
4 Convergence of Random Variables

In topology, we know that the notion of convergence can differ depending on the topology that the space
is equipped with. Some notions of convergence can be compared but some other do not. In this chapter,
we will discuss different notions of convergence of random variables and see which notions are stronger or
weaker than the others.

4.1 Convergence in Probability
Given a sequence of randomvariables (Xn)n⩾1 with values inRd defined on the probability space (Ω, A,P).

In Measure Thoery, we have already discussed the following two notions of convergence,
• Almost sure convergence: if P({ω ∈ Ω | X(ω) = limn→∞ Xn(ω)}) = 1 , then we write Xn

a.s.−→ X .

• For p ∈ [1, ∞), convergence in Lp: if limn→∞ E[|Xn − X|p] = 0 , then we write Xn
Lp

−→ X .

Definition 4.1.1 : If the following holds for all ε > 0,

lim
n→∞

P
(
|Xn − X| > ε

)
= 0,

then we say that (Xn)n⩾1 converges in probability (機率收斂) to X , denoted,

Xn
(P)−−→ X.

Then, we show that the notion of convergence in probability is metrizable.
Let L0

Rd(Ω, A,P) be the space consisting of random variables with values in Rd. We define the following
equivalence relation on this space: X ∼ Y if and only if X and Y are equal almost surely. We write
L0
Rd(Ω, A,P) for its quotient space, on which we can define the following distance (距離),

d(X, Y ) = E
[
|X − Y | ∧ 1

]
. (4.1)

Proposition 4.1.2 : The definition in Eq. (4.1) is indeed a distance characterizing the convergence in
probability, i.e., (Xn)n⩾1 converges in probability to X if and only if d(Xn, X) tends to 0. Moreover, the
metric space (L0

Rd(Ω, A,P), d) is complete.

Proof : It is not hard to show that Eq. (4.1) defines a distance. One only needs to use the definition of
the quotient space and the definition of a distance. Next, we show that this distance is equivalent to
the convergence in probability. First, we assume that (Xn) converges in probability to X . Then, for
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any given ε ∈ (0, 1), we have,

E
[
|Xn − X| ∧ 1

]
⩽ E

[
|Xn − X|1|Xn−X|⩽ε

]
+ E

[
(|Xn − X| ∧ 1)1|Xn−X|>ε

]
⩽ ε + P

(
|Xn − X| > ε

)
.

This implies that lim sup d(Xn, X) ⩽ ε. Since ε > 0 can be arbitrarily small, we obtain lim d(Xn, X) =
0. Conversely, if lim d(Xn, X) = 0, then for any ε ∈ (0, 1), we have,

P
(
|Xn − X| > ε

)
⩽ ε−1 E

[
|Xn − X| ∧ 1

]
= ε−1d(Xn, X) −→ 0.

Now, we show the completeness of the metric space (L0
Rd , d). Given a Cauchy sequence (Xn) for

the distance d, we can extract a subsequence Yk = Xnk
such that for all k ⩾ 1,

d(Yk, Yk+1) ⩽ 2−k.

Then, we have,

E
[ ∞∑

k=0
(|Yk+1 − Yk| ∧ 1)

]
=

∞∑
k=0

d(Yk, Yk+1) < ∞.

Hence,
∑

(|Yk+1 − Yk| ∧ 1) < ∞, a.s., meaning that
∑

|Yk+1 − Yk| < ∞, a.s. and the following
definition makes sense,

X = Y0 +
∞∑

k=0
(Yk+1 − Yk).

From the above construction, we know that (Yk) converges a.s. to X and using the dominated conver-
gence theorem, we reach at,

d(Yk, X) = E
[
|Yk − X| ∧ 1

]
−→ 0.

So (Yk) converges in probability to X . Finally, since (Xk) is a Cauchy sequence, (Xk) also converges
in probability to X . □

Proposition 4.1.3 : Let (Xn)n⩾1 be a sequence of random variables. Then the following properties are
true.

(1) If (Xn) converges a.s. or in Lp for p ⩾ 1 to X , then it also converges in probability to X .

(2) If (Xn) converges in probability to X , then there exists a subsequence (Xnk
) converging a.s. to X .

Proof : We have already proven (2) in Proposition 4.1.2, so we focus on the proof of (1). If (Xn)
converges almost surely to X , then from the dominated convergence theorem, we have,

d(Xn, X) = E
[
|Xn − X| ∧ 1

]
−→ 0.

If (Xn) converges in Lp to X , then

d(Xn, X) ⩽ ‖Xn − X‖1 ⩽ ‖Xn − X‖p −→ 0.
□
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Proposition 4.1.4 : Let (Xn)n⩾1 be a sequence of random variables converging to X in probability.
Suppose that there exists r ∈ (1, ∞) such that (Xn)n⩾1 is bounded in Lr . Then, for all p ∈ [1, r), the
sequence (Xn)n⩾1 converges to X in Lp.

Proof : From the assumption, consider C > 0 such that for all n ⩾ 1, E
[
|Xn|r

]
⩽ C . From (2)

of Proposition 4.1.3, we may find a subsequence (nk)k⩾1 such that Xnk

a.s.−→ X . Then, the Fatou’s
lemma implies

E
[
|X|r

]
= E

[
lim

k→∞
|Xnk

|r
]
⩽ lim inf

k→∞
E

[
|Xnk

|r
]
⩽ C.

For all p ∈ [1, r) and ε > 0, we have,

E
[
|Xn − X|p

]
= E

[
|Xn − X|p1|Xn−X|⩽ε

]
+ E

[
|Xn − X|p1|Xn−X|>ε

]
⩽ εp + E

[
|Xn − X|r

]p/r P(|Xn − X| > ε)1−p/r

⩽ εp + 2pCp/r P
(
|Xn − X| > ε

)1−p/r
.

where in the second linewe apply theHölder’s inequality and in the third linewe apply theMinkowski’s
inequality,

E
[
|Xn − X|r

]p/r = ‖Xn − X‖p
r ⩽ (‖Xn‖r + ‖X‖r)p ⩽ (2C1/r)p = 2pCp/r.

Since (Xn) converges in probability to X , we find,

lim sup
n→∞

E
[
|Xn − X|p

]
⩽ εp.

Since ε can be arbitrarily small, (Xn) converges to X in Lp. □

4.2 All-or-none Law
The all-or-none law is also known as Kolmogorov’s 0-1 law (Kolmogorov零一律) , which states that the

probability that a tail event (尾端事件) occurs is either 0 or 1.

Definition 4.2.1 : Let (Xn)n⩾1 be a sequence of independent random variables with values in any
metric space. For all n ⩾ 1, define Bn to be the following σ-algebra,

Bk = σ(Xk : k ⩾ n).

We also define the asymptotic σ-algebra (漸進 σ代數) B∞ to be,

B∞ =
∞⋂

n=1
Bn.

A measurable event in B∞ is called a tail event (尾端事件) .
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Theorem 4.2.2 : Using the above notations, B∞ is a trivial σ-algebra, i.e., for all B ∈ B∞, we have
P(B) = 0 or 1.

Proof : For all n ⩾ 1, let
Dn = σ(Xk : k ⩽ n).

From Question 3.1.19, we know that for all n ⩾ 1, the σ-algebras Dn and Bn+1 are independent, so
Dn is also independent of B∞. This implies,

∀A ∈
∞⋃

n=1
Dn, ∀B ∈ B∞, P(A ∩ B) = P(A)P(B).

Since ∪Dn is closed under finite intersections, from Proposition 3.1.18, we know that B∞ is indepen-
dent of the following σ-algebra,

σ
( ∞⋃

n=1
Dn

)
= σ(Xn : n ⩾ 1).

Since B∞ is also included in the above σ-algebra, so B∞ is independent of itself, which means that for
all B ∈ B∞, we have,

P(B) = P(B ∩ B) = P(B)2,

implying P(B) = 0 or 1. □

Question 4.2.3: Given an i.i.d. sequence of random variables (Xn)n⩾1 and define σ-algebras Bk and B∞ as
in Definition 4.2.1. Show the following properties.

(1) If Y is a real random variable that is B∞-measurable, then it is almost surely a constant.
(2) If 1

n(X1+. . . Xn) converges almost surely, deduce from the previous question that its limit must almost
surely be a constant.

The following proposition is an important application of the 0-1 law.

Proposition 4.2.4 : Let (Xn)n⩾1 be an i.i.d. sequence of random variables with distribution P(Xn =
1) = P(Xn = −1) = 1

2 . For all n ⩾ 1, let Sn = X1 + . . . , +Xn. Then,

a.s., sup
n

Sn = +∞ and inf
n

Sn = −∞.

In particular, it means that almost surely, there exists an infinity of n such that Sn = 0.

Remark 4.2.5 : We toss a fair coin. Assume that we earn one dollar when we get a head and loose one
dollar when we get a tail, then during the whole game, the net asset can be as positive as possible and also
as negative as possible.
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Proof : For all p ⩾ 1, we define the following event,

Ap = {−p ⩽ inf
n⩾1

Sn ⩽ sup
n⩾1

Sn ⩽ p}.

We note that the limit of (Ap) is,

A∞ := lim
p→∞

↑ Ap = {−∞ < inf
n

Sn ⩽ sup Sn < ∞}.

First, we want to prove that for all p ⩾ 1, P(Ap) = 0. For all k > 2p and j ⩾ 0, let

Bj,k = {Xjk+1 = · · · = Xjk+k = 1}.

Then, we have,
∞⋃

j=0
Bj,k ⊆ Ac

p. (4.2)

Since (Bj,k)j⩾0 is an independent sequence of events with
∑

P(Bj,k) = ∞, from Borel–Cantelli
lemma, the event on the left side of Eq. (4.2) has probability 1, meaning that P(Ap) = 0. By the
continuity of probability measures, we obtain P(A) = lim ↑ P(Ap) = 0, which means,

P({inf
n

Sn = −∞} ∪ {sup
n

Sn = ∞}) = 1.

By symmetry, we have,
P(inf

n
Sn = −∞) = P(sup

n
Sn = ∞),

So both probabilities are non-zero.
Finally, we want to use the 0-1 law (Theorem 4.2.2) to show that the probabilities in the above

formula are both 1. We first note that, for all k ⩾ 1,

{sup
n

Sn = ∞} = {sup
n⩾k

(Xk + · · · + Xn) = ∞} ∈ Bk,

meaning that the event {supn Sn = ∞} is Bk-measurable. So it is also measurable with respect to the
intersection of all the Bk’s, which is B∞. □

4.3 Strong Law of Large Numbers
The goal of this section is to show that if an i.i.d. sequence of random variables (Xn) is in L1, then its

arithmetic average 1
n(X1 + . . . + Xn) converges almost surely to E[X1].

In Proposition 3.3.6, we proved that under a stronger assumption that E[|X1|4] < ∞, the statement holds.
But here we want to look for the minimal condition so that the theorem holds.

Theorem 4.3.1 : Let (Xn)n⩾1 be an i.i.d. sequence of random variables with distribution in L1. Then,

1
n

(X1 + · · · + Xn) a.s.−→ E[X1].
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Remark 4.3.2 : The integrability is the optimal assumption since in the above statement, the limit needs to
exist. If the random variables are non-negative and E[X1] = ∞, we may apply this theorem to (Xn ∧ k)n⩾1
to get [ 1

n
(X1 + · · · + Xn)

]
∧ k = 1

n
(X1 ∧ k + · · · + Xn ∧ k) a.s.−→ E[X1 ∧ k],

then by using the monotone convergence theorem while taking the limit k −→ ∞ to derive,

1
n

(X1 + · · · + Xn) a.s.−→ +∞.

Remark 4.3.3 : Later in Section 6.6, we will also show that this convergence also holds in L1.

Proof : Let S0 = 0 and Sn = X1 + · · · + Xn for n ⩾ 1. Set a > E[X1] and the random variable,

M = sup
n⩾0

(Sn − na) ∈ [0, ∞].

We will show this theorem by showing (i) and the implications (i) ⇒ (ii) ⇒ (iii)：
(i) P(M < ∞) > 0, or equivalently, P(M = ∞) < 1;

(ii) M < ∞, a.s.;

(iii) the strong law of large numbers.

We explain first why (ii) implies (iii) the strong law of large numbers. From the definition of M , for
all n, we have Sn ⩽ na + M and from the property in (ii), we obtain,

lim sup
n→∞

1
n

Sn ⩽ a, a.s.

Since a can be any number larger than E[X1] and arbitrarily close to E[X1], we have,

lim sup
n→∞

1
n

Sn ⩽ E[X1], a.s.

If we replace Xn with −Xn, then we get,

lim inf
n→∞

1
n

Sn ⩾ E[X1], a.s.

The two formulas above together imply the strong law of large numbers.
Then we show that (i) implies (ii). We first note that for any k ⩾ 0, the event {M < ∞} can be

rewritten as,

{M < ∞} = {sup
n⩾0

(Sn − na) < ∞}

= {sup
n⩾k

(Sn − Sk − (n − k)a) < ∞} ∈ σ(Xk+1, Xk+2, . . . ).

Hence, we know that the event {M < ∞} is measurable with respect to the asymptotic σ-algebra B∞,
which means that P(M < ∞) = 0 or 1. So, (i) implies (ii).
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Finally, let us show (i). For all k ⩾ 0, define the following random variable,

Mk = sup
0⩽n⩽k

(Sn − na),

M ′
k = sup

0⩽n⩽k
(Sn+1 − S1 − na).

Since the vectors (X1, . . . , Xk) and (X2, . . . , Xk+1) have the same distribution and we have Mk =
Fk(X1, . . . , Xk) and M ′

k = Fk(X2, . . . , Xk+1) for some deterministic (確定性) function Fk : Rk −→
R, we deduce that the following two random variables also have the same distribution,

M = lim
k→∞

↑ Mk and M ′ = lim
k→∞

↑ M ′
k.

Moreover, from the definition, we know that for all k ⩾ 1,

Mk+1 = sup
(
0, sup

1⩽n⩽k+1
(Sn − na)

)
= sup(0, M ′

k + X1 − a) = M ′
k − inf(a − X1, M ′

k).

Mk and M ′
k being both in L1 and have the same distribution, we get,

E[inf(a − X1, M ′
k)] = E[M ′

k] − E[Mk+1] = E[Mk] − E[Mk+1] ⩽ 0

Next, since M ′
k ⩾ 0, we have | inf(a − X1, M ′

k)| ⩽ |a − X1|, then it follows from the dominated
convergence theorem that

E[inf(a − X1, M ′)] = lim
k→∞

E[inf(a − X1, M ′
k)] ⩽ 0.

Finally, if P(M = ∞) = 1, then we also have P(M ′ = ∞) = 1, meaning that inf(a − X1, M ′) =
a − X1 a.s. But we chose a > E[X1], which contradicts the fact that E[a − X1] ⩽ 0. □

4.4 Convergence in Distribution
4.4.1 Definition and Examples

The functional space Cb(Rd) consists of continuous bounded functions from Rd to R. We can define a
norm on this space to be the supremum of the function.

‖φ‖∞ = sup
x∈Rd

|φ(x)|.

Definition 4.4.1 : Given a sequence of probability measures (µn)n⩾1 on Rd. We say that (µn)n⩾1
converges weakly (弱收斂) to µ, denoted,

µn =⇒ µ,

if the following condition holds,

∀φ ∈ Cb(Rd),
∫

φ dµn −→
∫

φ dµ. (4.3)
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Given a sequence of random variables (Xn)n⩾1 with values in Rd. If the sequence of distributions
(PXn)n⩾1 converges weakly to PX , then we say that (Xn)n⩾1 converges weakly (弱收斂) or converges
in distribution (分佈收斂) to X , denoted,

Xn
L−→ X or Xn

(d)−−→ X.

The weak convergence of random variables is also equivalent to the following condition,

∀φ ∈ Cb(Rd), E[φ(Xn)] −→ E[φ(X)].

Remark 4.4.2 : We add some comments to the above definition.
(1) The space of measures on Rd can be seen as a subspace of the dual space Cb(Rd)∗. As such, Eq. (4.3)

can be understood as the convergence in the weak-* topology. However, in Probability Theory, it is
called “weak convergence”.1

(2) In the definition, there is an abuse of notations: when we say that the sequence of random variables
(Xn)n⩾1 converges weakly to X , there is no uniqueness for X ; the only mathematical object with
uniqueness is the distribution PX . Therefore, in a more precise language, we say that the sequence of
random variables (Xn)n⩾1 converges in distribution to PX .

(3) When we talk about other notions of convergence of random variables, we need them to live on the
same probability space but not for the convergence in distribution. The random variables can be defined
on different spaces and that is why this notion is important in Probability Theory.

Example 4.4.3 : Below we give two examples of the convergence in distribution.

(1) If Xn has the uniform distribution on { k
2n : 1 ⩽ k ⩽ 2n}, then Xn converges in distribution

to the uniform distribution on [0, 1] because the Riemann summation of a continuous function
approximates its Riemann integral.

(2) If Xn has the Gaussian distribution N (0, σ2
n) with σ2

n −→ 0, then Xn converges in distribution
to a random variable which is almost surely zero.

Question 4.4.4: If µn =⇒ µ, look for a continuous but unbounded function and a discontinuous bounded
function such that Eq. (4.3) does not hold.
Question 4.4.5: Let (Xn)n⩾1 and X be random variables with values in Zd. Prove that Xn converges in
distribution to X if and only if,

∀x ∈ Zd, P(Xn = x) −→ P(X = x).

Question 4.4.6: Assume that for all n ⩾ 1, the random variable Xn has a density, denoted PXn(dx) =
pn(x) dx. Suppose

(1) pn(x) −→ p(x), dx-a.s. ,

1In French mathematics literature, there is another term to distinguish this notion, called “convergence étroite”.
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(2) there exists a non-negative function q such that
∫
Rd q(x) dx < ∞ and

∀n, pn(x) ⩽ q(x), dx-a.s..

Prove that p is the density function of a probability measure on Rd and that Xn converges in distribution to
p(x) dx.
Question 4.4.7: If (Xn)n⩾1 converges in distribution to X , is it true that for any B ∈ B(Rd), we also have
the following convergence?

P(Xn ∈ B) −→ P(X ∈ B).

4.4.2 Equivalent Conditions for Convergence in Distribution
The following theorem gives some properties which are equivalent to the weak convergence of probability

measures.

Theorem 4.4.8 (The PortmanteauTheorem 2) : Let (µn)n⩾1 and µ be probability measures onRd. Then,
the four following conditions are equivalent.

(1) The sequence (µn)n⩾1 converges weakly to µ.

(2) For any open set G ⊆ Rd,
lim inf
n→∞

µn(G) ⩾ µ(G).

(3) For any closed set F ⊆ Rd,
lim sup

n→∞
µn(F ) ⩽ µ(F ).

(4) For any Borel set B ⊆ Rd, if µ(∂B) = 0, then,

lim
n→∞

µn(B) = µ(B).

Proof : We first prove that (1) ⇒ (2). If G is an open set in Rd, we can construct a sequence of
continuous bounded functions (φp)p⩾1 such that 0 ⩽ φp ⩽ 1 and φp ↑ 1G. For example, take φp(x) =
pd(x, Gc) ∧ 1. We have,

lim inf
n→∞

µn(G) = lim inf
n→∞

(
lim

p→∞
↑

∫
φp dµn

)
⩾ sup

p⩾1

(
lim inf
n→∞

∫
φp dµn

)
= sup

p⩾1

( ∫
φp dµ

)
= µ(G).

The equivalent relation (2) ⇔ (3) is not hard to prove. Taking the complement interchanges the role

2In the first edition of the book “Convergence of Probability Measures” from Patrick Billingsley (1968), he mentioned that this
result can be tracked back to an article of Aleksandrov in 1940. Later, in the second edition (1999) of the same book, he dedicated
this theorem to Jean-Pierre Portmanteau, and cited the article “Hope for the empty set?” (Espoir pour l’ensemble vide?) from
the journal “Annales de l’Université de Felletin”. However, this person, the university and the article do not exist.
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of an open set and a closed set and also changes the direction of the inequality.
Prove that (2)+(3) ⇒ (4). Let B ∈ B(Rd). Then, we have,

lim sup µn(B) ⩽ lim sup µn(B) ⩽ µ(B),
lim inf µn(B) ⩾ lim inf µn(B̊) ⩾ µ(B̊),

Due to the assumption that µ(∂B) = 0, we have µ(B) = µ(B̊), implying,

lim sup µn(B) = lim inf µn(B) = lim µn(B).

Finally, we prove that (4) ⇒ (1). Let φ ∈ Cb(Rd). We can separate the positive and the negative part
of φ into φ = φ+ − φ−, so we can assume that φ is a non-negative function. Since φ is bounded, we
can take K > 0 such that 0 ⩽ φ ⩽ K . From the Fubini’s theorem, we obtain,∫

φ(x)µ(dx) =
∫ ( ∫ K

0
1{t⩽φ(x)} dt

)
µ(dx) =

∫ K

0

( ∫
1{t⩽φ(x)}µ(dx)

)
dt.

Let Eφ
t = {x ∈ Rd : φ(x) ⩾ t}. Then the above formula rewrites,∫

φ(x)µ(dx) =
∫ K

0
µ(Eφ

t ) dt.

Similarly, for all n, we have, ∫
φ(x)µn(dx) =

∫ K

0
µn(Eφ

t ) dt.

We can notice that ∂Eφ
t ⊆ {x ∈ Rd : φ(x) = t} and it follows from Exercise 1.13 that there exists at

most countably many t such that

µ({x ∈ Rd : φ(x) = t}) > 0.

Hence, from the assumption (4), we have,

µn(Eφ
t ) −→ µ(Eφ

t ), dt-a.s.,

and the dominated convergence theorem implies,∫
φ(x)µn(dx) =

∫ K

0
µn(Eφ

t ) dt −−−→
n→∞

∫ K

0
µ(Eφ

t ) dt =
∫

φ(x)µ(dx).
□

Question 4.4.9: Consider real-valued random variables (Xn)n⩾1 and X and we write (FXn)n⩾1 and FX for
their distributions. Then, the sequence of random variables (Xn)n⩾1 converges in distribution to X if and
only if for all the points of continuity x of FX , the distribution function FXn(x) converges to F (x).

Proposition 4.4.10 : If (Xn)n⩾1 converges in probability to X , then (Xn)n⩾1 also converges in distri-
bution to X .
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Proof : First, assume that (Xn)n⩾1 converges almost surely to X . In this case, for any φ ∈
Cb(Rd), φ(Xn) converges almost surely to φ(X) and the dominated convergence theorem implies
E[φ(Xn)] −→ E[φ(X)]. This shows that (Xn)n⩾1 converges in distribution to X .

In a more general setting, we show by contradiction. Suppose that (Xn)n⩾1 does not converge in
distribution to X , then we can find φ ∈ Cb(Rd) such that E[φ(Xn)] does not converge to E[φ(X)].
Let ε > 0 and a subsequence (nk)k⩾1 such that for all k, we have,

∀k ⩾ 1, |E[φ(Xnk
)] − E[φ(X)]| ⩾ ε.

From Proposition 4.1.3, we can find a subsequence (Xnkl
)l⩾1 that converges almost surely to X , but

the proof from the first part gives a contradiction. □

Proposition 4.4.11 : Show that if (Xn)n⩾1 converges in distribution to X which is almost surely a
constant, then (Xn) also converges in probability to X .

Proof : See Exercise 4.15. □

We define Cc(Rd) to be the set of continuous and compactly supported (緊緻支撐) functions.

Proposition 4.4.12 : Let (µn) and µ be probability measures on Rd. Let H be a subset of the normed
space (Cb(Rd), ‖·‖∞) and assume that its closure (閉包) contains Cc(Rd). Then, the following properties
are equivalent.

(i) The sequence of probability distributions (µn) converges weakly to µ.

(ii) We have,

∀φ ∈ Cc(Rd),
∫

φ dµn −→
∫

φ dµ.

(iii) We have,

∀φ ∈ H,

∫
φ dµn −→

∫
φ dµ.

Proof : Since Cc(Rd) ⊆ Cb(Rd) and H ⊆ Cb(Rd), there is nothing to prove for (i) ⇒ (ii) and (i) ⇒ (iii).
Now, we prove (ii) ⇒ (i). Consider a continuous bounded function φ ∈ Cb(Rd) and a seuqnece (fk) of
functions in Cc(Rd) such that 0 ⩽ fk ⩽ 1 and lim ↑ fk = 1, then for any k, we have φfk ∈ Cc(Rd)
so, ∫

φfk dµn −−−→
n→∞

∫
φfk dµ.

Moreover, we have, ∣∣∣ ∫
φ dµn −

∫
φfk dµn

∣∣∣ ⩽ (
sup

x
|φ(x)|

)(
1 −

∫
fk dµn

)
,∣∣∣ ∫

φ dµ −
∫

φfk dµ
∣∣∣ ⩽ (

sup
x

|φ(x)|
)(

1 −
∫

fk dµ
)
.
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Hence, for all k, we have,

lim sup
n→∞

∣∣∣ ∫
φ dµn −

∫
φ dµ

∣∣∣ ⩽ (
sup

x
|φ(x)|

)(
lim sup

n→∞

(
1 −

∫
fk dµn

)
+

(
1 −

∫
fk dµ

))
,

= 2
(

sup
x

|φ(x)|
)(

1 −
∫

fk dµ
)
.

The above formula being true for all k, we can take k → ∞ to obtain,∫
φ dµn −→

∫
φ dµ.

Next, we prove (iii) ⇒ (ii). Let φ ∈ Cc(Rd). Using the density of H , for all k ⩾ 1, we can find
φk ∈ H such that ‖φ − φk‖ ⩽ 1/k, so for all k, we have,

lim sup
n→∞

∣∣∣ ∫
φ dµn −

∫
φ dµ

∣∣∣
⩽ lim sup

n→∞

(∣∣∣ ∫
φ dµn −

∫
φk dµn

∣∣∣ +
∣∣∣ ∫

φk dµn −
∫

φk dµ
∣∣∣ +

∣∣∣ ∫
φk dµ −

∫
φ dµ

∣∣∣)
⩽ 2

k
.

Since k can be arbitrarily large, we obtain
∫

φ dµn −→
∫

φ dµ. □

Remark 4.4.13 : For a sequence (µn)n⩾1 of probability measures on Rd and a measure µ, we say that µn

converges vaguely (淡收斂) to µ if

∀f ∈ Cc(Rd),
∫

f dµn −−−→
n→∞

∫
f dµ.

According to Proposition 4.4.12, when we know that µ is also a probability measure, the weak convergence
and the vague convergence are equivalent; but in general, without the assumption that µ has a total mass 1,
the Fatou’s lemma can only give us µ(Rd) ⩽ 1.

We may consider the following example,

∀f ∈ Cc(Rd), f(n) =
∫
Rd

f(x)δn(dx) −−−→
n→∞

0,

implying that µn converges vaguely to 0, but 0 is clearly not a probability measure because its total mass is
0. The main reason is that, when the test functions at are disposition are functions from Cc(Rd), we might
have some probability masses that “escape to infinity”, which cannot be captured by functions in Cc(Rd);
however, the test functions in Cb(Rd) are able to capture this phenomenon. This intuition also provides
another explanation for the equivalence between the weak convergence and the vague convergence in the
case that µ is a probability measure.

Question 4.4.14: Given a sequence (µn)n⩾1 of probability measures on Rd. We say that (µn)n⩾1 is a tight
(緊密) sequence if for all ε > 0, there exists a compact set Kε ⊆ Rd such that

µn(Kε) ⩾ 1 − ε.

Given a measure µ on Rd and prove that the following properties are equivalent.
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(1) µn converges weakly to µ.
(2) µn converges vaguely to µ and (µn)n⩾1 is tight.

Theorem 4.4.15 (Lévy’s continuity theorem) : Let (µn)n⩾1 be a sequence of probability measures on
Rd. Then, (µn)n⩾1 converges weakly to µ if and only if,

∀ξ ∈ Rd, µ̂n(ξ) −→ µ̂(ξ).

Similarly, the sequence of random variables (Xn)n⩾1 converges in distribution to X if and only if,

∀ξ ∈ Rd, ΦXn(ξ) −→ ΦX(ξ).

Proof : We only need to prove the first part of the statement. If (µn)n⩾1 converges weakly to µ,
then from the definition of the weak convergence, since for any fixed ξ ∈ R, both x 7→ cos(ξx) and
x 7→ sin(ξx) are bounded, we obtain

∀ξ ∈ Rd, µ̂n(ξ) =
∫

ei ξ·xµn(dx) −→
∫

ei ξ·xµ(dx) = µ̂(ξ).

Then we show its converse. Assume that for all ξ ∈ Rd, we have µ̂n(ξ) −→ µ̂(ξ) and we want
to show that the sequence of probability measures (µn)n⩾1 converges weakly. We want to use (3)
from Proposition 4.4.12. To simplify the proof, we also assume that d = 1.

Let f ∈ Cc(R). For all σ > 0, let

gσ(x) = 1√
2πσ2

exp
(

− x2

2σ2

)
.

In the proof of Theorem 2.4.15, from Eq. (2.10), we know that gσ ∗ f converges simply to f . Then
using Question 2.4.16, since f is compactly supported, we have the uniform convergence of gσ ∗ f to
f . If we let

H = {φ = gσ ∗ f : f ∈ Cc(R) and σ > 0},

then Cc(R) ⊆ H , so it is enough to show that,

∀f ∈ Cc(R),
∫

gσ ∗ f dµn −−−→
n→∞

∫
gσ ∗ f dµ.

From Eq. (2.8) and Eq. (2.9) in the proof of Theorem 2.4.15, for any probability measure ν on R, we
have, ∫

gσ ∗ f dν = 1√
2πσ2

∫
f(x)

( ∫
ei ξxg1/σ(ξ)̂ν(−ξ) dξ

)
dx

From the assumption, for all ξ ∈ R, µ̂n(ξ) −→ µ̂(ξ) and |̂µn(ξ)| ⩽ 1, so using the dominated conver-
gence theorem, we obtain,∫

ei ξxg1/σ(ξ)̂µn(−ξ) dξ −−−→
n→∞

∫
ei ξxg1/σ(ξ)̂µ(−ξ) dξ.

Since the left side of the above formula also satisfies |·| ⩽ 1, we apply again the dominated convergence
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theorem to conclude, ∫
gσ ∗ f dµn −−−→

n→∞

∫
gσ ∗ f dµ.

□

4.5 Applications of Convergence in Distribution
4.5.1 Convergence of Emperical Measures

Let (Xn)n⩾1 be an i.i.d. sequence of random variables with values in Rd. We can think of these ran-
dom variables as values observed in a series of independent and identical random experiments. In statistics,
we wish to derive the distribution of X1 from the observations X1(ω), . . . , Xn(ω) (ω being a point in the
probability space).

Taking a national poll as example. Let N be the Taiwanese population. The Taiwanese number i has its
own vector a(i) ∈ Rd representing its data, such as age, income, health condition, political tendency, etc.
When we are given a measurable set A ∈ B(Rd) (e.g., fans of Han Kuo-Yu with annual income above 1
million and above 50 years old), we want to know the proportion of Taiwanese popultion whose vector a(i)
belongs to this set. Alternatively speaking, we want to estimate,

µ(A) = 1
N

N∑
i=1

1A(a(i)).

When N is large, it is impossible to compute precisely this value, and the ultimate goal of a national poll
is to find a representative set of n people from the Taiwanese population so that we can have a reasonable
estimate of µ(A). If we consider uniform random variables Y1, . . . , Yn with values in {1, . . . , N} (i.e., choose
n Taiwanese uniformly at random) and write Xj = a(Yj)，X1, . . . , Xn be i.i.d. random variables with the
following distribution,

∀A ∈ B(Rd), PX1(A) = P(a(Y1) ∈ A) = 1
N

N∑
i=1

1A(a(i)) = µ(A).

From this sample, we obtain the following estimation,

1
n

n∑
i=1

1A(Xi(ω)) = 1
n

n∑
i=1

δXi(ω)(A).

Coming back to the original problem, we want to know whether the above estimate is close to the theoret-
ical value µ(A), which means that we want to know whether the emperical measure defined below converges
to PX1 when n tends to infinity,

1
n

n∑
i=1

δXi(ω).

The following theorem gives a positive answer.

Theorem 4.5.1 : Let (Xn)n⩾1 be an i.i.d. sequence of random variables with values inRd. For all ω ∈ Ω
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and n ⩾ 1, define µn,ω be the following emperical measure (經驗測度) on Rd,

µn,ω = 1
n

n∑
i=1

δXi(ω).

Then, when n → ∞, we have the following convergence result,

µn,ω =⇒ PX1 .

Remark 4.5.2 : This theorem does not provide any convergence speed, so we do not know at which rate
µn,ω converges to PX1 .

Proof : Let H be a countable dense subset of Cc(Rd). If φ ∈ H , from the strong law of large numbers,
we have,

1
n

n∑
i=1

φ(Xi)
a.s.−→ E[φ(X1)].

The above formula rewrites, ∫
φ dµn,ω

a.s.−→
∫

φ dPX1 .

Due to the countability of H , we can obtain,

a.s. ∀φ ∈ H,

∫
φ dµn,ω −−−→

n→∞

∫
φ dPX1 .

We conclude using Proposition 4.4.12. □

4.5.2 Central Limit Theorem
In Theorem 4.3.1, we obtained the strong law of large numbers: if (Xn)n⩾1 is an i.i.d. sequence of random

variables where each term is integrable, then the following result holds almost surely,

1
n

(X1 + · · · + Xn) a.s.−→ E[X1].

After this, we can study the speed of the above convergence. To be more precise, we want to understand the
behavior of the following quantity when n is arbitrarily large,

1
n

(X1 + · · · + Xn) − E[X1]. (4.4)

Let us start with a simple computation: assume that Xi is square-integrable, then we note that,

E[(X1 + · · · + Xn − nE[X1])2] = Var(X1 + · · · + Xn) = n Var(X1).

This means that (X1 + · · · + Xn − nE[X1])2 is linear in n, i.e., Eq. (4.4) and 1√
n
are of the same order.
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Below we first state the one-dimensional version of the central limit theorem (中央極限定理), the higher-
dimensional version being discussed later in Section 4.5.3.

Theorem 4.5.3 (Central limit theorem (中央極限定理) ) : Let (Xn)n⩾1 be an i.i.d. sequence of real-
valued random variables where each term is square-integrable. Let σ2 = Var(X1). Then, we have,

1√
n

(X1 + · · · + Xn − nE[X1]) L−→ N (0, σ2).

In other words, for all a, b ∈ R with a < b, we have the following convergence,

lim
n→∞

P
(
nE[X1] + a

√
n ⩽ X1 + · · · + Xn ⩽ nE[X1] + b

√
n

)
= 1√

2πσ2

∫ b

a
exp

(
− x2

2σ2
)

dx.

Proof : The second part of the theorem being a direct consequence of the first part (Question 4.4.9 and
Exercise 4.13), we only need to prove the first part. Additionally, we can replace Xn with Xn −E[Xn],
so that we can assume E[Xn] = 0. Let

Zn = 1√
n

(X1 + · · · + Xn).

We want to use Theorem 4.4.15 to show this theorem. The characteristic function of the random
variable Zn writes,

ΦZn(ξ) = E
[

exp
(

i ξ
(X1 + · · · + Xn√

n

))]
= E

[
exp

(
i ξ√

n
X1

)]n
= ΦX1

( ξ√
n

)n
.

The series expansion in Proposition 2.4.17 gives, when ξ −→ 0,

ΦX1(ξ) = 1 + i ξ E[X1] − 1
2

ξ2 E[X2
1 ] + o(ξ2) = 1 − σ2ξ2

2
+ o(ξ2).

Hence, for any given ξ ∈ R, when n −→ ∞, we have,

ΦX1

( ξ√
n

)
= 1 − σ2ξ2

n
+ o

( 1
n

)
.

So we get,

lim
n→∞

ΦZn(ξ) = lim
n→∞

(
1 − σ2ξ2

2n
+ o

( 1
n

))n
= exp

(
− σ2ξ2

2
)

= ΦU (ξ),

where U has the distribution N (0, σ2). To conclude, we have shown the central limit theorem us-
ing Theorem 4.4.15. □

4.5.3 Central Limit Theorem in Higher Dimensions
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Suppose that we have an i.i.d. sequence of integrable random variables (Xn := (X(1)
n , . . . , X

(d)
n ))n⩾1 with

values in Rd. We can apply the strong law of large numbers to each of its component X
(i)
n to obtain,

1
n

(X1 + · · · + Xn) a.s.−→ E[X1],

where E[X1] is a vector consisting of the expectations of each component. If (Xn)n⩾1 is square-integrable,
we can apply the same approach to deduce the central limit theorem for each of the component. However,
this approach is not enough to get the central limit theorem for the d-dimensional vector for the simple reason
that the marginal distributions are not sufficient to describe the distribution of the whole vector. In fact, the
higher-dimensional version of the central limit theorem involves the multivariate normal distribution that
was discussed in Section 3.4.1.

Theorem 4.5.4 (High-dimensional central limit theorem) : Let (Xn)n⩾1 be an i.i.d. sequence of random
variables with values in Rd. Assume that they are all square-integrable, then we have,

1√
n

(X1 + · · · + Xn − nE[X1]) (d)−−→ N (0, KX1).

Proof : The proof is exactly the same as in the one-dimensional case. Without loss of generality,
suppose that E[X1] = 0. For all ξ ∈ Rd, we have,

E
[

exp
(

i ξ ·
(X1 + · · · + Xn√

n

))]
= E

[
exp

(
i ξ√

n
· X1

)]
= ΦX1

( ξ√
n

)n
.

At the same time, we also have,

ΦX1

( ξ√
n

)
= 1 − 1

2n
ξT KX1ξ + o(n−1).

Hence,
lim

n→∞
E

[
exp

(
i ξ ·

(X1 + · · · + Xn√
n

))]
= exp

(
− 1

2
ξT KX1ξ

)
.

Finally, we conclude with Lévy’s continuity theorem (Theorem 4.4.15). □

4.6 Conclusion
We use the following diagram to conclude this chapter, showing different notions of convergence and their

relations with each other.
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Convergence
in probability

Xn
(P)−−→ X

Almost sure
convergence
Xn

a.s.−→ X

Convergence
in Lp

Xn
Lp

−→ X

Convergence
in distribution

Xn
L−→ X

∃Z ∈ Lp,
∀n, |Xn| ⩽ |Z|, P-a.s.

There exists a subsequence

If X is constant a.s.∃r ∈ (p, ∞), C > 0,
∀n, E[|Xn|r] < C.
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