Chapter 2: Basics of Probability Theory

Exercise 2.1 : Describe the sample space in different random experiments.
(1) Toss a coin with two sides denoted head and tail, and stop when tail appeaers for the first time.

(2) In a set of cards with four colors and 13 numbers, randomly pick up five cards (the order does not
matter).

(3) In the unit disk, random trajectories that start from the origin and stop when they hit the boundary
of the disk.

We assume that we have a fair coin in (1), and the cards are picked up randomly and uniformly in (2),
describe the corresponding probability measure.

Exercise 2.2 (Bertrand’s Paradox) : The French mathematician Joseph Bertrand (1822-1990) asked a ques-
tion in his book “Probability Computations” (Calculs des probabilités) published in 1889: given a equi-
lateral triangle and its circumscribed circle, what is the probability that a randomly chosen chord on the
circle is longer than a side of the equilateral triangle? At the same time, he suggested three methods to
compute, while obtaining three different results.

(1) The two endpoints of the chord are chosen uniformly at random on the circle.

(2) Choose a point inside the disk uniformly at random then draw the chord going through this point
such that the midpoint of the chord is the randomly chosen point.

(3) Choose a point uniformly at random on the circle, draw the radius going through this point, choose
a point uniformly at random on the radius and draw the chord which is perpendicular to the radius
and going through this point.

In the above three different random experiments, give
(a) the probability space;
(b) the random variable giving the chord length and its density function;

(c) the probability that an chord randomly chosen as such is longer than a side of the equilateral
triangle.
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Exercise 2.3 : A probability space (£2, A, P) is called atomless (&R FHY) if for any A € A with P(A4) >
0, we can find B € A such that B C Aand 0 < P(B) < P(A). Otherwise, we say that (Q, A, P) is
atomic (BRFH)).

(1) Suppose that the measurable space (£2,.A) is given by (R% B(R?)). Prove that (Q2, A, P) is
an atomless probability space if and only if PP is an atomless probability measure. (We re-
call Definition 1.1.12.)

(2) Give respectively an example of an atomless probability space and an atomic probability space.
Given an atomless probability space (€2, A, P) and fix A € Awith P(A) > 0.
(3) Show that for any ¢ > 0, we can find B € Aand B C Awith0 < P(B) < e.

(4) Show that if 0 < a < P(A), then there exists B € A and B C A with P(B) = a.

Exercise 2.4 : Fix a probability space (2, A, P). Take C C P(f2) satisfying the following conditions,
(a) @ €C;
(b) if A € C, then A€ € C;
(c) if A,BeC,then ANB €C.
We call such a C an algebra of sets (55 1L8). Additionally, we also assume that A := o(C).
(1) Prove that for any B € A, we have inf{P(AAB): A€ C} =0.

(2) Given a bounded random variable X and € > 0, show that there exists a simple function ¥ =
>h—1ckla,, where Ay € C,suchthat P(|X — Y| >¢) <e.

Exercise 2.5 : Let X, Y and Z be real random variables defined on the probability space (€2, A, P).

(1) Assume that X and Y are equal almost everywhere (with respect to the probability measure PP).
Prove that X and Y have the same distribution. Does the converse hold?

(2) Assume that X and Y have the same distribution.
(1) Let f : R — R be a Borel function. Prove that f(X) and f(Y') have the same distribution.
(2) Prove that X Z and Y Z does not necessarily have the same distribution.

Exercise 2.6 : Let X ~ Unif([0, 1]) be a uniform random variable on [0, 1].
(1) Let Y = —In(1 — X) and find the distribution of Y.
(2) Let Z = tan(nX — 7) and find the distribution of Z.
Exercise 2.7 (Question 2.1.21) : Construct two bi-dimensional real random variables X = (X7, X2) and

X' = (X7, X3) such that for j = 1,2, X; and X} have the same marginal distribution, where as the
distributions of X and X’ are not equal.

Last modified: 13:06 on Thursday 16" October, 2025



Exercise 2.8 : We are given a bidimensional real random variable (X,Y") on the probability space
(©, A, P). Use the method mentioned in Remark 2.1.16 to find the distribution of the following ran-
dom variables.

(1) Assume that (X,Y) has distribution
)\/uuff)‘g”*“y]ler (z,y) dz dy.

Determine the distribution of the random variable U = min(X,Y).
(2) Assume that (X,Y) has distribution

1 1:2 2
e S da dy.
2

Determine the distribution of the random variable %

Exercise 2.9 : Let X be a random variable with values in [0,1) such that its distribution Py is the
Lebesgue measure on [0, 1). We define the sequence (X,,),>1 of random variables as follows,

X == [2X],

Xpg1 = [27T1X =D 2m kx| Vn > 1.
k=1

(1) Check that almost surely all the X,,’s take values in the set {0, 1}. In other words, show that
P(Vn>1,X,€{0,1}) = 1.
(Hint: show that the sequence (X,,),,>1 is the dyadic expansion (Z3ERIERH) of X.)

(2) Describe the o-algebra generated by X, which we denote by o(X). (Write down all the elements
in this o-algebra.)

(3) Describe the o algebra generated by X and X9, which we denote by o( X7, X32). Is this the same as
0(X3), the o-algebra generated only by X2? You may want to write down explicitly the elements
of these two o-algebras.

(4) Fix apositive integer n > 1 and find the o-algebra generated by X1, .. ., X, without writing down
all of its elements. How many elements does this o-algebra contain?

Exercise 2.10 : Compute the expectation and the variance of the probability distributions in Section 2.3.

Exercise 2.11: Given p € (0, 1) and if X ~ Geo(p), then show that for any integers m, n > 0 we have,
PX>2n)=PX>2m+n|X >m).

We call it the memoryless property (JEECIE4EE) of the geometric distribution.
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Exercise 2.12 : For any 0 < k < n, show that we hvae

N\ ke \n—k
N};ggoofx( ) = <k>p (1—=p)"7",
K/N—p

where fx is the mass function of X ~ Hypergeo(N, K, n). Please give an explanation to this result.

Exercise 2.13 : Consider a sequence (p,)n>1 of nonnegative real numbers and a sequence (X,,)n>1,
where X, is a random variable following the binomial distribution Bin(n,p,) for all n > 1. Suppose
that we have np,, — A when n tends to infinity. Then, show that

Vk € N, hm IP’( =k)=

Exercise 2.14 : Let X be a random variable with distribution \'(u, o). Prove the following inequality
in two different ways,

o t2
Vt>0, P(X >p+t)<max (7? 1) exp (- o)
(1) Use integration by parts.

(2) Use the moment generating function E[e*X] of X ©

Exercise 2.15 : For any u > 0, the density function of the Cauchy distribution (F]FE%3f) writes,

1 wu

(1) Check that for all u > 0, ¢,, defines a probability distribution.
(2) Prove that its expectation does not exist.

(3) Prove that ¢, * ¢y = cyto-

Exercise 2.16 : Let Z ~ N(0,1) and X := Z2. Show that X ~ Gamma(3, 1).
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Exercise 2.17 : Let X ~ N(0, 1) be a random variable with standard normal distribution.
(1) Find its moment generating function M (t) := E[e!X].
(2) Prove by induction that for any nonnegative positive number k > 0, there exists a polynomial P
satisfying
(@) MW(t) = P(t)e™/
(b) deg(Pr) = k;

(c) Py only contains odd degree terms when k is odd; Py only contains even degree terms when
k is even;

(d) Prya(t) = P];(t) + tPy(t).

(3) Prove that when k is odd, we have E[X*] = 0. (Use two different approaches: one using the
moment generating function and the other one using integration.)

(4) Compute E[X*] for all non-negative integer k > 0.

(5) Use a change of variables and properties of the I" function to find the same result as in the previous
question.

Exercise 2.18 (Estimates on Gaussian integrals) : Let f be the density function of the standard normal
distribution, that is,

M

1 z
Vz € R, flz) = \/%6_7'

We write F’ for the distribution function of f, i.e.,

Vo € R, F(m):/j f(y)dy:\/%/x e_%dy.

(1) Show that we have the following asymptotic behavior when x — o0,

1 1 z?
1-— F(.’E) ~ 7726_7.
X T

(Hint: differentiate the above formula on both the left and the right hand sides.)

(2) Prove the following inequality for x > 1,

f(x)

T

1 1
(E - ﬁ)f(:c) <1-F(z) <
(Hint: differentiate again the above formula on both the left and the right hand sides.)

(3) More generally, show that we have the following asymptotic formula for any integer k£ > 0,

k .
1= P = 7o) (S B o))

(=3 (F)+ o)

— 1(a)(

j=
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(4) Show that for all @ > 0, we have the following limit when x — o0,

1—F<m—|—%)
1— F(x)

—a

— €

(5) Show that for all b > 0, we have the following limit when x — +o0,

1—F(z+b)

1= F(2) — 0.

Exercise 2.19 : On the probability space (2, A, P), we define the random variable (X, ..., X,) with
values in R" and law
1[071]71(.%1, ‘e ,xn) da:l ce da:n.

(1) For any permutation (Bf&) o0 € S, > let A, = {X,, < ... < X,,}. Construct the random
variable (Y7,...,Y,) on (22, A, P) using (As)ses, , such that the following statement holds almost

surely,
Yi<...<Y, and {Y1,....Y} ={X1,..., X,}.

(2) Determine the law of the two vectors of random variables (Y7, ...,Y,) and (%, e Yg‘/’l ).

Exercise 2.20 (Question 2.4.9) : Prove that when X is a d-dimensional real random variable, its covari-
ance matrix K y is a positive semi-definite (3 1EXE) symmetric matrix. In other words, prove that for all
A= (A1,..., M) € RY we have A\Kx AT > 0.

Exercise 2.21 (Question 2.4.10) : If A is a matrix of size n X d and X is a d-dimensional real random
variable, define Y = AX and prove that Ky = AKxA”.

Exercise 2.22 : Consider the following density function (with respect to the Lebesgue measure),

1 W))

po(y) = W@Xp(— 5

Let Y be a random variable whose density is given by py.

y > 0.

(1) Let X ~ N(0,1). Find a measurable function f : R — R such that Y’ @ f(X).
(2) Compute the n-th moment of Y for any non-negative integer n > 0.

(3) Let
q(y) = sin(27 In(y))po(v)-

Compute [p_ y"q(y) dy for all non-negative integer n > 0.

(4) Foralla € R, let
pa(y) = po(y) +aq(y).

Under which condition, p, is the density function of a probability distribution?

(5) Which conclusion can we deduce from the above questions?
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Exercise 2.23 : Given a real sequence (yu)r>0 satisfying,

Ml/%
limsup “2£— = 1 < oo.
k—o00 k

(1) Assume that there exists a distribution function F' such that its moments are given by (1% )x>0. For
allk > 0,1letvy, = [ |£U|k dF'(z). Prove that for all £ > 0, we have V22k+1 < ok piok+2 and deduce,

1/k
limsup £ — = r.
k—o00 k

(2) Let X be a random variable with distribution function F'. Write ¥ x for its characteristic function.
Prove thatforallz € R, ¢t € R and n € N, we have,

n—1 /. k n
e ()|t
¢ kz:% KOS
Then, deduce,
SRR "
V¢ € R, ‘PX(§+t)—ZE‘I’X (&) < —vn
= k! n!

(3) Given ¢ € R, how to choose t so that the following equality holds?

Xk
wx(e+) =Y ).
k=0 """

(4) Explain what we have shown here. See Exercise 2.22 and conclude.

Exercise 2.24 (Methods of moments) : Let (2, A, P) be a probability space.
(1) Consider a finite set I and measurable events A; € A for i € I. Show that the following inequality
holds,
P(JA4) <D P(A).
iel el
(2) Let X be a random variable in L?(12, A, P) with expectation z := E[X] < co. Prove that

P(X<p)>0 and P(X >pu)>0.

(3) Let X be a non-constant random variable in L?((2, A, P) with non-negative integer values. Show
that Var(X)
ar
PX =0) < —=-.
H=US B
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Exercise 2.25 : For any subset A of an additive group (G, +), if for all a,b € A, a + b ¢ A, then we
say that A is a sum-free set JEFIEEH). Given a set of non-zero integers B = {b1, . ..b, }, we want to
prove that there exists a subset A C B with |A| > % such that A is a sum-free set using the methods of
moments introduced in Exercise 2.24.

(1) For any positive integer k, prove that Cj, := {k + 1,...,2k + 1} is sum-free in the cyclic ring
Z/(3k + 2)Z.

(2) Let p = 3k + 2 be a prime number satisfying p > 2max{|b;| : 1 < i < n}. Let X be a uniform
random variable on {1,...,p— 1}. Consider n random variables, 0 < D; < p such that D; = Xb;
(mod p). Prove that all the D;’s have the same distribution. Determine this distribution and prove

that P(D; € Cy) > 1.
(3) Conclude.
Exercise 2.26 (Question 2.4.26) : Given a random variable X, prove that the three following statements
are equivalent.
(1) X is a sub-Gaussian distribution.
(2) There exist C, ¢ > 0 such that E[e!X] < Cexp(ct?).

(3) There exists C' > 0 such that for all k£ > 1, we have E[| X |¥] < (Ck)*/2.

Exercise 2.27 (Question 2.4.27) : Let X be a real random variable and k& > 0. If X is in L¥, prove that

when A — oo, we have that
M P(X] >\ — 0.
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