第三章 : 隨機變數的獨立性

習題 3.1 【問題 3.1.2 】 : 給定 n 個事件 $A_1, \ldots, A_n \in \mathcal{A}$,試問若只有下列其中一個條件成立,則 A_1, \ldots, A_n 是否會是獨立事件?

- $\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \dots \mathbb{P}(A_n)$;
- 對於任何數對 $1 \leqslant i < j \leqslant n$,我們有 $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \mathbb{P}(A_j)$ 。

習題 3.2 【問題 3.1.15 】 : 構造兩個隨機變數 X 及 Y 使得 Cov(X,Y) = 0 但 X 與 Y 並不獨立。 在習題 3.20 中,我們會看到在某特定的條件下,Cov(X,Y) = 0 蘊含 X 與 Y 獨立。

習題 3.3 : 令 X 及 Y 兩個獨立標準常態分佈,試證 $\frac{X+Y}{\sqrt{2}}$ 及 $\frac{X-Y}{\sqrt{2}}$ 也為獨立隨機變數,且他們分佈也是標準常態分佈。

$$\forall k, \ell \in \mathbb{N}, \qquad \mathbb{E}\left[X^k Y^\ell\right] = \mathbb{E}\left[X^k\right] \mathbb{E}\left[Y^\ell\right].$$

習題 3.5 : 令 U 為參數為 1 的指數隨機變數,令 V 為在 [0,1] 區間上的均匀隨機變數,假設兩者互相獨立。試證 $X=\sqrt{U}\cos(2\pi V)$ 及 $Y=\sqrt{U}\sin(2\pi V)$ 互相獨立。

習題 3.6 : 如隨機變數 X 及 Y 皆為常態分佈,且 Cov(X,Y)=0,試問他們是否獨立?若我們加上條件「對於所有 $a,b\in\mathbb{R}$,隨機變數 aX+bY 也是常態分佈」,請回答相同問題。

- (i) X_1, \ldots, X_n 為獨立隨機變數。
- (ii) 對於任意 $a_1, \ldots, a_n \in \mathbb{R}$,我們有 $\mathbb{P}(X_1 \leqslant a_1, \ldots, X_n \leqslant a_n) = \prod_{i=1}^n \mathbb{P}(X_i \leqslant a_i)$ 。
- (iii) 若 f_1, \ldots, f_n 為緊緻支撐 (compactly supported),由 \mathbb{R} 映射到 $\mathbb{R}_{\geq 0}$ 上的連續函數,則

$$\mathbb{E}\left[\prod_{i=1}^{n} f_i(X_i)\right] = \prod_{i=1}^{n} \mathbb{E}\left[f_i(X_i)\right].$$

(iv) X 的特徵函數可以寫作

$$\Phi_X(\xi_1,\ldots,\xi_n) = \prod_{i=1}^n \Phi_{X_i}(\xi_i).$$

最後修改: 2025年 10月 14日 16:49

習題 3.8 【問題 3.1.19 】 : 令 $\mathcal{B}_1, \ldots, \mathcal{B}_n$ 為獨立 σ 代數。對於 $n_0 = 0 < n_1 < \cdots < n_p = n$,下列 σ 代數是獨立的:

$$\mathcal{D}_{1} = \mathcal{B}_{1} \vee \cdots \vee \mathcal{B}_{n_{1}} \stackrel{\text{(def)}}{=} \sigma(\mathcal{B}_{1}, \dots, \mathcal{B}_{n_{1}}),$$

$$\mathcal{D}_{2} = \mathcal{B}_{n_{1}+1} \vee \cdots \vee \mathcal{B}_{n_{2}},$$

$$\vdots$$

$$\mathcal{D}_{p} = \mathcal{B}_{n_{p-1}+1} \vee \cdots \vee \mathcal{B}_{n_{p}}.$$

習題 3.9 【問題 3.2.5 】 : 解釋為什麼在引理 3.2.4 的 (2) 中,我們必須假設 $(A_n)_{n\geqslant 1}$ 為獨立事件。

習題 3.10 : 令 $\alpha>0$ 以及 $(Z_n)_{n\geqslant 1}$ 為定義在機率空間 $(\Omega,\mathcal{A},\mathbb{P})$ 上的獨立隨機變數序列。假設對於 $n\geqslant 1$, Z_n 的分佈是個伯努力分佈

$$\mathbb{P}(Z_n = 1) = \frac{1}{n^{\alpha}} \quad \mathbb{H} \quad \mathbb{P}(Z_n = 0) = 1 - \frac{1}{n^{\alpha}},$$

證明 Z_n 在 L^1 中收斂至 0,但我們有

a.s.,
$$\limsup_{n\to\infty} Z_n = \begin{cases} 1 & \text{若 } \alpha \leqslant 1, \\ 0 & \text{若 } \alpha > 1. \end{cases}$$

習題 3.11 【命題 3.3.2 】 : 若 $(X_k)_{1\leqslant k\leqslant n}$ 為 i.i.d. 隨機變數序列,且各項皆為參數為 λ 的帕松分佈,則 $X_1+\cdots+X_n$ 為參數為 $n\lambda$ 的帕松分佈。

習題 3.12 【命題 3.3.3 】 : 若 $(X_k)_{1\leqslant k\leqslant n}$ 為獨立隨機變數序列,且對於所有 $1\leqslant k\leqslant n$, X_k 的分佈為參數為 $(0,\sigma_k^2)$ 的高斯分佈,則 $X_1+\cdots+X_n$ 為參數為 $(0,\sigma_1^2+\cdots+\sigma_n^2)$ 的高斯分佈。

習題 3.13 : 這裡我們使用習題 2.15 中的記號。令 u>0。假設 X_1,\ldots,X_n 為 i.i.d. 柯西隨機變數,且密度函數皆為 c_u ,試證 $\frac{1}{n}(X_1+\cdots+X_n)$ 的密度函數也是 c_u 。

習題 3.14 【伽瑪分佈】: 令 $(X_n)_{n\geqslant 1}$ 為 i.i.d. 參數為 $\lambda>0$ 的指數隨機變數序列。給定兩個參數 $k,\theta>0$,若隨機變數 X 的值域為 $\mathbb{R}_{\geqslant 0}$ 且其密度函數寫作:

$$\gamma_{k,\theta}(x) = \frac{x^{k-1}e^{-x/\theta}}{\theta^k\Gamma(k)} \mathbb{1}_{x\geqslant 0}, \quad \forall x \in \mathbb{R}.$$

我們稱之為參數 (k,θ) 的伽瑪分佈 (Gamma distribution) ,並記作 $X \sim \Gamma(k,\theta)$ 。

- (1) 給定 $k, \theta > 0$,求 $\Gamma(k, \theta)$ 的期望值以及變異數。
- (2) 證明 $X_1 + \cdots + X_n \sim \Gamma(n, \lambda^{-1})$ °

習題 3.15 : 令 X_1,\ldots,X_n 為 i.i.d. 標準高斯分佈,證明 $\chi_n^2=X_1^2+\ldots X_n^2$ 的密度為

$$\frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)}\mathbb{1}_{x>0}.$$

此分佈稱作自由度為 n 的 χ^2 分佈 $(\chi^2$ distribution) 。此分佈與伽瑪分佈(習題 3.14)的關係為何?

習題 3.16 : 令 X_1, \ldots, X_n 為定義在機率空間 $(\Omega, \mathcal{A}, \mathbb{P})$ 上的隨機變數。假設他們分別是參數為 c_1, \ldots, c_n 且獨立的指數隨機變數,令 $Y = \min_{1 \le k \le n} X_k$ 。試證下列敘述:

- (1) Y 是個參數為 $c_1 + \cdots + c_n$ 的指數隨機變數。
- (2) 存在一個對 A 可測的函數 $N:\Omega \longrightarrow \{1,\ldots,n\}$ 使得

$$\mathbb{P}$$
-a.s., $X_N = Y$ \coprod $X_N < \min\{X_k : k \in \{1, \dots, n\} \setminus \{N\}\}.$

(3) 隨機變數 N 的分佈滿足:對於所有 $k \in \{1, ..., n\}$,我們有

$$\mathbb{P}(N=k) = \frac{c_k}{c_1 + \dots + c_n}.$$

(4) N 及 Y 為獨立隨機變數。

習題 3.17 【帕松過程】: 令 $(\Omega,\mathcal{A},\mathbb{P})$ 為機率空間, $(X_n)_{n\geqslant 1}$ 為 i.i.d. 隨機變數序列,並假設他們皆是參數為 1 的指數分佈。令 $T_0=0$ 及對於所有 $n\geqslant 1$,令

$$T_n = X_1 + \cdots + X_n$$
.

對於所有 $t \ge 0$,令

$$N_t = \max\{n \geqslant 0 : T_n \leqslant t\}.$$

- (1) 令 $n \geqslant 1$, 求 n 元組 (T_1, \ldots, T_n) 的分佈。
- (2) 對於任意 t > 0,求 N_t 的分佈。
- (3) 給定 $n \ge 1$ 及 t > 0,我們在 Ω 上定義新的機率測度 $\mathbb{Q}^{n,t}$:

$$\forall A \in \mathcal{A}, \qquad \mathbb{Q}^{n,t}(A) = \frac{\mathbb{P}(A \cap \{N_t = n\})}{\mathbb{P}(N_t = n)}.$$

求在機率測度 $\mathbb{Q}^{n,t}$ 之下,n 元組 (T_1,\ldots,T_n) 的分佈。

習題 3.18 : 在機率空間 $(\Omega, \mathcal{A}, \mathbb{P})$ 上,我們給定 n 個獨立的隨機變數 X_1, \ldots, X_n 。假設他們皆為在 [0,1] 上的均匀分佈,定義 $m = \min_{1 \le i \le n} X_i$ 以及 $M = \max_{1 \le i \le n} X_i$,求 m 及 M 的密度函數,並計算他們的期望值以及變異數。

習題 3.19 : 令 $X = (X_1, ..., X_d)$ 為 d 維實隨機變數。我們這裡要證明下列三個條件是等價的,而且當其中一個條件成立時,我們稱 X 為多元常態分佈 (multivariate normal distribution)。

- (a) 存在 d 維實隨機變數 $Z=(Z_1,\ldots,Z_d)$,其中分量為 i.i.d. 標準常態分佈;存在 $d\times d$ 的方形 矩陣 A 以及向量 $B\in\mathbb{R}^d$,使得 $X\stackrel{(\mathrm{d})}{=}AZ+B$ 。
- (b) 對於任意 $\alpha \in \mathbb{R}^d$, $\alpha^T X$ 仍然是常態分佈。
- (c) 存在 $d \times d$ 的半正定對稱矩陣 Σ 以及向量 $B \in \mathbb{R}^d$ 使得我們可以將 X 的特徵函數寫作

$$\Phi_X(\xi) = \mathbb{E}\left[e^{\mathrm{i}\,\xi\cdot X}\right] = \exp\left(\mathrm{i}\,\xi^T B - \frac{1}{2}\xi^T \Sigma \xi\right).$$

習題 3.20 : 令 (X,Y) 是分佈為二元常態分佈 (bivariate normal distribution) 的隨機變數對。試證 若且唯若 X 與 Y 獨立,則 $\mathrm{Cov}(X,Y)=0$ 。