
Chapter 2: Basics of Probability Theory

Exercise 2.1 : Describe the sample space in different random experiments.

(1) Toss a coin with two sides denoted head and tail, and stop when tail appeaers for the first time.

(2) In a set of cards with four colors and 13 numbers, randomly pick up five cards (the order does not
matter).

(3) In the unit disk, random trajectories that start from the origin and stop when they hit the boundary
of the disk.

We assume that we have a fair coin in (1), and the cards are picked up randomly and uniformly in (2),
describe the corresponding probability measure.

Exercise 2.2 (Bertrand’s Paradox) : The Frenchmathematician Joseph Bertrand (1822-1990) asked a ques-
tion in his book “Probability Computations” (Calculs des probabilités) published in 1889: given a equi-
lateral triangle and its circumscribed circle, what is the probability that a randomly chosen chord on the
circle is longer than a side of the equilateral triangle? At the same time, he suggested three methods to
compute, while obtaining three different results.

(1) The two endpoints of the chord are chosen uniformly at random on the circle.

(2) Choose a point inside the disk uniformly at random then draw the chord going through this point
such that the midpoint of the chord is the randomly chosen point.

(3) Choose a point uniformly at random on the circle, draw the radius going through this point, choose
a point uniformly at random on the radius and draw the chord which is perpendicular to the radius
and going through this point.

In the above three different random experiments, give

(a) the probability space;

(b) the random variable giving the chord length and its density function;

(c) the probability that an chord randomly chosen as such is longer than a side of the equilateral
triangle.
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Exercise 2.3 : A probability space (Ω, A,P) is called atomless (無原子的) if for any A ∈ A with P(A) >
0, we can find B ∈ A such that B ⊆ A and 0 < P(B) < P(A). Otherwise, we say that (Ω, A,P) is
atomic (有原子的).

(1) Suppose that the measurable space (Ω, A) is given by (Rd, B(Rd)). Prove that (Ω, A,P) is
an atomless probability space if and only if P is an atomless probability measure. (We re-
call Definition 1.1.12.)

(2) Give respectively an example of an atomless probability space and an atomic probability space.

Given an atomless probability space (Ω, A,P) and fix A ∈ A with P(A) > 0.

(3) Show that for any ε > 0, we can find B ∈ A and B ⊆ A with 0 < P(B) < ε.

(4) Show that if 0 < a < P(A), then there exists B ∈ A and B ⊆ A with P(B) = a.

Exercise 2.4 : Fix a probability space (Ω, A,P). Take C ⊆ P(Ω) satisfying the following conditions,

(a) ∅ ∈ C;

(b) if A ∈ C, then Ac ∈ C;

(c) if A, B ∈ C, then A ∩ B ∈ C.

We call such a C an algebra of sets (集合代數). Additionally, we also assume that A := σ(C).

(1) Prove that for any B ∈ A, we have inf{P(A∆B) : A ∈ C} = 0.

(2) Given a bounded random variable X and ε > 0, show that there exists a simple function Y =∑n
k=1 ck1Ak

, where Ak ∈ C, such that P(|X − Y | > ε) < ε.

Exercise 2.5 : Let X, Y and Z be real random variables defined on the probability space (Ω, A,P).

(1) Assume that X and Y are equal almost everywhere (with respect to the probability measure P).
Prove that X and Y have the same distribution. Does the converse hold?

(2) Assume that X and Y have the same distribution.
(1) Let f : R −→ R be a Borel function. Prove that f(X) and f(Y ) have the same distribution.
(2) Prove that XZ and Y Z does not necessarily have the same distribution.

Exercise 2.6 : Let X ∼ Unif([0, 1]) be a uniform random variable on [0, 1].

(1) Let Y = − ln(1 − X) and find the distribution of Y .

(2) Let Z = tan(πX − π
2 ) and find the distribution of Z .

Exercise 2.7 (Question 2.1.21) : Construct two bi-dimensional real random variables X = (X1, X2) and
X ′ = (X ′

1, X ′
2) such that for j = 1, 2, Xj and X ′

j have the same marginal distribution, where as the
distributions of X and X ′ are not equal.

2 Last modified: 13:06 on Thursday 16th October, 2025



Exercise 2.8 : We are given a bidimensional real random variable (X, Y ) on the probability space
(Ω, A,P). Use the method mentioned in Remark 2.1.16 to find the distribution of the following ran-
dom variables.

(1) Assume that (X, Y ) has distribution

λµe−λx−µy1R2
+

(x, y) dx dy.

Determine the distribution of the random variable U = min(X, Y ).

(2) Assume that (X, Y ) has distribution

1
2π

e− x2+y2
2 dx dy.

Determine the distribution of the random variable X
Y .

Exercise 2.9 : Let X be a random variable with values in [0, 1) such that its distribution PX is the
Lebesgue measure on [0, 1). We define the sequence (Xn)n⩾1 of random variables as follows,

X1 := ⌊2X⌋,

Xn+1 := ⌊2n+1X −
n∑

k=1
2n+1−kXk⌋, ∀n ⩾ 1.

(1) Check that almost surely all the Xn’s take values in the set {0, 1}. In other words, show that

P
(
∀n ⩾ 1, Xn ∈ {0, 1}

)
= 1.

(Hint: show that the sequence (Xn)n⩾1 is the dyadic expansion (二進位展開) of X .)

(2) Describe the σ-algebra generated by X1, which we denote by σ(X1). (Write down all the elements
in this σ-algebra.)

(3) Describe the σ algebra generated by X1 and X2, which we denote by σ(X1, X2). Is this the same as
σ(X2), the σ-algebra generated only by X2? You may want to write down explicitly the elements
of these two σ-algebras.

(4) Fix a positive integer n ⩾ 1 and find the σ-algebra generated by X1, . . . , Xn without writing down
all of its elements. How many elements does this σ-algebra contain?

Exercise 2.10 : Compute the expectation and the variance of the probability distributions in Section 2.3.

Exercise 2.11 : Given p ∈ (0, 1) and if X ∼ Geo(p), then show that for any integers m, n ⩾ 0 we have,

P(X ⩾ n) = P(X ⩾ m + n | X ⩾ m).

We call it the memoryless property (無記憶性質) of the geometric distribution.
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Exercise 2.12 : For any 0 ⩽ k ⩽ n, show that we hvae

lim
N,K→∞
K/N→p

fX(k) =
(

n

k

)
pk(1 − p)n−k,

where fX is the mass function of X ∼ Hypergeo(N, K, n). Please give an explanation to this result.

Exercise 2.13 : Consider a sequence (pn)n⩾1 of nonnegative real numbers and a sequence (Xn)n⩾1,
where Xn is a random variable following the binomial distribution Bin(n, pn) for all n ⩾ 1. Suppose
that we have npn → λ when n tends to infinity. Then, show that

∀k ∈ N0, lim
n→∞

P(Xn = k) = λk

k!
e−λ.

Exercise 2.14 : Let X be a random variable with distribution N (µ, σ2). Prove the following inequality
in two different ways,

∀t > 0, P(X ⩾ µ + t) ⩽ max
( 1√

2π

σ

t
, 1
)

exp
(

− t2

2σ2
)
.

(1) Use integration by parts.

(2) Use the moment generating function E[esX ] of X。

Exercise 2.15 : For any u > 0, the density function of the Cauchy distribution (柯西分佈) writes,

cu(x) = 1
π

u

u2 + x2 , x ∈ R.

(1) Check that for all u > 0, cu defines a probability distribution.

(2) Prove that its expectation does not exist.

(3) Prove that cu ∗ cv = cu+v .

Exercise 2.16 : Let Z ∼ N (0, 1) and X := Z2. Show that X ∼ Gamma(1
2 , 1

2).
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Exercise 2.17 : Let X ∼ N (0, 1) be a random variable with standard normal distribution.

(1) Find its moment generating function M(t) := E[etX ].

(2) Prove by induction that for any nonnegative positive number k ⩾ 0, there exists a polynomial Pk

satisfying
(a) M (k)(t) = Pk(t)et2/2;
(b) deg(Pk) = k;
(c) Pk only contains odd degree terms when k is odd; Pk only contains even degree terms when

k is even;
(d) Pk+1(t) = P ′

k(t) + tPk(t).

(3) Prove that when k is odd, we have E[Xk] = 0. (Use two different approaches: one using the
moment generating function and the other one using integration.)

(4) Compute E[Xk] for all non-negative integer k ⩾ 0.

(5) Use a change of variables and properties of the Γ function to find the same result as in the previous
question.

Exercise 2.18 (Estimates on Gaussian integrals) : Let f be the density function of the standard normal
distribution, that is,

∀x ∈ R, f(x) = 1√
2π

e− x2
2 .

We write F for the distribution function of f , i.e.,

∀x ∈ R, F (x) =
∫ x

−∞
f(y) dy = 1√

2π

∫ x

−∞
e− y2

2 dy.

(1) Show that we have the following asymptotic behavior when x → +∞,

1 − F (x) ∼ 1
x

1√
2π

e− x2
2 .

(Hint: differentiate the above formula on both the left and the right hand sides.)

(2) Prove the following inequality for x > 1,
(1

x
− 1

x3

)
f(x) < 1 − F (x) <

f(x)
x

.

(Hint: differentiate again the above formula on both the left and the right hand sides.)

(3) More generally, show that we have the following asymptotic formula for any integer k ⩾ 0,

1 − F (x) = f(x)
( k∑

j=0
(−1)j (2j − 1)!!

x2j+1 + o
( 1

x2k+1

))

= f(x)
( k∑

j=0

(
− 1

2

)j
(

2j

j

)
j! + o

( 1
x2k+1

))
.
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(4) Show that for all a > 0, we have the following limit when x → +∞,

1 − F
(
x + a

x

)
1 − F (x)

→ e−a.

(5) Show that for all b > 0, we have the following limit when x → +∞,

1 − F (x + b)
1 − F (x)

→ 0.

Exercise 2.19 : On the probability space (Ω, A,P), we define the random variable (X1, . . . , Xn) with
values in Rn and law

1[0,1]n(x1, . . . , xn) dx1 . . . dxn.

(1) For any permutation (排列) σ ∈ Sn，let Aσ = {Xσ1 < . . . < Xσn}. Construct the random
variable (Y1, . . . , Yn) on (Ω, A,P) using (Aσ)σ∈Sn , such that the following statement holds almost
surely,

Y1 < . . . < Yn and {Y1, . . . , Yn} = {X1, . . . , Xn}.

(2) Determine the law of the two vectors of random variables (Y1, . . . , Yn) and (Y1
Y2

, . . . , Yn−1
Yn

).

Exercise 2.20 (Question 2.4.9) : Prove that when X is a d-dimensional real random variable, its covari-
ance matrix KX is a positive semi-definite (半正定) symmetric matrix. In other words, prove that for all
λ = (λ1, . . . , λd) ∈ Rd, we have λKXλT ⩾ 0.

Exercise 2.21 (Question 2.4.10) : If A is a matrix of size n × d and X is a d-dimensional real random
variable, define Y = AX and prove that KY = AKXAT .

Exercise 2.22 : Consider the following density function (with respect to the Lebesgue measure),

p0(y) = 1√
2πy2 exp

(
− ln(y)2

2

)
, y > 0.

Let Y be a random variable whose density is given by p0.

(1) Let X ∼ N (0, 1). Find a measurable function f : R → R such that Y
(d)= f(X).

(2) Compute the n-th moment of Y for any non-negative integer n ⩾ 0.

(3) Let
q(y) = sin(2π ln(y))p0(y).

Compute
∫
R>0

ynq(y) dy for all non-negative integer n ⩾ 0.

(4) For all a ∈ R, let
pa(y) = p0(y) + aq(y).

Under which condition, pa is the density function of a probability distribution?

(5) Which conclusion can we deduce from the above questions?
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Exercise 2.23 : Given a real sequence (µk)k⩾0 satisfying,

lim sup
k→∞

µ
1/2k
2k

2k
= r < ∞.

(1) Assume that there exists a distribution function F such that its moments are given by (µk)k⩾0. For
all k ⩾ 0, let νk =

∫
|x|k dF (x). Prove that for all k ⩾ 0, we have ν2

2k+1 ⩽ µ2kµ2k+2 and deduce,

lim sup
k→∞

ν
1/k
k

k
= r.

(2) Let X be a random variable with distribution function F . Write ΨX for its characteristic function.
Prove that for all x ∈ R, t ∈ R and n ∈ N, we have,∣∣∣∣∣ei tx −

n−1∑
k=0

(i tx)k

k!

∣∣∣∣∣ ⩽ |tx|n

n!
.

Then, deduce,

∀ξ ∈ R,

∣∣∣∣∣ΨX(ξ + t) −
n−1∑
k=0

tk

k!
Ψ(k)

X (ξ)
∣∣∣∣∣ ⩽ |t|n

n!
νn.

(3) Given ξ ∈ R, how to choose t so that the following equality holds?

ΨX(ξ + t) =
∞∑

k=0

tk

k!
Ψ(k)

X (ξ).

(4) Explain what we have shown here. See Exercise 2.22 and conclude.

Exercise 2.24 (Methods of moments) : Let (Ω, A,P) be a probability space.

(1) Consider a finite set I and measurable events Ai ∈ A for i ∈ I . Show that the following inequality
holds,

P
( ⋃

i∈I

Ai

)
⩽
∑
i∈I

P(Ai).

(2) Let X be a random variable in L2(Ω, A,P) with expectation µ := E[X] < ∞. Prove that

P(X ⩽ µ) > 0 and P(X ⩾ µ) > 0.

(3) Let X be a non-constant random variable in L2(Ω, A,P) with non-negative integer values. Show
that

P(X = 0) ⩽ Var(X)
E[X2]

.
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Exercise 2.25 : For any subset A of an additive group (G, +), if for all a, b ∈ A, a + b /∈ A, then we
say that A is a sum-free set (無和集合). Given a set of non-zero integers B = {b1, . . . bn}, we want to
prove that there exists a subset A ⊆ B with |A| > n

3 such that A is a sum-free set using the methods of
moments introduced in Exercise 2.24.

(1) For any positive integer k, prove that Ck := {k + 1, . . . , 2k + 1} is sum-free in the cyclic ring
Z/(3k + 2)Z.

(2) Let p = 3k + 2 be a prime number satisfying p > 2 max{|bi| : 1 ⩽ i ⩽ n}. Let X be a uniform
random variable on {1, . . . , p − 1}. Consider n random variables, 0 ⩽ Di < p such that Di ≡ Xbi

(mod p). Prove that all the Di’s have the same distribution. Determine this distribution and prove
that P(Di ∈ Ck) > 1

3 .

(3) Conclude.

Exercise 2.26 (Question 2.4.26) : Given a random variable X , prove that the three following statements
are equivalent.

(1) X is a sub-Gaussian distribution.

(2) There exist C, c > 0 such that E[etX ] ⩽ C exp(ct2).

(3) There exists C > 0 such that for all k ⩾ 1, we have E[|X|k] ⩽ (Ck)k/2.

Exercise 2.27 (Question 2.4.27) : Let X be a real random variable and k > 0. If X is in Lk, prove that
when λ −→ ∞, we have that

λk P(|X| > λ) −→ 0.
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