. to X.

M 413 I D (X)) AREREHFES] - BITHMERII
(1) & (X,) BRI ER p > 1 & LP WHE X @ AITHERKME X -
(2) & (X,) BEWHE X WFEFRY (X,,) BOBEE X -

Proof : We have already proven (2) in Proposition 4.1.2, so we focus on the proof of (1). If (X,,)
converges almost surely to X, then from the dominated convergence theorem, we have,

d(Xp, X)=E[| X, — X|A1] — 0.
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Chapter 4 Convergence of Random Variables

If (X,,) converges in LP to X, then

d(Xn, X) < [ Xn = X[l < [ X0 = X[, — 0.

Proposition 4.1.4 : Let (X,,),,>1 be a sequence of random variables converging to X in probability.
Suppose that there exists v € (1,00) such that (X;,)n>1 is bounded in L". Then, for allp € [1,r), the
sequence (X, )n>1 converges to X in LP.

Proof : From the assumption, consider C' > 0 such that foralln > 1, E HXn]T] < C. From (2)
of Proposition 4.1.3, we may find a subsequence (ny)i>1 such that X, 2%, X. Then, the Fatou’s

lemma implies
o . r - r
E[IX]"] =E [ lim |X,,["] <lminfE [|X,[7] <C.

Forallp € [1,7) and € > 0, we have,
E[1Xn — X[P] = E [|Xn — X["1x,—xj<e] + B [[Xn = XPLx, - x|>]
<P HE[|X, - X' P(X, — X| > )P/
<P 4 2CPITP (X, — X| > ) P

where in the second line we apply the Holder’s inequality and in the third line we apply the Minkowski’s
inequality,

E [|X, — X" = [ X0 — X[ < (1 Xall, + 1X]1,)7 < 2CV7)P = 22C7/".
Since (X,,) converges in probability to X, we find,

limsupE [|X,, — X|P] <P,

n—o0

Since ¢ can be arbitrarily small, (X,,) converges to X in L”. ]

4.2 All-or-none Law

The all-or-none law is also known as Kolmogorov’s 0-1 law (Kolmogorov Z—7&) , which states that the
probability that a tail event (EBim={4) occurs is either 0 or 1.

Definition 4.2.1:Let (X,,),>1 be a sequence of independent random variables with values in any
metric space. For all n > 1, define B,, to be the following o-algebra,

B =o0(Xk: k>=n).

Last modified: 22:14 on Tuesday 11" November, 2025

FOUE FEREHBINK

B (X,) £ L» PIE X - Bl

d(Xn, X) < [ Xn = X[}y < [ X0 = X[, — 0. 0

iRl 4.14 | DREREBET] (X,)n>1 HWERBEE X - BRERFE r € (1,00) 1§ (Xy)no1 £ LT
REERN  AHRFAB pe [1,r) ' B (Xn)ns1 £ LP PIREAE X -

SR ARIREE B C > 0 EEMRFE 0 > 1 BEE [|X,["] < C - EBAE 413 B
(2) » BFEEBIFREF] () 1or 598 X, 2% X o 852 > BAFIER Fatou 3112 » 195

E[IX|"]=E [ lim |X,,|"] <liminfE[|X,,["] < C.
BB pe(l,r) Uk e >0 HEME
E[[Xn = X[} =E [|Xn — XPPLx, —xj<e] + E [|Xn — X[PLjx, x5
<P HE[X, — X[ P(Xn — X| > )P/
<P+ 2CPITP (X, — X| > ) P
HpEET1TH  BIERATHEREIE  £F8=179F » HFfIEARTXHEREFR !
E [|X, — X" = (X0 — X|2 < (1 Xall, + 1X]1,)? < €Y7y = 22CP/".
B (X,) BRIRHE X - TSR

limsupE [|X,, — X|P] <P,

n—oo

FRS e ATLUERR/) » BffIFE (X,) 7 L FIRE X - O

B_H 2ERER

A X TBIEKolmogorov Z—fE (Kolmogorov’s 0-1 law) * RUMENHIE (tail event) BYEE £ 1%
EUEBER— -

=

K421 1 5 (Xp)n ABIUEKEHRFY) > BEHRESHMEZE -HRFABE > 1 E
& B, A T5 o K&
By =o0(Xk: k >n).

BB : 20254 11 H 11 H 22:14



Chapter 4 Convergence of Random Variables

We also define the asymptotic o-algebra (BT o 8 By to be,
o)
B = () Bn.
n=1

A measurable event in By is called a tail event (EBImZE1F) .

Theorem 4.2.2 : Using the above notations, B, is a trivial o-algebra, i.e., for all B € By, we have
P(B)=0orl.

Proof : Foralln > 1, let
Dy =0(Xg: k< n).

From Question 3.1.19, we know that for all n > 1, the o-algebras D,, and B, are independent, so
D, is also independent of B,. This implies,

VAe |JDn, VBEBw, P(ANB)=P(A)P(B).

n=1

Since UD,, is closed under finite intersections, from Proposition 3.1.18, we know that B is indepen-
dent of the following o-algebra,

0( Ej Dn) =0(X,:n>1).
n=1

Since B, is also included in the above o-algebra, so B, is independent of itself, which means that for
all B € By, we have,
P(B) = P(BN B) = P(B)?,

implying P(B) = 0 or 1. O

Question 4.2.3: Given an i.i.d. sequence of random variables (X, ),>1 and define o-algebras B}, and B as
in Definition 4.2.1. Show the following properties.

(1) IfY is a real random variable that is B,,-measurable, then it is almost surely a constant.

(2 If % (X1+...X,) converges almost surely, deduce from the previous question that its limit must almost
surely be a constant.

The following proposition is an important application of the 0-1 law.

Proposition 4.2.4 : Let (X,,),>1 be an i.i.d. sequence of random variables with distribution P(X,, =
1) =P(X, =—1)=4. Foralln > 1,let S, = X1 +...,+X,. Then,

a.s., sup S, = +00 and inf S,, = —o0.
n n

FOUE FEREHBINK

EZMAE o KB (asymptotic o-algebra) B, %
Boo = () Bu.
n=1

£ Boo PREHHBIERM B (tail event) ©

EIE 422 1 B LEEMER - B BN o K8 URLER - WIRFAEM B € B, » FKfM
BEPB)=03K1°
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Chapter 4 Convergence of Random Variables

In particular, it means that almost surely, there exists an infinity of n such that S, = 0.

Remark 4.2.5 : We toss a fair coin. Assume that we earn one dollar when we get a head and loose one
dollar when we get a tail, then during the whole game, the net asset can be as positive as possible and also
as negative as possible.

Proof : For all p > 1, we define the following event,
A, ={-p < inf S, <sup S, < p}.
nzl n>1
We note that the limit of (A4,) is,
As = lim 1 4, = {—oc0 < inf S, <sup S,, < oo}.
Pp—00 n

First, we want to prove that for all p > 1,IP(A,) = 0. Forall k > 2pand j > 0, let

Bk ={Xjk41 =" = Xjpyr = 1}.
Then, we have,
o0
U Bk C 45 (4.2)
=0
Since (Bj);j>0 is an independent sequence of events with Y IP(B;;) = oo, from Borel-Cantelli

lemma, the event on the left side of Eq. (4.2) has probability 1, meaning that P(4,) = 0. By the
continuity of probability measures, we obtain P(A) = lim 1 P(A,) = 0, which means,

]P’({i%fS = —oo}U{sup S, = 0}) = 1.
By symmetry, we have,
P(i%f Sy, = —00) = P(sup Sy, = 00),

So both probabilities are non-zero.
Finally, we want to use the 0-1 law (Theorem 4.2.2) to show that the probabilities in the above
formula are both 1. We first note that, forall k > 1,

{sup S, = oo} = {sup(Xy +--- + X,,) = o0} € By,

n>k

meaning that the event {sup,, S, = 0o} is Bi-measurable. So it is also measurable with respect to the
intersection of all the B;’s, which is B. O
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Chapter 4 Convergence of Random Variables

4.3 Strong Law of Large Numbers

The goal of this section is to show that if an i.i.d. sequence of random variables (X,,) is in L?, then its
arithmetic average 2 (X7 + ... + X,,) converges almost surely to E[X1].

In Proposition 3.3.6, we proved that under a stronger assumption that E[| X1 |*] < oo, the statement holds.
But here we want to look for the minimal condition so that the theorem holds.

Theorem 4.3.1: Let (X,,),>1 be an i.i.d. sequence of random variables with distribution in L'. Then,

1
E(Xl + -+ X)) 25 E[X]

Remark 4.3.2 : The integrability is the optimal assumption since in the above statement, the limit needs to
exist. If the random variables are non-negative and E[X] = oo, we may apply this theorem to (X, A k)p>1
to get

1 1 a.s.
{E(Xl—i—---—f—Xn)]/\k:E(Xl/\k—i—---+Xn/\k;)'—>IE[X1/\I<:],

then by using the monotone convergence theorem while taking the limit Xk — oo to derive,

1
E(Xl_‘_"“i‘Xn)ﬂ)‘f’OO.

Remark 4.3.3 : Later in Section 6.6, we will also show that this convergence also holds in L.

Proof : Let Sy =0and S, = X1 + -+ + X,, for n > 1. Set @ > E[X}] and the random variable,

M = sup(Sy,, — na) € [0, c0].

n=0
We will show this theorem by showing (i) and the implications (i) = (ii) =- (iii) :
(i) P(M < o0) > 0, or equivalently, P(M = o0) < 1;
(i) M < o0, ass.;
(iii) the strong law of large numbers.

We explain first why (ii) implies (iii) the strong law of large numbers. From the definition of M, for
all n, we have S,, < na + M and from the property in (ii), we obtain,

1
limsup -5, < a, a.s.
n—oo T

Since a can be any number larger than E[X] and arbitrarily close to E[X], we have,

1
limsup — 5, < E[X4], a.s.

n—oo T
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. 1
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Chapter 4 Convergence of Random Variables

If we replace X,, with —X,, then we get,

1
liminf —S,, > E[X}], as.

n—oo n,

The two formulas above together imply the strong law of large numbers.
Then we show that (i) implies (ii). We first note that for any k > 0, the event {M < oo} can be
rewritten as,

{M < o0} = {ig%(sn —na) < oo}

= {sup(Sy, — S — (n — k)a) < 00} € 0(Xg+1, Xkt2,---)-

n=>k

Hence, we know that the event { M < oo} is measurable with respect to the asymptotic o-algebra B,
which means that P(M < co) = 0 or 1. So, (i) implies (ii).
Finally, let us show (i). For all £ > 0, define the following random variable,

My, = sup (Sn - na)7

o<n<k
M, = sup (Sp41 — S1— na).
0<n<k
Since the vectors (X7i,..., X) and (Xo,..., X;41) have the same distribution and we have M} =

Fy(Xy,...,Xy) and M| = Fg(Xo,..., Xg+1) for some deterministic (FEE %) function Fy : RF —s
R, we deduce that the following two random variables also have the same distribution,

M = lim + My and M’ = lim 1 M.
k—oo k—oo
Moreover, from the definition, we know that for all k > 1,

M1 = sup (0, sup (S, — na)) = sup(0, Mj, + X1 — a) = M}, — inf(a — X1, M}).

1<n<k+1
Mj, and M ,’g being both in L! and have the same distribution, we get,
Elinf(a — X1, M,Q)] = IE[M,’C] — E[Mgy1] = E[Mg] —E[My41] <0

Next, since M; > 0, we have |inf(a — X, M})| < |a — X3
convergence theorem that

, then it follows from the dominated

Elinf(a — X1, M")] = lim E[inf(a — X1, M})] < 0.

k—o00

Finally, if P(M = oo) = 1, then we also have P(M’ = o0) = 1, meaning that inf(a — X, M)
a — X a.s. But we chose a > E[X}], which contradicts the fact that E[a — X;] < 0.

oo

4.4 Convergence in Distribution
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1
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M= lim tM; B M= lim 1M
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Mj. 11 = sup (0, sup (S, — na)) = sup(0, M}, + X1 — a) = M}, — inf(a — X1, M}).
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Elinf(a — X1, M")] = lim Efinf(a — X1, M{)] <0.

BB CWRP(M =o00) =1 BIEMAEEE P(M =o0) =1 ALt inf(a — X1, M) =a - X3
as. c BEHREMEE o > E[X1] » EM Ela — X1] <OMEEF/E ° O

SME ol

BRIBIEM : 20254 11 H 11 H 22:14



Chapter 4 Convergence of Random Variables FEOE  FERERINEL

4.4.1 Definition and Examples F—INE EBRREH)
The functional space Cj(RY) consists of continuous bounded functions from R? to R. We can define a RBZER C(RY) 2EiEE 5 RY E R BIREFAHEAL » b4 - BRFIFTLUR T It Ze R s R R/
norm on this space to be the supremum of the function. FREFEEREE ;
¢l = sup [@(z)]. = :
s lello sup ()|
Definition 4.4.1: Given a sequence of probability measures (i,,)n>1 on R%. We say that (1,)n>1 r B 441 1 BEE R FAOMEAERT (1)0s » B
converges weakly (53UHX) to u, denoted, o a s
n = [,
if the following condition holds, RUFRAPIER (1)1 SIWEEL (converges weakly) Z 1 » FE1F
d
Vo € Cp(RY), /god,un — /god,u. (4.3) Vo € Cp(RY), /sodun — /sodu~ (4.3)
SF 2] d ks ek y FE 5E & y > =
Given a sequence of random variables (X,),>1 with values in R?%. If the sequence of distributions MARE BN R BIBERBH TS (X)) 0 B (Px,)ns1 BEREE IP)_X AUFRAIER (X )n>1
(Px,, )n>1 converges weakly to Py, then we say that (X, ),>1 converges weakly (33U8%) or converges 9L (converges weakly) ST it (converges in distribution) & X » 52{F
in distribution (3AULEY) to X, denoted, 4
) x,5x @ x,2x
5x o x%x _
P25 WIS R FINRAEE -
The weak convergence of random variables is also equivalent to the following condition,
Vo € G(RY),  E[p(Xn)] — E[p(X)].
Vo € Go(RY),  Elp(Xa)] — Elp(X)].

Remark 4.4.2 : We add some comments to the above definition. SR 442  EERMY FIRHE S ML EZIIRA

d d\*
(1) The space of measures on R? can be see.n as a subspflce of the dual space Qb(R )*. As such, Eq. (_4.3) (1) RY IR AR ZE R BT UL E fE 2 4B 2o Y C’b(Rd)* BIFZoR - FILT (4.3) FESATE A TESE X
can be understood as the convergence in the weak-" topology. However, in Probability Theory, it is

called “wok sonverpence’ R ERIRERT S BAEHERERT - TSI TR
(2) In the definition, there is an abuse of notations: when we say that the sequence of random variables (2 EEHTHEFEXRBERANME  ERMREREEFT] (X)) BRHEE X K> S8 X
(Xn)n>1 converges weakly to X, there is no uniqueness for X; the only mathematical object with W EH—Y  BEE—MHNEHEFREEEENSH Py ; Bt 0 ERMEEFEEIGE—EME

uniqueness is the distribution Px. Therefore, in a more precise language, we say that the sequence of
random variables (X,,),>1 converges in distribution to Px.

B EREREHFY) (X,,)n>1 PHREE Py -

(3) When we talk about other notions of convergence of random variables, we need them to live on the (3) —HRETERPE R B BUIRRIEH AR - AL ARBROMANERR BRZRH) HF - B3
same probability space but not for the convergence in distribution. The random variables can be defined BAERET 2 Uy - PR B ERIER L EMHA - SRR R ERERRPEENR
on different spaces and that is why this notion is important in Probability Theory. o
Example 4.4.3 : Below we give two examples of the convergence in distribution. gl 14.4.3 : ERFIERED HBEBIHF -

(1) If X,, has the uniform distribution on {2% : 1 < k < 2"}, then X, converges in distribution
to the uniform distribution on [0, 1] because the Riemann summation of a continuous function

(1) & X, BT {£ : 1 <k <2} EWH9RH - B) X, BRHE [0,1] £H9HH - ER

S NE=F IR F o2 [=E =-aN
approximates its Riemann integral. ERERRHRENT@IARERT -
'In French mathematics literature, there is another term to distinguish this notion, called “convergence étroite”. EEXEMEANAE - BBNFEEPITBITILKREEER » #8243 convergence étroite °

Last modified: 22:14 on Tuesday 11" November, 2025 8 BRIBIBM : 20254 11 H 11 H 22:14



Chapter 4 Convergence of Random Variables

(2) If X,, has the Gaussian distribution N'(0, 02) with 02 — 0, then X,, converges in distribution
to a random variable which is almost surely zero.

Question 4.4.4: If (1, = p, look for a continuous but unbounded function and a discontinuous bounded
function such that Eq. (4.3) does not hold.

Question 4.4.5: Let (X,,),>1 and X be random variables with values in Z?. Prove that X,, converges in
distribution to X if and only if,

veezd, P(X,=z)— P(X =uz).

Question 4.4.6: Assume that for all n > 1, the random variable X, has a density, denoted Py, (dz) =
pn(x) dz. Suppose

(1) pn(z) — p(z), dz-as.,

(2) there exists a non-negative function ¢ such that [pa ¢(z) dz < oo and

vn, pn(x) < q(x), dz-as..

Prove that p is the density function of a probability measure on R and that X,, converges in distribution to
p(x) dz.

Question 4.4.7: If (X,,),,>1 converges in distribution to X, is it true that for any B € B(R?), we also have
the following convergence?
P(X, € B) — P(X € B).

4.4.2 Equivalent Conditions for Convergence in Distribution

The following theorem gives some properties which are equivalent to the weak convergence of probability
measures.

Theorem 4.4.8 (The Portmanteau Theorem %) : Let (ju,,)n>1 and j1 be probability measures on R%. Then,
the four following conditions are equivalent.

(1) The sequence (jin)n>1 converges weakly to p.
(2) For any open set G C RY,
lim inf 1, (G) 2> pu(G).

(3) For any closed set F C R,
lim sup pn (F) < pu(F).

n—00

(4) For any Borel set B C R, if u(0B) = 0, then,

lim p,(B) = u(B).

n— o0
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FOUE FEREHBINK

2) B X, BN(0,02) WEH#AH > BoZ — 0 Bl X, DM ERESSHIPEHES

fIRE 4.4.4 1 B p,, = p HEHEBBEERRE > URFTEEEERRE - F15T (4.3) TR -

fIRE 4.45 1 & (Xp)n>1 &R X BEES 27 FEHRER - 55 - EEME X, 2HRHE X - B

veezd, P(X,=z)— P(X =ux).

B

FIRE 4.4.6 - BREHERFAE n > 1 (X,) EEREREMFEEREE
(1) pp(z) — p(x), dz-as.,
(2) FEIFERR ¢ 17 [rag(z)dz < B

SC1E Py, (dz) = pu(z) do ° RER

vn, pn(x) < q(x), dz-as..

N

2 p BEE R EREAENEERE - MA X, 2MHUEHE p(z) dz

IRE 4.4.7 1 B (Xp)n>1 DHREE X » BEHREE B € B(RY) - B T7WE?

P(X, € B) — P(X € B).

BINE BRI FEIEY
THEEGRFIRERERAEZRBNFELE -

EIE 448 [Portmanteau B °] @ B (1n)n>1 & p 27E RY EBIRESRIE - BITZIE{E MR
HFE o

(1) r.%_yu (Mn)n;l 55”&@5 o) o
(2) BIBEIE G C R -

lim inf 1, (G) > pu(@).

) HEBERE FCR?
lim sup ., (F) < pu(F).

n—0o0
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Chapter 4 Convergence of Random Variables

Proof : We first prove that (1) = (2). If G is an open set in R?, we can construct a sequence of
continuous bounded functions (¢p,)p>1 such that 0 < ¢, < 1and ¢, 1 1. For example, take ¢, (z) =
pd(z,G¢) A 1. We have,

I%THLE.}f pn(G) = liﬁn inf< lim 0 /<pp d,un)

> sup hm 1nf/<pp d,un

p=>1 n—00

= sup (/wp d,u) = u(Q).
p>1
The equivalent relation (2) < (3) is not hard to prove. Taking the complement interchanges the role
of an open set and a closed set and also changes the direction of the inequality.
Prove that (2)+(3) = (4). Let B € B(R?). Then, we have,

(B),

lim sup i, (B) < p
wB),

limsup pin(B) <
lim inf pu, (B) > liminf p, (B)

VoA

Due to the assumption that ;,(8B) = 0, we have p(B) = p(B), implying,
lim sup pp, (B) = liminf p,(B) = lim p, (B).

Finally, we prove that (4) = (1). Let ¢ € Cy(RY). We can separate the positive and the negative part
of ¢ into ¢ = p* — ™, so we can assume that ¢ is a non-negative function. Since ¢ is bounded, we
can take K > 0 such that 0 < ¢ < K. From the Fubini’s theorem, we obtain,

/@(w)ﬂ(dx) = / (/OK ﬂ{tsso(x)}dt)u(dx) = /OK (/]l{tsgo(z)}u(dﬂf)) dt.

Let Ef = {x € R?: ¢(x) > t}. Then the above formula rewrites,

[ etz = [ wEp)a
[ et = [ () at

We can notice that Ef C {z € R? : p(z) = t} and it follows from Exercise 1.13 that there exists at

Similarly, for all n, we have,

’In the first edition of the book “Convergence of Probability Measures” from Patrick Billingsley (1968), he mentioned that this
result can be tracked back to an article of Aleksandrov in 1940. Later, in the second edition (1999) of the same book, he dedicated
this theorem to Jean-Pierre Portmanteau, and cited the article “Hope for the empty set?” (Espoir pour 'ensemble vide?) from

the journal “Annales de 1'Université de Felletin”. However, this person, the university and the article do not exist.
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(4) BHESREWES BC R & p(0B) =0 8l

lim p,(B) = u(B).

n—00

RBEA : RIS (1) = (2) ° B G B R PHWHE - RAFTLUESERE RRBFT (0),51
BOo< g, <1MB ¢, t 1g > AU : p,(z) = pd(z,G) A1 > FRFIE
Hmnf () = lymint (i 1 [ )

> sup (hnl)icgf ©p d,un)

p=l v ™
= sup (/cpp du) = u(@).

ZERIR (2) & ) F#ER  HESXHMARENAR  URAFERANAFA -
B (2)+(3) = (4) ° % B € B(R?) » B|FMIH

lim sup p,, (B)
lim inf pu, (B)

lim sup i, (B)
lim inf p, (B)

v N
A\VARRV/AN

p(B),
n(B),
BER 1(0B) = 0 BIRER » BFHSE u(B) = u(B) » Atk

lim sup pp, (B) = liminf p, (B) = lim p, (B).

REBEMERH @) = 1) Do G[RY) » BMTLUE o EEEBIFE o =" — o Blt
FFIRTLURER ¢ REEERRE -HR o BR BT EK>0FF0<p < K - 1RBEELEERE -
RIS E

/@(aﬁ)ﬂ(dw) = / (/OK ﬂ{tég&(x)}dt)ﬂ(dx) = /OK (/]1{t<<p(x)}u(d$)) dt.

WEF = (2R px) > 1) 0 BIERAINUES B

/80 p(dz) / w(EY)
/w(m)un(dw) = /UK pn(EF) dt.

BPIRILUERER] > 0B C {z e RY: p(z) =t} > MEREZE 1.13 » RAINERSZREIHZ

[EIHREY - BHFAE n - FFIE

*TE Patrick Billingsley & (FZRAERULELD (Convergence of Probability Measures) ZE—hR (1968) A » fIER LLIERETLL
IBHAE) 1940 £ Aleksandrov IXE ; BEE R (1999) H » ANFLLEIEH £ T Jean-Pierre Portmanteau B35 * BRH B
1915 F HARFEHATY Annales de I'Université de Felletin FFBINE (ZEHEGHIHEAL ?)  (Espoir pour lensemble vide ?) -+ {8
LAY ~ RERXEERFE ©
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Chapter 4 Convergence of Random Variables

most countably many ¢ such that
n({z € R : o) = 1)) > 0.
Hence, from the assumption (4), we have,
in(Ef) — p(Ef),  di-as,

and the dominated convergence theorem implies,

[ et = [* Bt [* )= [e@na). ;

Question 4.4.9: Consider real-valued random variables (X, ),>1 and X and we write (Fx, ),>1 and F'x for
their distributions. Then, the sequence of random variables (X,,),>1 converges in distribution to X if and
only if for all the points of continuity x of Fx, the distribution function Fx, (z) converges to F'(z).

Proposition 4.4.10 : If (X,,),>1 converges in probability to X, then (X,,)n>1 also converges in distri-
bution to X.

Proof : First, assume that (X,,),>1 converges almost surely to X. In this case, for any ¢ €
Cy(RY), ©(X,,) converges almost surely to ¢(X) and the dominated convergence theorem implies
Elp(X,)] — Elp(X)]. This shows that (X,),>1 converges in distribution to X.

In a more general setting, we show by contradiction. Suppose that (X,,),>1 does not converge in
distribution to X, then we can find ¢ € Cy(R?) such that E[o(X,,)] does not converge to E[o(X)].
Let £ > 0 and a subsequence (ny)r>1 such that for all k, we have,

VE=1,  |Elp(Xn,)] - Elp(X)]] > e

From Proposition 4.1.3, we can find a subsequence (X”kl )i>1 that converges almost surely to X, but
the proof from the first part gives a contradiction. |

Proposition 4.4.11 : Show that if (X,,),>1 converges in distribution to X which is almost surely a
constant, then (X,,) also converges in probability to X .

Proof : See Exercise 4.15. O

We define C..(R?) to be the set of continuous and compactly supported (BB Z18) functions.

Proposition 4.4.12: Let (,,) and j1 be probability measures on R%. Let H be a subset of the normed
space (Cy(R?) ) and assume that its closure (B €2) contains C,.(R?). Then, the following properties
are equivalent.

2 lloo

(i) The sequence of probability distributions (i, ) converges weakly to p.
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(ERREIES
plf € B g(a) = 1)) > 0.
KRR (4) BIRER - FfFIE
pn(EY) — w(Ef),  dt-as,
Xl it #h B AR U EUE 12 & R AP
[ ewpmtan = [* Bt [* )= [ o) .

fIRE 4.4.9 : ZREBEEBH (X,,),>1 & X BOFAIBNSHREEE (Fx,)nz1 UK Fx - EEMEERE
BEIFT (Xn)n1 PHEREE X - AIEIRAE Fx BOEERE o DRE Fx, (z) WEE F(a) °

[ REA410 © E (X))o BEKRLE X > 8] (X,)not B HEKEIE ¥ o

FEE B B (X)) TRRIREE X 0 IIERT - HRER ¢ € C,(RY) » ¢(X,) Fadb K

E o(X) » FIRESHERKEER » Elp(X,)] — E[p(X)] * BT (X,)n>1 EOMHBRE X -
F—MRERT  BPIAREE - BE (Xo)ns1 FEOMUEE X » BREERTLUXE] ¢ € Cy(RY)

#18 Elo(X,)] FERHE E[p(X)] o F e > 0 URFFEY (n) i1 EEHRRE L BB

VE=1,  [E[p(Xn)] - Elp(X)]] > ¢
RIFmE 4.13 > BATUKEIFFI (X, )i ROWEE X - BRARNFEROHESHR
- ERFER ° O

Rl 4.4.11 ¢ AR (X,) 2HBERE X > B X BEAEE0 8l (X,) EERHE X -

S8HA : 2EBEBE 415 0

HMEE C.(RY) ZHEEBRZEHHE (compactly supported) FIREERIES ©

R 4.4.12 1 D (u,) B p AR ERESAE - © 0 AHEZERE (C,(RY), | WFES >
T REREFE (closure) B8 C.(R?) » BITFFIMHEEFE :

(i) WRDMFET (1,) BEEE 1
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Chapter 4 Convergence of Random Variables BUE  ErESBIER

(ii) We have, (i) &MBE
Vi € Co(RY), /sodun — /sodu- Vo € C.(RY), /god,un — /god,u.
(iii) We have, TR
voeH /cpd,un . /cpd,u. (i) FME
Vo € H, /wdun—>/wdu-
Proof : Since C,.(R%) C Cy(R%) and H C Cy(R?), there is nothing to prove for (i) = (ii) and (i) = (iii). $8EA : A C.(RY) C Cy(RY) UK H C Cy(RY) » (i) = (ii) AR (i) = (iii) 2 A FBFEAEHY o fﬁ?‘_ﬂ?
Now, we prove (ii) = (i). Consider a continuous bounded function ¢ € Cj(R%) and a seuqnece (f}) of FISERA (i) = (i) - EEAFREERE » ¢ O,(RY) WUR C.(RY) PHIREFT] (f,) B0 < /i, <

functions in C.(R?) such that 0 < f;, < 1 and lim 1 f; = 1, then for any k, we have ¢ f;, € C.(R%)
so,

Blimt f, =1 BIERER Lk JHFE of) € C.(R?Y) » FRL
/wfk dptn —— /cpfk dp. /<Pfk dpin —— /@fk dp.

s - ZfIE

Moreover, we have,

SOdM'rL_/SOfkd,Un < SUP’(P 1_/fl€dun
‘/ ’ ‘/s@dun—/s@fkdun] < (suple(z 1—/fkdun

@du—/wfkdu < sup!w 1—/fkdu
‘/ < ‘/wdu—/wfkduk sup |p(z 1—/fkdu

Hence, for all &, we have,

HULCEHRERE k- BPIEIURE
limsup‘/god,un /cpd,u‘ Sup|gp hmsup 1—/fkdun 1—/fkd,u)>

n—oo n—oo

ligsup‘/¢dun—/wdu] < (suplw( )| hmsup 1—/fkdun 1—/fkdu))
:2(sup\80 1—/fkdﬂ :2(sup\go 1—/fkd,u

The above formula being true for all k, we can take £ — oo to obtain,

MR ERXEHMER & B FFAIETLUE & — oo UIGE!

/cpdun —>/<pdﬂ- ‘ ‘
odun — | pdpu.

Next, we prove (iii) = (ii). Let ¢ € C.(R?). Using the density of H, for all & > 1, we can find

¢ € H such that ||¢ — ¢ || < 1/k, so for all k, we have, FHEIRMIFEEA (i) = (i) ° B ¢ € C(RY) » FA H 9HEZMN - BRFE k> 1 HATLERE

or € H BT |lo — ol < 1/k > B - WHRFAE £ EFE
limsup‘/gpd,un—/gpd,u‘

n—00 limsup’/god,un—/@d,u‘
* n—oo
< limsu /dn—/ dn—}—/ dn—/ d—|—/ d—/d
o (| [edm— [enaml|+| [eram— [codu|+]| [oran— [oan]) <y ([ e~ [ovtm] +| [ v [ vt +| [ovan- [ oan)
<2
k <%.
Since k can be arbitrarily large, we obtain [ ¢ du, — [ ¢ du. O A e BILUEE A EIEPYEE [ o du — [odu s -
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Chapter 4 Convergence of Random Variables

Remark 4.4.13 : For a sequence (i,,),>1 of probability measures on R? and a measure j, we say that j,,
converges vaguely GRUWURN) to p if
d
VreC®Y, [ fdpn o [t
According to Proposition 4.4.12, when we know that p is also a probability measure, the weak convergence

and the vague convergence are equivalent; but in general, without the assumption that ¢ has a total mass 1,
the Fatou’s lemma can only give us u(R?) < 1.

We may consider the following example,

Vi€ CRY,  f(n) = | f@)dn(de) 50,

n—oo

implying that p,, converges vaguely to 0, but 0 is clearly not a probability measure because its total mass is
0. The main reason is that, when the test functions at are disposition are functions from C,.(R?), we might
have some probability masses that “escape to infinity”, which cannot be captured by functions in C,(R?);
however, the test functions in Cy(R?) are able to capture this phenomenon. This intuition also provides
another explanation for the equivalence between the weak convergence and the vague convergence in the
case that y is a probability measure.

Question 4.4.14: Given a sequence (i, ),>1 of probability measures on R%. We say that (1, ),>1 is a tight
(82%) sequence if for all € > 0, there exists a compact set K, C R? such that

pn(Ke) 21 —¢.

Given a measure . on R? and prove that the following properties are equivalent.
(1) pp converges weakly to p.
(2) pp converges vaguely to p and (py,)n>1 is tight.

Theorem 4.4.15 (Lévy’s continuity theorem) : Let (i, )n>1 be a sequence of probability measures on
RY. Then, (jiy,)n>1 converges weakly to uu if and only if,

VEERY,  fa() — B(E).
Similarly, the sequence of random variables (X,,)n>1 converges in distribution to X if and only if,

Ve € RY, Dy, (£) — Dx(£).

Proof : We only need to prove the first part of the statement. If (p,,),>1 converges weakly to y,
then from the definition of the weak convergence, since for any fixed £ € R, both  +— cos({z) and
x +— sin({x) are bounded, we obtain

Ve € RY, An(§) = /eiéwﬂn(dx) — /eig.xﬂ(dx) = ().

Then we show its converse. Assume that for all ¢ € RY, we have 7i,(¢) — 7i(£) and we want
to show that the sequence of probability measures (i,),>1 converges weakly. We want to use (3)
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iR 4.4.13 1 BN R EROSRERT (1n)ns1 RBE 10 &

[ £am——= [ ran

BFR IR 1 EIK UL (converges vaguely) o EanRE 4412 M UEH - TEX p L2 1E
PRI - 3 IRBEL A BB R R EEN ; BNRDT 1 WEEEA 1 R > 556 Fatou 5

B HERMREEE uRY <1
HFIRTIAE B T ERFIF :

Vf € C.(RY),

Ve CRY,  fn)= [ f@)n(dn) =0,

n—oo

BARE 1, ERREE 0 BEA I FERERKAE BABEESR 0 TENREER - B
FIRYRIE R B R RESOIRIE C.(RY) FRVREES - FIRE G RERKEE MMANEER) NER X ERE
ER C.(RY) FRYRBFRFIERIRY ; (B C,(RY) RRVAIEE KB E B AR IILIRRH - LEEH
HEFEM - BHHEEEM o SEHZAER - SRREEKREIIZEEFENRA -

FIE 4.4.14 D IEEE R? LRIREERIERD (1n)n>1 c BEHRFIE ¢ > 0 BERBES K. C R F8
Mn(KE) =2 1-—c¢,
BUFRPIER (11n)n>1 =ERRE (tight) IS © F8EE RY ERVRIE 1> SBATHMESE -

(1) pn BBEEE 1
@) po BREHEE 1 B (p1)n>1 BEBH ©

EIE 4.4.15 [Lévy EETEE]
BE o0 B

L (o1 B RY_EBOMERIERS) » EEME (1,).01 3K

VEERY,  fia(6) — R(9).
MR > & EEEREERES (X)), DMEREE X - 8

V¢ € RY, Dy, (£) — Dx(8).

A PR FEEAUEENE D © B (un)n>1 BEEE 1 REBRBESFHES
HRERERETER ¢ € R KB 2 — cos(éz) Mz — sin(éz) BRBE R » HFIFR

VEERY  n(§) = [ @ Tunlde) — [ € p(da) = R(E).

BHEFRETERE | RRENAE ¢ e R HME 0.(9) — A > RPIEZZAEKXRAER
B (pn)n>1 BIFBIEN - RABEFEREE 4.4.12 FH 3) - & T ELFER > BRABR =115
e
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Chapter 4 Convergence of Random Variables

from Proposition 4.4.12. To simplify the proof, we also assume that d = 1.
Let f € C.(R). Forall o > 0, let

() = 1 :EQ)
ga‘r)—\/mexp( ﬁ .

In the proof of Theorem 2.4.15, from Eq. (2.10), we know that g, * f converges simply to f. Then
using Question 2.4.16, since f is compactly supported, we have the uniform convergence of g, * f to
f. If we let

H={p=g,xf:f€C.(R)and o > 0},

then C.(R) C H, so it is enough to show that,

VfE€CR), [ gnr Sl [g0 i

From Eq. (2.8) and Eq. (2.9) in the proof of Theorem 2.4.15, for any probability measure v on R, we

have,
/ga*fdl/: \/2;7/f@)(/eigxg1/g(§)ﬁ(—§)d§) e

From the assumption, for all £ € R, 7i,,(§) — 7i(€) and |7, (§)] < 1, so using the dominated conver-
gence theorem, we obtain,

[ €00 (-6) 4 > [ g1 0(©)(-¢) de.
Since the left side of the above formula also satisfies |-| < 1, we apply again the dominated convergence
theorem to conclude,

/ga*fdﬂnm/ga*fdu. -

4.5 Applications of Convergence in Distribution
4.5.1 Convergence of Emperical Measures

Let (X},)n>1 be an iid. sequence of random variables with values in R%. We can think of these ran-
dom variables as values observed in a series of independent and identical random experiments. In statistics,
we wish to derive the distribution of X from the observations X;(w), ..., X,(w) (w being a point in the
probability space).

Taking a national poll as example. Let NV be the Taiwanese population. The Taiwanese number ¢ has its
own vector a(i) € R4 representing its data, such as age, income, health condition, political tendency, etc.
When we are given a measurable set A € B(R?) (e.g., fans of Han Kuo-Yu with annual income above 1
million and above 50 years old), we want to know the proportion of Taiwanese popultion whose vector ()
belongs to this set. Alternatively speaking, we want to estimate,

1 N
p(A) = 3" La(a(i))
=1
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Chapter 4 Convergence of Random Variables

When N is large, it is impossible to compute precisely this value, and the ultimate goal of a national poll
is to find a representative set of n people from the Taiwanese population so that we can have a reasonable
estimate of 1(A). If we consider uniform random variables Y7, . .., Y,, with valuesin {1,..., N} (i.e., choose
n Taiwanese uniformly at random) and write X; = a(Y}) * X1,..., X, be iid. random variables with the

following distribution,
N
d 1 -
VAEBRY,  Px,(4) =P(a(Vi) € 4) = - > aali)) = p(A)
i=1

From this sample, we obtain the following estimation,
1 n
- D 1aA(Xi(w) = =D ) (A).
i=1 ‘

Coming back to the original problem, we want to know whether the above estimate is close to the theoret-
ical value pi(A), which means that we want to know whether the emperical measure defined below converges
to Px, when n tends to infinity,

1 n

The following theorem gives a positive answer.

Theorem 4.5.1: Let (X,,)>1 be an i.i.d. sequence of random variables with values in R%. For allw €
andn > 1, define i, be the following emperical measure (ARE&HIE) on RY,

1
Hn,w = — Z 6Xi(w)'
n =1

Then, when n. — 0o, we have the following convergence result,

IU/TL,OJ = le °

Remark 4.5.2 : This theorem does not provide any convergence speed, so we do not know at which rate

[in o converges to Px,.

Proof : Let H be a countable dense subset of C.(R?). If ¢ € H, from the strong law of large numbers,

we have,
n

D (Xi) = Elp(X1)).

1
iz

The above formula rewrites,

/ o din o 25 / o dPx, .
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Chapter 4 Convergence of Random Variables

Due to the countability of H, we can obtain,

as. Vo€ H, /gpdumw — /g@d}P’Xl.

We conclude using Proposition 4.4.12. O

4.5.2 Central Limit Theorem

In Theorem 4.3.1, we obtained the strong law of large numbers: if (X,,),>1 is an i.i.d. sequence of random
variables where each term is integrable, then the following result holds almost surely,

1
g(X1 ++ X)) 25 E[X]

After this, we can study the speed of the above convergence. To be more precise, we want to understand the
behavior of the following quantity when n is arbitrarily large,

L4 X0 B (@4
Let us start with a simple computation: assume that X; is square-integrable, then we note that,

E[(X1+4 -+ X, —nE[X1]))] = Var(X| + - - - + X,,) = n Var(X;).
This means that (X7 + - - - + X,, — n[E[X1])? is linear in n, i.e., Eq. (4.4) and ﬁ are of the same order.

Below we first state the one-dimensional version of the central limit theorem (FFIRAEFREIE), the higher-
dimensional version being discussed later in Section 4.5.3.

Theorem 4.5.3 (Central limit theorem (FRIBFREIR) ) : Let (X,,)n>1 be an iid. sequence of real-
valued random variables where each term is square-integrable. Let 0> = Var(X1). Then, we have,

L (X4 4 X — nE[X1]) S N0, 02).

B

In other words, for all a,b € R with a < b, we have the following convergence,

) dz.

. 1 b x2
JLIIC}OIP(nE[Xl]+a\/ﬁ<X1+--~+XnSnE[Xl]—i—b\/'Tz):\/m/a exp(—ﬁ

Proof : The second part of the theorem being a direct consequence of the first part (Question 4.4.9 and
Exercise 4.13), we only need to prove the first part. Additionally, we can replace X,, with X,, — E[X,,],
so that we can assume E[X,,] = 0. Let

1
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Chapter 4 Convergence of Random Variables

We want to use Theorem 4.4.15 to show this theorem. The characteristic function of the random
variable Z,, writes,

02,06 = & [exp (16| ey (6] = o (S

The series expansion in Proposition 2.4.17 gives, when & — 0,

. 1 252
Px, (§) =1 +iCE[Xy] - §§2E[X12} +o(&%) =1— ——+0(&).
Hence, for any given £ € R, when n — oo, we have,
§ o?¢? 1
‘I’Xl(%) =1-—=+o(").
S t,
o we ge e L e
Jim @7, (€)= lim (17 +0(5)) =exp(= =) =),

where U has the distribution N'(0,02). To conclude, we have shown the central limit theorem us-
ing Theorem 4.4.15. ]

4.5.3 Central Limit Theorem in Higher Dimensions

X))t with
values in R%. We can apply the strong law of large numbers to each of its component Xff) to obtain,

Suppose that we have an ii.d. sequence of integrable random variables (X, := (X,gl), e

1 a.s.
E(Xl —+ -+ Xn) — E[Xl],

where E[X] is a vector consisting of the expectations of each component. If (X,,),>1 is square-integrable,
we can apply the same approach to deduce the central limit theorem for each of the component. However,
this approach is not enough to get the central limit theorem for the d-dimensional vector for the simple reason
that the marginal distributions are not sufficient to describe the distribution of the whole vector. In fact, the
higher-dimensional version of the central limit theorem involves the multivariate normal distribution that
was discussed in Section 3.4.1.

Theorem 4.5.4 (High-dimensional central limit theorem) : Let (X, ),,>1 be an i.i.d. sequence of random
variables with values in R?. Assume that they are all square-integrable, then we have,

(X1 4ot X - nEX]) Y N0, Kx,).

S

Proof : The proof is exactly the same as in the one-dimensional case. Without loss of generality,
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Chapter 4 Convergence of Random Variables

suppose that E[X;] = 0. For all ¢ € RY, we have,

B fexp (16 (TR <8 e (i

NG

At the same time, we also have,

b, (S=) =1 - 56 K6 ofn )
Hence,
dim E e (16 (PR = e (- 567K,

Finally, we conclude with Lévy’s continuity theorem (Theorem 4.4.15).
4.6 Conclusion

We use the following diagram to conclude this chapter, showing different notions of convergence and their
relations with each other.

Almost sure

convergence

X, 25 X H

iZ e L,

Vn, | Xn| < |Z|, P-as.

There exists a subsequence

Convergence
in probability

Convergence
in distribution

/ Xn @) X Xn £> X
Convergence

in LP H W H

LP

Xn — X Ir € (p, ), C >0,
Vin, B[|X,|"] < C.

_

If X is constant a.s.
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