Chapter 2: Basics of Probability Theory

Exercise 2.1: Describe the sample space in different random experiments.

- (1) Toss a coin with two sides denoted head and tail, and stop when tail appeaers for the first time.
- (2) In a set of cards with four colors and 13 numbers, randomly pick up five cards (the order does not matter).
- (3) In the unit disk, random trajectories that start from the origin and stop when they hit the boundary of the disk.

We assume that we have a fair coin in (1), and the cards are picked up randomly and uniformly in (2), describe the corresponding probability measure.

Exercise 2.2 (Bertrand's Paradox): The French mathematician Joseph Bertrand (1822-1990) asked a question in his book "Probability Computations" (Calculs des probabilités) published in 1889: given a equilateral triangle and its circumscribed circle, what is the probability that a *randomly chosen* chord on the circle is longer than a side of the equilateral triangle? At the same time, he suggested three methods to compute, while obtaining three different results.

- (1) The two endpoints of the chord are chosen uniformly at random on the circle.
- (2) Choose a point inside the disk uniformly at random then draw the chord going through this point such that the midpoint of the chord is the randomly chosen point.
- (3) Choose a point uniformly at random on the circle, draw the radius going through this point, choose a point uniformly at random on the radius and draw the chord which is perpendicular to the radius and going through this point.

In the above three different random experiments, give

- (a) the probability space;
- (b) the random variable giving the chord length and its density function;
- (c) the probability that an chord randomly chosen as such is longer than a side of the equilateral triangle.

Exercise 2.3: A probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is called atomless (無原子的) if for any $A \in \mathcal{A}$ with $\mathbb{P}(A) > 0$, we can find $B \in \mathcal{A}$ such that $B \subseteq A$ and $0 < \mathbb{P}(B) < \mathbb{P}(A)$. Otherwise, we say that $(\Omega, \mathcal{A}, \mathbb{P})$ is atomic (有原子的).

- (1) Suppose that the measurable space (Ω, \mathcal{A}) is given by $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Prove that $(\Omega, \mathcal{A}, \mathbb{P})$ is an atomless probability space if and only if \mathbb{P} is an atomless probability measure. (We recall Definition 1.1.12.)
- (2) Give respectively an example of an atomless probability space and an atomic probability space.

Given an atomless probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and fix $A \in \mathcal{A}$ with $\mathbb{P}(A) > 0$.

- (3) Show that for any $\varepsilon > 0$, we can find $B \in \mathcal{A}$ and $B \subseteq A$ with $0 < \mathbb{P}(B) < \varepsilon$.
- (4) Show that if $0 < a < \mathbb{P}(A)$, then there exists $B \in \mathcal{A}$ and $B \subseteq A$ with $\mathbb{P}(B) = a$.

Exercise 2.4: Fix a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Take $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ satisfying the following conditions,

- (a) $\varnothing \in \mathcal{C}$;
- (b) if $A \in \mathcal{C}$, then $A^c \in \mathcal{C}$;
- (c) if $A, B \in \mathcal{C}$, then $A \cap B \in \mathcal{C}$.

We call such a \mathcal{C} an algebra of sets (集合代數). Additionally, we also assume that $\mathcal{A} := \sigma(\mathcal{C})$.

- (1) Prove that for any $B \in \mathcal{A}$, we have $\inf\{\mathbb{P}(A\Delta B) : A \in \mathcal{C}\} = 0$.
- (2) Given a bounded random variable X and $\varepsilon > 0$, show that there exists a simple function $Y = \sum_{k=1}^{n} c_k \mathbb{1}_{A_k}$, where $A_k \in \mathcal{C}$, such that $\mathbb{P}(|X Y| > \varepsilon) < \varepsilon$.

Exercise 2.5: Let X, Y and Z be real random variables defined on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

- (1) Assume that X and Y are equal almost everywhere (with respect to the probability measure \mathbb{P}). Prove that X and Y have the same distribution. Does the converse hold?
- (2) Assume that X and Y have the same distribution.
 - (1) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Borel function. Prove that f(X) and f(Y) have the same distribution.
 - (2) Prove that XZ and YZ does not necessarily have the same distribution.

Exercise 2.6: Let $X \sim \text{Unif}([0,1])$ be a uniform random variable on [0,1].

- (1) Let $Y = -\ln(1 X)$ and find the distribution of Y.
- (2) Let $Z = \tan(\pi X \frac{\pi}{2})$ and find the distribution of Z.

Exercise 2.7 (Question 2.1.21): Construct two bi-dimensional real random variables $X = (X_1, X_2)$ and $X' = (X'_1, X'_2)$ such that for $j = 1, 2, X_j$ and X'_j have the same marginal distribution, where as the distributions of X and X' are not equal.

Exercise 2.8: We are given a bidimensional real random variable (X,Y) on the probability space $(\Omega,\mathcal{A},\mathbb{P})$. Use the method mentioned in Remark 2.1.16 to find the distribution of the following random variables.

(1) Assume that (X, Y) has distribution

$$\lambda \mu e^{-\lambda x - \mu y} \mathbb{1}_{\mathbb{R}^2_+}(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

Determine the distribution of the random variable $U = \min(X, Y)$.

(2) Assume that (X, Y) has distribution

$$\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}\,\mathrm{d}x\,\mathrm{d}y.$$

Determine the distribution of the random variable $\frac{X}{Y}$.

Exercise 2.9: Let X be a random variable with values in [0,1) such that its distribution \mathbb{P}_X is the Lebesgue measure on [0,1). We define the sequence $(X_n)_{n\geq 1}$ of random variables as follows,

$$X_1 := \lfloor 2X \rfloor,$$

$$X_{n+1} := \lfloor 2^{n+1}X - \sum_{k=1}^n 2^{n+1-k}X_k \rfloor, \quad \forall n \geqslant 1.$$

(1) Check that almost surely all the X_n 's take values in the set $\{0,1\}$. In other words, show that

$$\mathbb{P}\left(\forall n \geqslant 1, X_n \in \{0, 1\}\right) = 1.$$

(Hint: show that the sequence $(X_n)_{n\geq 1}$ is the dyadic expansion (二進位展開) of X.)

- (2) Describe the σ -algebra generated by X_1 , which we denote by $\sigma(X_1)$. (Write down all the elements in this σ -algebra.)
- (3) Describe the σ algebra generated by X_1 and X_2 , which we denote by $\sigma(X_1, X_2)$. Is this the same as $\sigma(X_2)$, the σ -algebra generated only by X_2 ? You may want to write down explicitly the elements of these two σ -algebras.
- (4) Fix a positive integer $n \ge 1$ and find the σ -algebra generated by X_1, \ldots, X_n without writing down all of its elements. How many elements does this σ -algebra contain?

Exercise 2.10: Compute the expectation and the variance of the probability distributions in Section 2.3.

Exercise 2.11: Given $p \in (0,1)$ and if $X \sim \text{Geo}(p)$, then show that for any integers $m, n \ge 0$ we have,

$$\mathbb{P}(X \geqslant n) = \mathbb{P}(X \geqslant m + n \mid X \geqslant m).$$

We call it the memoryless property (無記憶性質) of the geometric distribution.

Exercise 2.12 : For any $0 \le k \le n$, show that we have

$$\lim_{\substack{N,K\to\infty\\K/N\to p}} f_X(k) = \binom{n}{k} p^k (1-p)^{n-k},$$

where f_X is the mass function of $X \sim \text{Hypergeo}(N, K, n)$. Please give an explanation to this result.

Exercise 2.13: Consider a sequence $(p_n)_{n\geqslant 1}$ of nonnegative real numbers and a sequence $(X_n)_{n\geqslant 1}$, where X_n is a random variable following the binomial distribution $\mathrm{Bin}(n,p_n)$ for all $n\geqslant 1$. Suppose that we have $np_n\to\lambda$ when n tends to infinity. Then, show that

$$\forall k \in \mathbb{N}_0, \qquad \lim_{n \to \infty} \mathbb{P}(X_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Exercise 2.14 : Let X be a random variable with distribution $\mathcal{N}(\mu, \sigma^2)$. Prove the following inequality in two different ways,

$$\forall t > 0, \quad \mathbb{P}(X \geqslant \mu + t) \leqslant \max\left(\frac{1}{\sqrt{2\pi}}\frac{\sigma}{t}, 1\right) \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

- (1) Use integration by parts.
- (2) Use the moment generating function $\mathbb{E}[e^{sX}]$ of $X \circ$

Exercise 2.15: For any u > 0, the density function of the *Cauchy distribution* (柯西分佈) writes,

$$c_u(x) = \frac{1}{\pi} \frac{u}{u^2 + x^2}, \quad x \in \mathbb{R}.$$

- (1) Check that for all u > 0, c_u defines a probability distribution.
- (2) Prove that its expectation does not exist.
- (3) Prove that $c_u * c_v = c_{u+v}$.

Exercise 2.16 : Let $Z \sim \mathcal{N}(0,1)$ and $X := Z^2$. Show that $X \sim \operatorname{Gamma}(\frac{1}{2},\frac{1}{2})$.

Exercise 2.17 : Let $X \sim \mathcal{N}(0,1)$ be a random variable with standard normal distribution.

- (1) Find its moment generating function $M(t) := \mathbb{E}[e^{tX}]$.
- (2) Prove by induction that for any nonnegative positive number $k \geqslant 0$, there exists a polynomial P_k satisfying
 - (a) $M^{(k)}(t) = P_k(t)e^{t^2/2}$;
 - (b) $\deg(P_k) = k;$
 - (c) P_k only contains odd degree terms when k is odd; P_k only contains even degree terms when k is even;
 - (d) $P_{k+1}(t) = P'_k(t) + tP_k(t)$.
- (3) Prove that when k is odd, we have $\mathbb{E}[X^k] = 0$. (Use two different approaches: one using the moment generating function and the other one using integration.)
- (4) Compute $\mathbb{E}[X^k]$ for all non-negative integer $k \ge 0$.
- (5) Use a change of variables and properties of the Γ function to find the same result as in the previous question.

Exercise 2.18 (Estimates on Gaussian integrals): Let f be the density function of the standard normal distribution, that is,

$$\forall x \in \mathbb{R}, \qquad f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

We write F for the distribution function of f, i.e.,

$$\forall x \in \mathbb{R}, \qquad F(x) = \int_{-\infty}^{x} f(y) \, \mathrm{d}y = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} \, \mathrm{d}y.$$

(1) Show that we have the following asymptotic behavior when $x \to +\infty$,

$$1 - F(x) \sim \frac{1}{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

(Hint: differentiate the above formula on both the left and the right hand sides.)

(2) Prove the following inequality for x > 1,

$$\left(\frac{1}{x} - \frac{1}{x^3}\right)f(x) < 1 - F(x) < \frac{f(x)}{x}.$$

(Hint: differentiate again the above formula on both the left and the right hand sides.)

(3) More generally, show that we have the following asymptotic formula for any integer $k \ge 0$,

$$1 - F(x) = f(x) \left(\sum_{j=0}^{k} (-1)^{j} \frac{(2j-1)!!}{x^{2j+1}} + o\left(\frac{1}{x^{2k+1}}\right) \right)$$
$$= f(x) \left(\sum_{j=0}^{k} \left(-\frac{1}{2} \right)^{j} \binom{2j}{j} j! + o\left(\frac{1}{x^{2k+1}}\right) \right).$$

(4) Show that for all a > 0, we have the following limit when $x \to +\infty$,

$$\frac{1 - F\left(x + \frac{a}{x}\right)}{1 - F(x)} \to e^{-a}.$$

(5) Show that for all b > 0, we have the following limit when $x \to +\infty$,

$$\frac{1 - F(x+b)}{1 - F(x)} \to 0.$$

Exercise 2.19: On the probability space $(\Omega, \mathcal{A}, \mathbb{P})$, we define the random variable (X_1, \dots, X_n) with values in \mathbb{R}^n and law

$$\mathbb{1}_{[0,1]^n}(x_1,\ldots,x_n)\,\mathrm{d}x_1\ldots\mathrm{d}x_n.$$

(1) For any permutation (排列) $\sigma \in \mathcal{S}_n$, let $A_{\sigma} = \{X_{\sigma_1} < \ldots < X_{\sigma_n}\}$. Construct the random variable (Y_1, \ldots, Y_n) on $(\Omega, \mathcal{A}, \mathbb{P})$ using $(A_{\sigma})_{\sigma \in \mathcal{S}_n}$, such that the following statement holds almost surely,

$$Y_1 < \ldots < Y_n$$
 and $\{Y_1, \ldots, Y_n\} = \{X_1, \ldots, X_n\}.$

(2) Determine the law of the two vectors of random variables (Y_1,\ldots,Y_n) and $(\frac{Y_1}{Y_2},\ldots,\frac{Y_{n-1}}{Y_n})$.

Exercise 2.20 (Question 2.4.9): Prove that when X is a d-dimensional real random variable, its covariance matrix K_X is a positive semi-definite (\mp \mathbb{E} \mathbb{E}) symmetric matrix. In other words, prove that for all $\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{R}^d$, we have $\lambda K_X \lambda^T \geqslant 0$.

Exercise 2.21 (Question 2.4.10): If A is a matrix of size $n \times d$ and X is a d-dimensional real random variable, define Y = AX and prove that $K_Y = AK_XA^T$.

Exercise 2.22: Consider the following density function (with respect to the Lebesgue measure),

$$p_0(y) = \frac{1}{\sqrt{2\pi y^2}} \exp\left(-\frac{\ln(y)^2}{2}\right), \quad y > 0.$$

Let Y be a random variable whose density is given by p_0 .

- (1) Let $X \sim \mathcal{N}(0,1)$. Find a measurable function $f: \mathbb{R} \to \mathbb{R}$ such that $Y \stackrel{\text{(d)}}{=} f(X)$.
- (2) Compute the *n*-th moment of Y for any non-negative integer $n \ge 0$.
- (3) Let

$$q(y) = \sin(2\pi \ln(y))p_0(y).$$

Compute $\int_{\mathbb{R}_{>0}} y^n q(y) \, dy$ for all non-negative integer $n \geqslant 0$.

(4) For all $a \in \mathbb{R}$, let

$$p_a(y) = p_0(y) + aq(y).$$

Under which condition, p_a is the density function of a probability distribution?

(5) Which conclusion can we deduce from the above questions?

Exercise 2.23: Given a real sequence $(\mu_k)_{k\geqslant 0}$ satisfying,

$$\limsup_{k\to\infty}\frac{\mu_{2k}^{1/2k}}{2k}=r<\infty.$$

(1) Assume that there exists a distribution function F such that its moments are given by $(\mu_k)_{k\geqslant 0}$. For all $k\geqslant 0$, let $\nu_k=\int |x|^k\,\mathrm{d}F(x)$. Prove that for all $k\geqslant 0$, we have $\nu_{2k+1}^2\leqslant \mu_{2k}\mu_{2k+2}$ and deduce,

$$\limsup_{k \to \infty} \frac{\nu_k^{1/k}}{k} = r.$$

(2) Let X be a random variable with distribution function F. Write Ψ_X for its characteristic function. Prove that for all $x \in \mathbb{R}$, $t \in \mathbb{R}$ and $n \in \mathbb{N}$, we have,

$$\left| e^{\mathrm{i} tx} - \sum_{k=0}^{n-1} \frac{(\mathrm{i} tx)^k}{k!} \right| \leqslant \frac{|tx|^n}{n!}.$$

Then, deduce,

$$\forall \xi \in \mathbb{R}, \quad \left| \Psi_X(\xi + t) - \sum_{k=0}^{n-1} \frac{t^k}{k!} \Psi_X^{(k)}(\xi) \right| \leqslant \frac{|t|^n}{n!} \nu_n.$$

(3) Given $\xi \in \mathbb{R}$, how to choose t so that the following equality holds?

$$\Psi_X(\xi + t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \Psi_X^{(k)}(\xi).$$

(4) Explain what we have shown here. See Exercise 2.22 and conclude.

Exercise 2.24 (Methods of moments) : Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.

(1) Consider a finite set I and measurable events $A_i \in \mathcal{A}$ for $i \in I$. Show that the following inequality holds,

$$\mathbb{P}\Big(\bigcup_{i\in I} A_i\Big) \leqslant \sum_{i\in I} \mathbb{P}(A_i).$$

(2) Let X be a random variable in $L^2(\Omega, \mathcal{A}, \mathbb{P})$ with expectation $\mu := \mathbb{E}[X] < \infty$. Prove that

$$\mathbb{P}(X \leqslant \mu) > 0$$
 and $\mathbb{P}(X \geqslant \mu) > 0$.

(3) Let X be a non-constant random variable in $L^2(\Omega, \mathcal{A}, \mathbb{P})$ with non-negative integer values. Show that

$$\mathbb{P}(X=0) \leqslant \frac{\operatorname{Var}(X)}{\mathbb{E}[X^2]}.$$

Exercise 2.25: For any subset A of an additive group (G, +), if for all $a, b \in A$, $a + b \notin A$, then we say that A is a sum-free set (無和集合). Given a set of non-zero integers $B = \{b_1, \ldots b_n\}$, we want to prove that there exists a subset $A \subseteq B$ with $|A| > \frac{n}{3}$ such that A is a sum-free set using the methods of moments introduced in Exercise 2.24.

- (1) For any positive integer k, prove that $C_k := \{k+1, \ldots, 2k+1\}$ is sum-free in the cyclic ring $\mathbb{Z}/(3k+2)\mathbb{Z}$.
- (2) Let p=3k+2 be a prime number satisfying $p>2\max\{|b_i|:1\leqslant i\leqslant n\}$. Let X be a uniform random variable on $\{1,\ldots,p-1\}$. Consider n random variables, $0\leqslant D_i< p$ such that $D_i\equiv Xb_i\pmod p$. Prove that all the D_i 's have the same distribution. Determine this distribution and prove that $\mathbb{P}(D_i\in C_k)>\frac{1}{3}$.
- (3) Conclude.

Exercise 2.26 (Question 2.4.26): Given a random variable X, prove that the three following statements are equivalent.

- (1) X is a sub-Gaussian distribution.
- (2) There exist C, c > 0 such that $\mathbb{E}[e^{tX}] \leq C \exp(ct^2)$.
- (3) There exists C > 0 such that for all $k \ge 1$, we have $\mathbb{E}[|X|^k] \le (Ck)^{k/2}$.

Exercise 2.27 (Question 2.4.27): Let X be a real random variable and k > 0. If X is in L^k , prove that when $\lambda \longrightarrow \infty$, we have that

$$\lambda^k \mathbb{P}(|X| > \lambda) \longrightarrow 0.$$