
Chapter 4: Convergence of Random Variables

Exercise 4.1 : Let (Ω, A,P) be a probability space, (Xn)n⩾1 be a sequence of real random variables and
X be a real random variable. Assume that under the probability measure P, Xn converges in probability
to X . If Q is another probability measure on (Ω, A) which is absolutely continuous with respect to P,
prove that Xn also converges in probability to X with respect to Q.

Exercise 4.2 : Let (Ω, A,P) be a probability space. Assume that Ω is a countable set and that A =
P(Ω). Prove that for any sequence of radnom variables with values in a metric space (E, d), “almost
sure convergence” and “convergence in probability” are equivalent.

Exercise 4.3 : Let (Xn)n⩾1 be a sequence of independent random variables satisfying,

PX1 = δ0,

∀n ⩾ 2, PXn = 1
2n ln(n + 1)

(δn + δ−n) +
(
1 − 1

n ln(n + 1)

)
δ0.

Let Yn = 1
n(X1 + · · · + Xn).

(1) Prove Yn converges in probability to 0.

(2) Prove that Yn diverges almost surely.

Exercise 4.4 : Fix a probability space (Ω, A,P) and a real number p ⩾ 1. Given random variables
(Xn)n⩾1 and X defined on (Ω, A,P). We want to discuss the relations between convergence in proba-
bility, almost sure convergence, and convergence in Lp. In particular, you need to find out whether each
of the following statements is true or false: if it is true, explain in a simple way; if it is false, find out a
counterexample.

(1) If Xn
a.s.−→ X , then Xn

(P)−−→ X .

(2) If Xn
(P)−−→ X , then Xn

a.s.−→ X .

(3) If Xn
(P)−−→ X , then there exists a subsequence (nk)k⩾1 such that Xnk

a.s.−→ X .

(4) If Xn
(P)−−→ X , then Xn

Lp

−→ X .

(5) If Xn
Lp

−→ X , then Xn
(P)−−→ X .

(6) If Xn
a.s.−→ X , then Xn

Lp

−→ X .

(7) If Xn
Lp

−→ X , then Xn
a.s.−→ X .
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Exercise 4.5 : Fix a positive integer n ⩾ 1 and let (Xk)k⩾1 be an i.i.d. sequence of uniform random
variables with values in {1, . . . , n}. Let

Tn := inf{m ⩾ 1 : {X1, . . . , Xm} = {1, . . . , n}}.

(1) For all 1 ⩽ k ⩽ n, let τn
k := inf{m ⩾ 1 : |{X1, . . . , Xm}| = k}. Prove that the random variables

(τn
k − τn

k−1)2⩽k⩽n are independent and find their respective distribution.

(2) Deduce that Tn/(n ln n) converges in probability to 1.

Exercise 4.6 (Question 4.2.3) : Given an i.i.d. sequence of random variables (Xn)n⩾1 and define σ-
algebras Bk and B∞ as in Definition 4.2.1. Show the following properties.

(1) If Y is a real random variable that is B∞-measurable, then it is almost surely a constant.

(2) If 1
n(X1 + . . . Xn) converges almost surely, deduce from the previous question that its limit must

almost surely be a constant.

Exercise 4.7 : Let (Xn)n⩾1 be an i.i.d. sequence of random variables defined on the probability space
(Ω, A,P) and suppose that there exists a random variable Y such that

1
n

(X1 + · · · + Xn) a.s.−→ Y.

(1) Prove that Xn
n

a.s.−→ 0.

(2) Prove that for any random variable Z defined on (Ω, A,P), the following properties are equivalent,

Z ∈ L1(Ω, A,P) ⇐⇒
∑
n⩾1

P(|Z| ⩾ n) < ∞.

(3) Deduce that X1 ∈ L1(Ω, A,P).

Exercise 4.8 : Consider an i.i.d. sequence (Xn)n⩾1 of real-valued random variables defined on the prob-
ability space (Ω, A,P) with distribution

P(X1 = +1) = P(X1 = −1) = 1
2 .

(1) Prove that E[euX1 ] ⩽ eu2/2 for all u ∈ R.

(2) Let a1, . . . , an be real numbers satisfying
∑n

k=1 a2
k = 1 and let S =

∑n
k=1 akXk. Prove that

E[euS ] ⩽ eu2/2 for all u ∈ R. Deduce that

∀t ⩾ 0, P(|S| ⩾ t) ⩽ 2 e−t2/2.

(Hint: consider two cases S ⩾ 0 and S ⩽ 0 and look at the moment generating function.)

(3) Using the previous question, prove that for any real numbers a1, . . . , an and any positive real

2 Last modified: 16:27 on Tuesday 11th November, 2025



number p > 0, we have

∥S∥p := E
[∣∣∣∣ n∑

k=1
akXk

∣∣∣∣p]1/p

⩽ Cp

( n∑
k=1

a2
k

)1/2
.

(Hint: use the Fubini’s theorem to rewrite the expectation.)

(4) For any n ⩾ 1, set Sn = X1 + · · · + Xn. Prove that we have the following convergence for any
α > 1,

Sn√
n(ln n)α

a.s.−→ 0.

(Hint: use the result in (2).)

Exercise 4.9 : Let (Xn)n⩾0 be an i.i.d. sequence of non-negative random variables.

(1) Except for a particular case (please decribe what it is), prove that
∑

n⩾0 Xn = ∞ a.s.

(2) Let X be a non-negative random variable. Prove that for all α > 0, we have the following equiva-
lent relation,

E[X] < ∞ ⇔
∑
n⩾0

P(X ⩾ αn) < ∞.

(3) Deduce the following dichotomy,

a.s., lim sup
n→∞

Xn

n
=

{
0 if E[X1] < ∞,
∞ if E[X1] = ∞.

(4) (Law of large numbers in the non-integrable case) Let (Yn) be an i.i.d. sequence of random vari-
ables. For all n ⩾ 0, let Sn = Y1 + · · · + Yn. Prove that if Y1 is not integrable, then (Sn

n )n⩾1
diverges almost surely.

Exercise 4.10 (Question 4.4.5) : Let (Xn)n⩾1 and X be random variables with values in Zd. Prove that
Xn converges in distribution to X if and only if,

∀x ∈ Zd, P(Xn = x) −→ P(X = x).

Exercise 4.11 (Question 4.4.6) : Assume that for all n ⩾ 1, the random variable Xn has a density, denoted
PXn(dx) = pn(x) dx. Suppose

(1) pn(x) −→ p(x), dx-a.s. ,

(2) there exists a non-negative function q such that
∫
Rd q(x) dx < ∞ and

∀n, pn(x) ⩽ q(x), dx-a.s..

Prove that p is the density function of a probability measure onRd and that Xn converges in distribution
to p(x) dx.
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Exercise 4.12 (Question 4.4.7) : If (Xn)n⩾1 converges in distribution to X , is it true that for any B ∈
B(Rd), we also have the following convergence?

P(Xn ∈ B) −→ P(X ∈ B).

Exercise 4.13 (Question 4.4.9) : Consider real-valued random variables (Xn)n⩾1 and X and we write
(FXn)n⩾1 and FX for their distributions. Then, the sequence of random variables (Xn)n⩾1 converges in
distribution to X if and only if for all the points of continuity x of FX , the distribution function FXn(x)
converges to F (x).

Exercise 4.14 (Question 4.4.14) : Given a sequence (µn)n⩾1 of probability measures on Rd. We say that
(µn)n⩾1 is a tight (緊密) sequence if for all ε > 0, there exists a compact set Kε ⊆ Rd such that

µn(Kε) ⩾ 1 − ε.

Given a measure µ on Rd and prove that the following properties are equivalent.

(1) µn converges weakly to µ.

(2) µn converges vaguely to µ and (µn)n⩾1 is tight.

Exercise 4.15 (Proposition 4.4.11) : Show that if (Xn)n⩾1 converges in distribution to X which is almost
surely a constant, then (Xn) also converges in probability to X .

Exercise 4.16 : Let (Ω, A,P) be a probability space, (Xn)n⩾1 and (Yn)n⩾1 be two sequences of real
random variables, X and Y be two real random variables. Assume that Xn

(d)−−→ X and Yn
(d)−−→ Y .

(1) Suppose that for all n ⩾ 1, the random variables Xn and Yn are independent. Also suppose that
X and Y are independent. Show that (Xn, Yn) (d)−−→ (X, Y ).

(2) In general, does (Xn, Yn) converge in distribution to (X, Y )?

(3) (Slutsky’s lemma) If Y is almost surely a constant, show that (Xn, Yn) converges in distribution to
(X, Y ).

Exercise 4.17 : Let (Xn)n⩾1 be an i.i.d. sequence of random variables defined on the probability space
(Ω, A,P) and denote by µ their common distribution. For n ⩾ 1, let Mn = max(X1, . . . , Xn).

(1) If µ is the uniform distribution on [0, 1], show that when n → ∞, (n(1 − Mn))n⩾1 converges in
distribution and find its limiting distribution.

(2) If µ is the Cauchy distribution Cauchy(0, 1), show that when n → ∞, n
Mn

converges in distribution
and find its limiting distribution. (Hint: we have arctan(x) = π

2 − 1
x + o( 1

x) when x → ∞.)

Exercise 4.18 : Here we intend to use more elementary tools to show the central limit theorem and a
result of large deviations (大偏差) in a simpler example. Consider an i.i.d. sequence of random variables
(Xn)n⩾1 and assume that all the terms are Bernoulli distribution of parameter 1

2 with ±1 values, meaning
that,

P(X1 = 1) = P(X1 = −1) = 1
2 .
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For all n ⩾ 1, let Sn = X1 + · · · + Xn.

(1) Prove that when n is large, we have the following asymptotic formula,

P(S2n = 2k) ∼ 1√
πn

(
1 + k

n

)−n−k−1/2(
1 − k

n

)−n+k−1/2
.

(2) If 2k/
√

2n −→ x, show that
P(S2n = 2k) ∼ 1√

πn
e−x2/2.

(3) Prove the central limit theorem: for any a < b, we have,

P(a
√

2n ⩽ S2n ⩽ b
√

2n) −−−→
n→∞

∫ b

a

1√
2π

e−x2/2 dx = P(a ⩽ χ ⩽ b),

where χ is the distribution N (0, 1).

(4) If k/n −→ x, determine the asymptotic expansion of 1
2n lnP(S2n = 2k) up to the order o(1). Then

give an inequality connecting P(S2n = 2k) and P(S2n = 2k + 2) for large enough n.

(5) Prove the following result: for a ∈ (0, 1),

1
2n

lnP(S2n ⩾ 2na) −−−→
n→∞

−γ(a),

where γ(a) = 1
2
[
(1 + a) ln(1 + a) + (1 − a) ln(1 − a)

]
. This result is called large deviations

since this formula can be used to understand the asymptotic behavior of the tail probability which
decays exponentially.

Exercise 4.19 : Let (Ω, A,P) be a probability space.

(1) If X is a square integrable random defined on (Ω, A,P), prove that for any a > 0, we have,

E[|X − inf(X, a)|] ⩽
√
E[X2]P(X ⩾ a).

Let (Xn)n⩾1 be an i.i.d. sequence of random variables on (Ω, A,P)with Poisson distribution of parameter
1. For all n ⩾ 1, let

Sn =
n∑

i=1
Xi and Yn = 1√

n
(Sn − n).

(2) For all n ⩾ 1, determine the distribution of Sn, compute E[Y 2
n ] and prove that for any a > 0,

P(Y −
n ⩾ a) ⩽ 1

a2 .

(3) If Y is the distribution N (0, 1), prove that the sequence of random variables (Y −
n )n⩾1 converges

in distribution to Y −.

(4) Show that E[Y −
n ] converges to E[Y −].
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(5) Deduce the Stirling’s formula from above,

n! ∼
√

2πn
(n

e

)n
, as n → ∞.
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