Chapter 5: Conditional Expectations

Exercise 5.1: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, \mathcal{G} be a sub- σ -algebra of \mathcal{F} and a non-negative random variable X defined on Ω . Prove that $\{\mathbb{E}[X \mid \mathcal{G}] > 0\}$ is the smallest \mathcal{G} -measurable set containing $\{X > 0\}$. Here, the inclusion is defined up to a set of zero measure.

Exercise 5.2: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Given a sequence $(X_n)_{n\geqslant 1}$ of non-negative random variables and a sequence $(\mathcal{F}_n)_{n\geqslant 1}$ of sub- σ -algebras of \mathcal{F} . Suppose that $\mathbb{E}[X_n \mid \mathcal{F}_n]$ converges in probability to 0.

- (1) Prove that X_n also converges in probability to 0.
- (2) Does the converse hold? If yes, prove it, otherwise, find a counter-example.

Exercise 5.3: Given random variables X and Y defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sub- σ -algebra \mathcal{G} of \mathcal{F} . We say that X and Y are independent knowing \mathcal{G} if for all non-negative measurable functions $f,g:\mathbb{R}\longrightarrow\mathbb{R}$, we have,

$$\mathbb{E}[f(X)g(Y)\,|\,\mathcal{G}] = \mathbb{E}[f(X)\,|\,\mathcal{G}]\,\,\mathbb{E}[g(Y)\,|\,\mathcal{G}].$$

- (1) What does it mean if $\mathcal{G} = \{\emptyset, \Omega\}$? And if $\mathcal{G} = \mathcal{F}$?
- (2) Show that the above definition is equivalent to any of the two following properties.
 - (a) For any non-negative \mathcal{G} -measurable random variable Z and any non-negative measurable functions $f,g:\mathbb{R}\longrightarrow\mathbb{R}$, we have,

$$\mathbb{E}[f(X)g(Y)Z] = \mathbb{E}[f(X)Z \ \mathbb{E}[g(Y) \mid \mathcal{G}]].$$

(b) For any non-negative measurable function $g: \mathbb{R} \longrightarrow \mathbb{R}$, we have,

$$\mathbb{E}[g(Y) \,|\, \mathcal{G} \vee \sigma(X)] = \mathbb{E}[g(Y) \,|\, \mathcal{G}].$$

Exercise 5.4: Below we want to extend some properties of the expectation to the conditional expectation.

(1) Prove that for any non-negative random variable X, the following equality holds almost surely,

$$\mathbb{E}[X \mid \mathcal{G}] = \int_0^\infty \mathbb{P}(X > t \mid \mathcal{G}) \, dt.$$

(2) (Markov's inequality) For any random variable $X \in L^p$ and a > 0, the following inequality holds almost surely,

$$\mathbb{P}(|X| \geqslant a \,|\, \mathcal{G}) \leqslant a^{-p} \,\mathbb{E}[|X|^p \,|\, \mathcal{G}].$$

(3) How to extend the Chebyshev's inequality and the Hölder's inequality?

Exercise 5.5: Given a square-integrable random variable X and two sub- σ -algebras $\mathcal{G}_1 \subset \mathcal{G}_2$. First, explain using the properties of the conditional expectation why the following inequality needs to hold,

$$\mathbb{E}[(X - \mathbb{E}[X \mid \mathcal{G}_2])^2] \leqslant \mathbb{E}[(X - \mathbb{E}[X \mid \mathcal{G}_1])^2],$$

before giving a proof.

Exercise 5.6: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $(\mathcal{F})_{n\geqslant 0}$ be a sequence consisting of sub- σ -algebras of \mathcal{F} . Assume that $\mathcal{F}_0 = \mathcal{F}$ and that the sequence $(\mathcal{F})_{n\geqslant 0}$ is non-increasing. Consider $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and prove the following statements.

- (1) The random variables $\mathbb{E}[X \mid \mathcal{F}_n] \mathbb{E}[X \mid \mathcal{F}_{n+1}]$ are orthogonal in L^2 .
- (2) The following series of random variables converges in L^2 ,

$$\sum_{n\geqslant 0} (\mathbb{E}[X \mid \mathcal{F}_n] - \mathbb{E}[X \mid \mathcal{F}_{n+1}]).$$

(3) Let $\mathcal{F}_{\infty} = \bigcap_{n \geq 0} \mathcal{F}_n$. Show that $\mathbb{E}[X \mid \mathcal{F}_n]$ converges to $\mathbb{E}[X \mid \mathcal{F}_{\infty}]$ in L^2 .

Exercise 5.7: Given two non-negative random variables X and Y and assume $\mathbb{E}[X \mid Y] = Y$ and $\mathbb{E}[Y \mid X] = X$.

- (1) Show that if X and Y are both in L^2 , then X = Y a.s.
- (2) Show that for any non-negative random variable Z and a non-negative real number a, we have,

$$\mathbb{E}[Z \mid Z \wedge a] \wedge a = Z \wedge a$$
, a.s..

(3) Show that for any $a \geqslant 0$, the couple $(X \wedge a, Y \wedge a)$ satisfies the same assumption. Deduce X = Y a.s.

Exercise 5.8 : Let (X,Y) be a random variable with values in $\mathbb{R}^n \times \mathbb{R}^m$. Assume that its density function (with respect to the Lebesgue measure) exists and satisfies p(x,y) > 0.

- (1) Given a Borel function $h: \mathbb{R}^n \times \mathbb{R}^m \longrightarrow \mathbb{R}$ such that h(X,Y) is integrable. Determine $\mathbb{E}[h(X,Y) \mid Y]$.
- (2) Suppose n=m=1. Assume that Y is a Gamma distribution with parameters $(2,\lambda)$ (see Exercise 3.14 for the definition and properties) and that the conditional expectation of X knowing Y is the uniform distribution on [0,Y]. Show that X and Y-X are independent and they both follow the exponential distribution of parameter λ .

Exercise 5.9 : Given two positive real numbers a,b and a random variable (X,Y) with values in $\mathbb{Z}_{\geqslant 0} \times \mathbb{R}_{\geqslant 0}$ satisfying,

$$\mathbb{P}(X=n,Y\leqslant t)=b\int_0^t \frac{(ay)^n}{n!}e^{-(a+b)y}\,\mathrm{d}y.$$

- (1) Given a measurable function $h: \mathbb{R}_{\geqslant 0} \longrightarrow \mathbb{R}$ such that h(Y) is integrable. Determine $\mathbb{E}[h(Y) \mid X]$.
- (2) Determine $\mathbb{E}\left[\frac{Y}{X+1}\right]$.
- (3) Determine $\mathbb{E}[\mathbb{1}_{X=n} | Y]$.
- (4) Determine $\mathbb{E}[X \mid Y]$.

Exercise 5.10: Let X_1, \ldots, X_n be i.i.d. random variables with exponential distribution of parameter λ . We denote $T = X_1 + \cdots + X_n$. Determine $\mathbb{E}[h(X_1) \mid T]$ for all Borel function $h : \mathbb{R} \longrightarrow \mathbb{R}$. How to interprete the result when h = Id?