第四章: 隨機變數的收斂

習題 4.1 : 令 $(\Omega, \mathcal{A}, \mathbb{P})$ 為機率空間, $(X_n)_{n\geqslant 1}$ 為實隨機變數序列,X 為實隨機變數,並假設對於機率測度 \mathbb{P} , X_n 機率收斂至 X。若 \mathbb{Q} 是在 (Ω, \mathcal{A}) 上,且對於 \mathbb{P} 是絕對連續的機率測度,證明對於機率測度 \mathbb{Q} , X_n 也機率收斂至 X。

習題 4.2 : 令 $(\Omega, \mathcal{A}, \mathbb{P})$ 為機率空間,假設 Ω 是可數集合,且 $\mathcal{A} = \mathcal{P}(\Omega)$,證明對於值域為任意賦 距空間 (E,d) 的隨機變數序列來說,「殆必收斂」以及「機率收斂」是等價的。

$$\mathbb{P}_{X_1} = \delta_0,$$

$$\forall n \ge 2, \qquad \mathbb{P}_{X_n} = \frac{1}{2n\ln(n+1)} (\delta_n + \delta_{-n}) + \left(1 - \frac{1}{n\ln(n+1)}\right) \delta_0.$$

- (1) 證明 Y_n 機率收斂至 0。
- (2) 證明 Y_n 殆必發散。

習題 4.4 : 固定機率空間 $(\Omega, \mathcal{A}, \mathbb{P})$ 及實數 $p \geqslant 1$ 。給定定義在 $(\Omega, \mathcal{A}, \mathbb{P})$ 上的隨機變數 $(X_n)_{n\geqslant 1}$ 及 X。我們要討論機率收斂、殆必收斂及 L^p 收斂三者的關係:下列敘述若正確,請簡單證明;敘述若錯誤,請找出反例。

- (1) 若 $X_n \xrightarrow{\text{a.s.}} X$,則 $X_n \xrightarrow{(\mathbb{P})} X$ 。
- (2) 若 $X_n \xrightarrow{(\mathbb{P})} X$,則 $X_n \xrightarrow{\text{a.s.}} X$ 。
- (3) 若 $X_n \xrightarrow{(\mathbb{P})} X$,則存在子序列 $(n_k)_{k\geqslant 1}$ 使得 $X_{n_k} \xrightarrow{\text{a.s.}} X$ \circ
- (4) 若 $X_n \xrightarrow{(\mathbb{P})} X$,則 $X_n \xrightarrow{L^p} X$ 。
- (5) 若 $X_n \xrightarrow{L^p} X$,則 $X_n \xrightarrow{(\mathbb{P})} X$ 。
- (6) 若 $X_n \xrightarrow{\text{a.s.}} X$,則 $X_n \xrightarrow{L^p} X$ 。
- (7) 若 $X_n \xrightarrow{L^p} X$,則 $X_n \xrightarrow{\text{a.s.}} X$ 。

習題 4.5 : 固定正整數 $n \ge 1$ 並令 $(X_k)_{k \ge 1}$ 為 i.i.d. 取值在 $\{1, \ldots, n\}$ 上的均匀隨機變數數列。令

$$T_n := \inf\{m \ge 1 : \{X_1, \dots, X_m\} = \{1, \dots, n\}\}.$$

- (1) 對於所有 $1 \leqslant k \leqslant n$,令 $\tau_k^n := \inf\{m \geqslant 1 : |\{X_1, \ldots, X_m\}| = k\}$ 。證明隨機變數序列 $(\tau_k^n \tau_{k-1}^n)_{2 \leqslant k \leqslant n}$ 是獨立的,並求其各項的分佈。
- (2) 由上題推得 $T_n/(n \ln n)$ 會機率收斂至 1。

習題 4.6 【問題 4.2.3 】 : 給定 i.i.d. 實隨機變數序列 $(X_n)_{n\geqslant 1}$,並且以定義 4.2.1 的方式定義 σ 代數 \mathcal{B}_k 及 \mathcal{B}_∞ 。試證明下列性質:

- (1) 若 Y 是個對於 \mathcal{B}_{∞} 可測的實隨機變數,則它殆必為常數。
- (2) 若 $\frac{1}{n}(X_1 + \dots X_n)$ 殆必收斂,從上題推得則其極限必須殆必為常數。

習題 4.7 : 令 $(X_n)_{n\geqslant 1}$ 為定義在機率空間 $(\Omega,\mathcal{A},\mathbb{P})$ 上的 i.i.d. 隨機變數序列,並假設存在隨機變數 Y 使得

$$\frac{1}{n}(X_1 + \dots + X_n) \xrightarrow{\text{a.s.}} Y.$$

- (1) 證明 $\frac{X_n}{n} \xrightarrow{\text{a.s.}} 0$ 。
- (2) 證明對於任意定義在 $(\Omega, \mathcal{A}, \mathbb{P})$ 上的隨機變數 Z,我們有等價關係:

$$Z \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P}) \qquad \Longleftrightarrow \qquad \sum_{n \geqslant 1} \mathbb{P}(|Z| \geqslant n) < \infty.$$

(3) 由此推得 $X_1 \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$ 。

習題 4.8 : 考慮 i.i.d. 定義在機率空間 $(\Omega, \mathcal{A}, \mathbb{P})$ 上的實數隨機變數序列 $(X_n)_{n\geqslant 1}$,並假設他們的分佈滿足

$$\mathbb{P}(X_1 = +1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}.$$

- (1) 證明對於所有 $u \in \mathbb{R}$,我們有 $\mathbb{E}[e^{uX_1}] \leqslant e^{u^2/2}$ 。
- (2) 令 a_1,\ldots,a_n 為實數且滿足 $\sum_{k=1}^n a_k^2=1$,並且令 $S=\sum_{k=1}^n a_k X_k$ 。證明對於所有 $u\in\mathbb{R}$,我們有 $\mathbb{E}[e^{uS}]\leqslant e^{u^2/2}$ 。由此推得

$$\forall t \geqslant 0, \qquad \mathbb{P}(|S| \geqslant t) \leqslant 2 e^{-t^2/2}.$$

(提示:考慮 $S \ge 0$ 及 $S \le 0$ 兩種情況並使用動差生成函數。)

(3) 使用上題,證明對於任意實數 a_1, \ldots, a_n 及任何正實數 p > 0,我們有

$$||S||_p := \mathbb{E}\left[\left|\sum_{k=1}^n a_k X_k\right|^p\right]^{1/p} \leqslant C_p \left(\sum_{k=1}^n a_k^2\right)^{1/2}.$$

(提示:使用富比尼定理重新表示期望值。)

(4) 對於所有 $n \ge 1$, 設 $S_n = X_1 + \cdots + X_n$ 。證明對於任意 $\alpha > 1$, 我們有

$$\frac{S_n}{\sqrt{n(\ln n)^{\alpha}}} \xrightarrow{\text{a.s.}} 0.$$

(提示:使用(2)的結果。)

習題 4.9 : $\Leftrightarrow (X_n)_{n\geq 0}$ 為 i.i.d. 非負隨機變數序列。

- (1) 除了在某特定情況之外(請描述此情況),證明 $\sum_{n \geq 0} X_n = \infty$ a.s.。
- (2) 令 X 為非負隨機變數。證明對於所有 $\alpha > 0$,我們有下列等價關係:

$$\mathbb{E}[X] < \infty \quad \Leftrightarrow \quad \sum_{n \ge 0} \mathbb{P}(X \ge \alpha n) < \infty.$$

(3) 從而證明我們有下列二分法:

a.s.,
$$\limsup_{n \to \infty} \frac{X_n}{n} = \begin{cases} 0 & 若 \mathbb{E}[X_1] < \infty, \\ \infty & 若 \mathbb{E}[X_1] = \infty. \end{cases}$$

(4) 【不可積情況下的大數法則】令 (Y_n) 為 i.i.d. 隨機變數序列。對於所有 $n\geqslant 0$,令 $S_n=Y_1+\cdots+Y_n$ 。證明若 Y_1 不可積,則 $(\frac{S_n}{n})_{n\geqslant 1}$ 殆必發散。

習題 4.10 【問題 4.4.5 】: 令 $(X_n)_{n\geqslant 1}$ 及 X 為值域為 \mathbb{Z}^d 的隨機變數。試證:若且唯若 X_n 分佈收斂至 X,則

$$\forall x \in \mathbb{Z}^d, \qquad \mathbb{P}(X_n = x) \longrightarrow \mathbb{P}(X = x).$$

習題 4.11 【問題 4.4.6 】:假設對於所有 $n\geqslant 1$, (X_n) 是有密度函數的隨機變數,記作 $\mathbb{P}_{X_n}(\mathrm{d}x)=p_n(x)\,\mathrm{d}x$ 。假設

- (1) $p_n(x) \longrightarrow p(x)$, dx-a.s.,
- (2) 存在非負函數 q 使得 $\int_{\mathbb{R}^d} q(x) dx < \infty$ 且

$$\forall n, \quad p_n(x) \leqslant q(x), \quad dx$$
-a.s..

證明 p 是個在 \mathbb{R}^d 上機率測度的密度函數,而且 X_n 分佈收斂至 p(x) dx。

最後修改: 2025年11月11日16:27

習題 4.12 【問題 ${\bf 4.4.7}$ 】 : 若 $(X_n)_{n\geqslant 1}$ 分佈收斂至 X,是否對於任意 $B\in \mathcal{B}(\mathbb{R}^d)$,我們有下列收斂?

$$\mathbb{P}(X_n \in B) \longrightarrow \mathbb{P}(X \in B).$$

習題 4.13 【問題 **4.4.9** 】: 考慮實隨機變數 $(X_n)_{n\geqslant 1}$ 及 X,將他們的分佈函數寫作 $(F_{X_n})_{n\geqslant 1}$ 以及 F_X 。若且唯若隨機數列序列 $(X_n)_{n\geqslant 1}$ 分佈收斂至 X,則對於所有 F_X 的連續點 x,分佈函數 $F_{X_n}(x)$ 收斂至 F(x)。

習題 4.14 【問題 4.4.14 】 : 給定在 \mathbb{R}^d 上的機率測度序列 $(\mu_n)_{n\geqslant 1}$ 。若對於所有 $\varepsilon>0$,存在緊緻 集合 $K_\varepsilon\subseteq\mathbb{R}^d$ 使得

$$\mu_n(K_{\varepsilon}) \geqslant 1 - \varepsilon$$
,

則我們說 $(\mu_n)_{n\geq 1}$ 是個緊密 (tight) 的序列。給定在 \mathbb{R}^d 上的測度 μ ,證明下列性質等價:

- (1) μ_n 會弱收斂至 μ 。
- (2) μ_n 會淡收斂至 μ 且 $(\mu_n)_{n\geq 1}$ 是緊密的。

習題 4.15 【命題 4.4.11 】 : 證明若 $(X_n)_{n\geqslant 1}$ 分佈收斂至 X,且 X 殆必為常數,則 (X_n) 也機率收斂至 X。

習題 4.16 : 令 $(\Omega, \mathcal{A}, \mathbb{P})$ 為機率空間, $(X_n)_{n\geqslant 1}$ 及 $(Y_n)_{n\geqslant 1}$ 兩實隨機變數序列,X 及 Y 兩實隨機變數。假設 $X_n \xrightarrow{(d)} X$ 以及 $Y_n \xrightarrow{(d)} Y$ 。

- (1) 假設對於所有 $n\geqslant 1$,隨機變數 X_n 及 Y_n 是獨立的,以及假設 X 及 Y 也是獨立的,證明 $(X_n,Y_n)\stackrel{(d)}{\longrightarrow}(X,Y)$ 。
- (2) 一般情況下, (X_n, Y_n) 是否會分佈收斂至 (X, Y)?
- (3) 【Slutsky 引理】若 Y 殆必為常數,證明 (X_n, Y_n) 分佈收斂至 (X, Y)。

習題 4.17 : 令 $(X_n)_{n\geqslant 1}$ 為定義在機率空間 $(\Omega,\mathcal{A},\mathbb{P})$ 上的 i.i.d. 隨機變數,並將他們各項的分佈記作 μ 。對於所有 $n\geqslant 1$,令 $M_n=\max(X_1,\ldots,X_n)$ 。

- (1) 若 μ 為在 [0,1] 上的均匀分佈,證明當 $n\to\infty$ 時, $(n(1-M_n))_{n\geqslant 1}$ 會分佈收斂,並求他的極限分佈。
- (2) 若 μ 為柯西分佈 $\operatorname{Cauchy}(0,1)$,證明當 $n\to\infty$ 時, $\frac{n}{M_n}$ 會分佈收斂,並求他的極限分佈。(提示:當 $x\to\infty$ 時,我們有 $\arctan(x)=\frac{\pi}{2}-\frac{1}{x}+o(\frac{1}{x})$ 。)

習題 4.18 : 這裡我們嘗試在比較簡單的例子中,用比較基礎的工具來證明中央極限定理以及大偏差 (large deviations) 的結果。考慮 i.i.d. 的隨機變數序列 $(X_n)_{n\geqslant 1}$,並假設他們皆為參數為 $\frac{1}{2}$,取值為 ± 1 的伯努力分佈,也就是我們有

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}.$$

對於所有 $n \geqslant 1$,令 $S_n = X_1 + \cdots + X_n$ 。

(1) 證明當 n 很大的時候,我們有下列趨近式:

$$\mathbb{P}(S_{2n} = 2k) \sim \frac{1}{\sqrt{\pi n}} \left(1 + \frac{k}{n}\right)^{-n-k-1/2} \left(1 - \frac{k}{n}\right)^{-n+k-1/2}.$$

(2) 若 $2k/\sqrt{2n} \longrightarrow x$, 證明

$$\mathbb{P}(S_{2n} = 2k) \sim \frac{1}{\sqrt{\pi n}} e^{-x^2/2}.$$

(3) 證明中央極限定理:對於任意 a < b,我們有

$$\mathbb{P}(a\sqrt{2n} \leqslant S_{2n} \leqslant b\sqrt{2n}) \xrightarrow[n \to \infty]{} \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, \mathrm{d}x = \mathbb{P}(a \leqslant \chi \leqslant b),$$

其中 χ 是個 $\mathcal{N}(0,1)$ 分佈。

- (4) 若 $k/n \longrightarrow x$,求 $\frac{1}{2n} \ln \mathbb{P}(S_{2n} = 2k)$ 的漸進展開式至 o(1) 項。並給出在 n 夠大的情況下,聯繫 $\mathbb{P}(S_{2n} = 2k)$ 以及 $\mathbb{P}(S_{2n} = 2k + 2)$ 的不等式。
- (5) 證明下列結果:對於 $a \in (0,1)$,

$$\frac{1}{2n} \ln \mathbb{P}(S_{2n} \geqslant 2na) \xrightarrow[n \to \infty]{} -\gamma(a),$$

其中 $\gamma(a) = \frac{1}{2}[(1+a)\ln(1+a) + (1-a)\ln(1-a)]$ 。此結果稱作大偏差,因為此式子可以用來理解尾端機率的漸進行為,會是以負指數的方式遞減。

習題 4.19 : $\Diamond (\Omega, \mathcal{A}, \mathbb{P})$ 為機率空間。

(1) 若 X 是個定義在 $(\Omega, \mathcal{A}, \mathbb{P})$ 之上,平方可積的隨機變數,證明對任意 a > 0,我們有

$$\mathbb{E}[|X - \inf(X, a)|] \leqslant \sqrt{\mathbb{E}[X^2] \, \mathbb{P}(X \geqslant a)}.$$

令 $(X_n)_{n\geqslant 1}$ 是個在 $(\Omega,\mathcal{A},\mathbb{P})$ 上的 i.i.d. 隨機變數序列,且皆為參數為 1 的帕松分佈。對於所有 $n\geqslant 1$,令

最後修改: 2025年11月11日16:27

(2) 對於所有 $n\geqslant 1$,求 S_n 的分佈,計算 $\mathbb{E}[Y_n^2]$ 以及證明對於任意 a>0,

$$\mathbb{P}(Y_n^-\geqslant a)\leqslant \frac{1}{a^2}.$$

- (3) 若 Y 是個 $\mathcal{N}(0,1)$ 分佈,證明隨機變數序列 $(Y_n^-)_{n\geqslant 1}$ 分佈收斂至 Y^- 。
- (4) 證明 $\mathbb{E}[Y_n^-]$ 收斂至 $\mathbb{E}[Y^-]$ 。
- (5) 由上推導出 Stirling 公式

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
, $\qquad \qquad \equiv n \to \infty$.